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Abstract

In 1960 Ghouila-Houri extended Dirac’s theorem to directed graphs by proving

that if D is a directed graph on n vertices with minimum out-degree and in-degree

at least n/2, then D contains a directed Hamiltonian cycle. For directed graphs one

may ask for other orientations of a Hamiltonian cycle and in 1980 Grant initiated

the problem of determining minimum degree conditions for a directed graph D

to contain an anti-directed Hamiltonian cycle (an orientation in which consecutive

edges alternate direction). We prove that for sufficiently large even n, if D is a

directed graph on n vertices with minimum out-degree and in-degree at least n
2 + 1,

then D contains an anti-directed Hamiltonian cycle. In fact, we prove the stronger

result that n
2 is sufficient unless D is one of two counterexamples. This result is

sharp.

1 Introduction

A directed graph D is a pair (V (D), E(D)) where E(D) ⊆ V (D)×V (D). In this paper we

will only consider loopless directed graphs, i.e. directed graphs with no edges of the type

(v, v). An anti-directed cycle (path) is a directed graph in which the underlying graph

forms a cycle (path) and no pair of consecutive edges forms a directed path. Note that

an anti-directed cycle must have an even number of vertices. Let ADP, ADC stand for

anti-directed path and anti-directed cycle respectively and let ADHP, ADHC stand for
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anti-directed Hamiltonian path and anti-directed Hamiltonian cycle respectively. Call an

ADP P = v1 . . . vd proper if d is even and (v1, v2) ∈ E(P ) and hence, (vd−1, vd) ∈ E(P ).

Given an (undirected) graph G, let δ(G) be the minimum degree of G. If D is a directed

graph, then δ(D) will denote the minimum degree of the underlying multigraph, i.e. the

minimum total degree of D. For a directed graph D, let δ+(D) and δ−(D) be the minimum

out-degree and minimum in-degree respectively. Finally, let δ0(D) = min{δ+(D), δ−(D)}
and call this quantity the minimum semi-degree of G.

In 1952, Dirac [6] proved that if G is a graph on n > 3 vertices with δ(G) > n/2,

then G contains a Hamiltonian cycle. In 1960, Ghouila-Houri extended Dirac’s theorem

to directed graphs.

Theorem 1.1 (Ghouila-Houri [8]). Let D be a directed graph on n vertices. If δ0(D) >
n/2, then D contains a directed Hamiltonian cycle.

(His original statement actually says that δ(D) > n is sufficient ifD is strongly connected.)

In 1973, Thomassen proved that every tournament on 2n > 50 vertices contains an

ADHC [16]. Since the total degree of every vertex in a tournament on 2n vertices is 2n−1,

Grant wondered if all digraphs on 2n vertices with total degree 2n−1 have an ADHC. So

in 1980, Grant made the weaker conjecture (replacing total degree by semi-degree) that

if D is a directed graph on 2n vertices with δ0(D) > n, then D contains an ADHC [9].

However, in 1983, Cai [2] gave a counterexample to Grant’s conjecture (see Figure 1b).

Example 1.2 (Cai 1983). For all n, there exists a directed graph D on 2n vertices with

δ0(D) = n such that D does not contain an ADHC.

We define for each even n, a family of digraphs with minimum semi-degree n/2 − 1

which have no anti-directed cycle on n vertices. From this family, we define two digraphs

with minimum semi-degree n/2 which have no anti-directed cycle on n vertices (see Fig-

ure 1).

Definition 1.3. Let n > 2 be even and let 0 6 k 6 n
2
. Let Fn,k be a digraph on n

vertices where {X1, X2, Y1, Y2} is a partition of the vertex set with |X1| = |X2| = n
2
− k

and |Y1| = |Y2| = k and where (u, v) is an edge if and only if u 6= v and

(i) u ∈ Yi and v ∈ Yi ∪Xi for i ∈ [2] or

(ii) u ∈ Xi and v ∈ Y3−i ∪X3−i for i ∈ [2].

Let F 1
n be the digraph obtained from Fn,1 by adding the edges (y1, y2) and (y2, y1), where

yi is the unique vertex in Yi.

Let F 2
n be the digraph obtained from Fn,1 by adding the edges (y1, y2), (y2, x), and

(x, y1), where yi is the unique vertex in Yi and x is an arbitrary vertex in X1.
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|X1| = n− k

|X2| = n− k

|Y1| = k |Y2| = k

(a) F2n,k

|X2| = n− 1

|X1| = n− 1

y1 y2

(b) F 1
2n

|X1| = n− 1

y1 y2

|X2| = n− 1

x

(c) F 2
2n

Figure 1: The solid arrows indicate all possible edges in the designated direction. The

shaded sets with the curved arrows indicate all possible directed edges.

One can easily check that F 1
2n and F 2

2n have no ADHC and are edge maximal with

respect to this property. Cai’s example (F 1
2n above) and our modification of his example

(F 2
2n above) shows that the semi-degree threshold for an ADHC in a directed graph on

2n vertices is at least n + 1. There have been a sequence of partial results which have

improved the threshold from the upper end. In 1980, Grant proved that if D is a directed

graph on 2n vertices and δ0(D) > 4
3
n + 2

√
n log n, then D has an ADHC [9]. In 1995,

Häggkvist and Thomason proved the very general result that if D is a directed graph on

n vertices then the semi-degree threshold for all orientations of a cycle on n vertices is

asymptotically n/2 (we conjecture an exact bound in Section 5).

Theorem 1.4 (Häggkvist, Thomason [10]). For sufficiently large n, if D is a directed

graph on n vertices and δ0(D) > n
2

+ n5/6, then D contains every orientation of a cycle

on n vertices.

Then in 2008, Plantholt and Tipnis improved upon Grant’s result by showing that if D

is a directed graph on 2n vertices and δ0(D) > 4
3
n, then D has an ADHC [15] (note that

this is for all n). Finally in 2011, Busch, Jacobson, Morris, Plantholt, Tipnis improved

upon all the results for ADHC’s by showing that if D is a directed graph on 2n vertices

and δ0(D) > n+ 14
3

√
n, then D has an ADHC [1].

The main goal of this paper is to determine, for sufficiently large n, the exact semi-

degree threshold for an ADHC. However, we actually prove something stronger which in

effect shows that there are only two counterexamples to Grant’s conjecture.
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Theorem 1.5. Let D be a directed graph on 2n vertices. If n is sufficiently large and

δ0(D) > n, then D contains an anti-directed Hamiltonian cycle unless D is isomorphic

to F 1
2n or F 2

2n.

Since δ0(F 1
2n) = δ0(F 2

2n) = n, we obtain the following corollary.

Corollary 1.6. Let D be a directed graph on 2n vertices. If n is sufficiently large and

δ0(D) > n+ 1, then D contains an anti-directed Hamiltonian cycle.

Since we have determined the semi-degree threshold for ADHC’s, we go back and

modify the original conjecture that Grant hinted at.

Conjecture 1.7. Let D be a directed graph on 2n vertices. If δ(D) > 2n + 1, then D

contains an anti-directed Hamiltonian cycle.

An anti-directed 2-factor on n vertices is a directed graph in which the underlying

graph forms a 2-factor and no pair of consecutive edges forms a directed path (once again

note that n must be even for an anti-directed 2-factor to exist). Diwan, Frye, Plantholt,

and Tipnis conjectured that if D is a directed graph on 2n > 8 vertices and δ0(D) > n,

then D contains an anti-directed 2-factor [7]. Since it can be easily shown that F 1
n and

F 2
n each contain an anti-directed 2-factor with two cycles we also obtain the following

corollary of Theorem 1.5, which implies their conjecture for sufficiently large n.

Corollary 1.8. Let D be a directed graph on 2n vertices. If n is sufficiently large and

δ0(D) > n, then D contains an anti-directed 2-factor with at most two cycles.

Let Ln be the graph on vertex set {u1, . . . , un, v1, . . . , vn} such that {ui, vj} ∈ E(Ln)

if and only if |i − j| 6 1. We call Ln a ladder and note that Ln contains every bipartite

2-factor on 2n vertices. Let ~Ln be the directed graph obtained from Ln by orienting every

edge {ui, vj} from ui to vj. We call ~Ln an anti-directed ladder and note that ~Ln contains

every anti-directed 2-factor on 2n vertices.

Czygrinow and Kierstead determined the minimum degree threshold for a balanced

bipartite graph to contain a spanning ladder.

Theorem 1.9 (Czygrinow, Kierstead [4]). There exists n0 such that if G is a balanced

bipartite graph on 2n > 2n0 vertices with δ(G) > n
2

+ 1, then Ln ⊆ G.

We make the following conjecture which would strengthen Corollary 1.6.

Conjecture 1.10. Let D be a directed graph on 2n vertices. If n is sufficiently large

and δ0(D) > n + 1, then ~Ln ⊆ D. In particular D contains every possible anti-directed

2-factor.

We note that Conjecture 1.10 holds asymptotically.
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Observation 1.11. For all ε > 0, there exists n0 such that if D is a directed graph on

2n > 2n0 vertices with δ0(D) > (1 + ε)n, then ~Ln ⊆ D.

Proof. Let X1, X2 be a random balanced bipartition of V (D). We expect

δ+(x,X2), δ
−(x,X1) >

1

2
(1 + ε)n for all x ∈ X1 ∪X2,

so by Chernoff’s inequality there exists such a partition X1, X2 which satisfies

δ+(X1, X2) >
n

2
+ 1 and δ−(X2, X1) >

n

2
+ 1.

Let G be an X1, X2-bipartite graph such that {u, v} ∈ E(G) if and only if u ∈ X1,

v ∈ X2 and (u, v) ∈ ~ED(X1, X2). Note that G is a balanced bipartite graph on 2n vertices

with δ(G) > n
2

+ 1 and thus by Theorem 1.9, G contains a spanning ladder Ln which

corresponds to a spanning anti-directed ladder ~Ln in D.

2 Overview

Note that Observation 1.11 also implies that Theorem 1.5 holds asymptotically. To get

the exact result, we use the now common stability technique where we split the proof

into two cases depending on whether D is “close” to an extremal configuration or not

(see Figure 1a). If D is close to an extremal configuration, then we use some ad-hoc

techniques which rely on the exact minimum semi-degree condition and if D is not close

to an extremal configuration then we use the recent absorbing method of Rödl, Ruciński,

and Szemerédi (as opposed to the regularity/blow-up method).

To formally say what we mean by “close” to an extremal configuration we need the

following definition.

Definition 2.1. Let D be a directed graph on 2n vertices. We say D is α-extremal if

there exists A,B ⊆ V (D) such that (1 − α)n 6 |A|, |B| 6 (1 + α)n and ∆+(A,B) 6 αn

and ∆−(B,A) 6 αn.

This definition is more restrictive than simply bounding the number of edges, thus it

will help make the extremal case less messy. However, a non-extremal set still has many

edges from A to B.

Observation 2.2. Let 0 < α � 1. Suppose D is not α-extremal, then for A,B ⊆ V (D)

with (1− α/2)n 6 |A|, |B| 6 (1 + α/2)n, we have ~e(A,B) > α2

2
n2.

Proof. Let A,B ⊆ V (D) with (1 − α/2)n 6 |A|, |B| 6 (1 + α/2)n. Since D is not α-

extremal, there is some vertex v ∈ A with deg+(v,B) > αn or v ∈ B with deg−(v,A) >
αn. Either way, we get at least αn edges. Now delete v, and apply the argument again

to get another αn edges. We may repeat this until |A| or |B| drops below (1 − α)n, i.e.

for at least α
2
n steps. This gives us at least α2

2
n2 edges in total.
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Finally, we make two more observations which will be useful when working with non-

extremal graphs.

Observation 2.3. Let 0 < λ 6 α� 1 and let D be a directed graph on n vertices. If D is

not α-extremal and X ⊆ V (D) with |X| 6 λn, then D′ = D−X is not (α− λ)-extremal.

Proof. Let A′, B′ ⊆ V (D′) ⊆ V (D) with (1 − α + λ)|D′| 6 |A′|, |B′| 6 (1 + α − λ)|D′|.
Note that

(1−α)n 6 (1−α+λ)(1−λ)n 6 (1−α+λ)|D′| 6 |A′|, |B′| 6 (1 +α−λ)|D′| 6 (1 +α)n

thus there exists v ∈ A′ such that deg+(v,B′) > αn > (α − λ)|D′| or v ∈ B′ such that

deg−(v, A′) > αn > (α− λ)|D′|.

Lemma 2.4. Let X, Y ⊆ V (D). If ~e(X, Y ) > c|X||Y |, then there exists

(i) X ′ ⊆ X, Y ′ ⊆ Y such that X ′ ∩ Y ′ = ∅ and δ+(X ′, Y ′) > c
8
|Y |, δ−(Y ′, X ′) > c

8
|X|

and

(ii) a proper anti-directed path in D[X ∪ Y ] on at least c
4
·min{|X|, |Y |} vertices.

Proof. (i) Let X∗ = X \ Y and Y ∗ = Y \X. Delete all edges not in ~E(X, Y ). Choose

a partition {X ′′, Y ′′} of X ∩ Y which maximizes ~e(X∗ ∪X ′′, Y ∗ ∪ Y ′′) and set X0 =

X∗∪X ′′ and Y0 = Y ∗∪Y ′′. Note that ~e(X0)+~e(Y0)+~e(X0, Y0)+~e(Y0, X0) = ~e(X, Y ).

We have that

~e(X0) =
∑
v∈X0

deg+(v,X0) =
∑
v∈X′′

deg−(v,X0) 6
∑
v∈X′′

deg+(v, Y0) 6 ~e(X0, Y0)

where the inequality holds since if deg−(v,X0) > deg+(v, Y0) for some v ∈ X ′′,

then we could move v to Y ′′ and increase the number of edges across the partition.

Similarly, ~e(X0, Y0) > ~e(Y0). Thus ~e(X0, Y0) > 1
4
~e(X, Y ) > c

4
|X||Y |.

If there exists v ∈ X0 such that deg+(v, Y0) <
c
8
|Y | or v ∈ Y0 such that deg−(v,X0) <

c
8
|X|, then delete v and set X1 = X0 \ {v} and Y1 = Y0 \ {v}. Repeat this process

until there no vertices left to delete. This process must end with a non-empty graph

because fewer than |X| c
8
|Y |+ |Y | c

8
|X| = c

4
|X||Y | edges are deleted in this process.

Finally, let X ′ and Y ′ be the sets of vertices which remain after the process ends.

(ii) Apply Lemma 2.4.(i) to obtain sets X ′ ⊆ X, Y ′ ⊆ Y such that X ′ ∩ Y ′ = ∅
and δ+(X ′, Y ′) > c

8
|Y | and δ−(Y ′, X ′) > c

8
|Y |. Let G be an auxiliary bipartite

graph on X ′, Y ′ with E(G) = {{x, y} : (x, y) ∈ ~E(X ′, Y ′)}. Note that δ(G) >
c
8

min{|X|, |Y |} and thus G contains a path on at least 2δ(G) > c
4
· min{|X|, |Y |}

vertices, which starts in X. This path contains a proper anti-directed path in D on

at least c
4
·min{|X|, |Y |} vertices.
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3 Non-extremal Case

In this section we will prove that if D satisfies the conditions of Theorem 1.5 and D is

not α-extremal, then D has an ADHC. We actually prove a stronger statement which in

some sense shows that the extremal condition is “stable,” i.e. graphs which do not satisfy

the extremal condition do not require the tight minimum semi-degree condition.

Theorem 3.1. For any α ∈ (0, 1/32) there exists ε > 0 and n0 such that if D = (V,E)

is a directed graph on 2n > 2n0 vertices, D is not α-extremal and δ0(D) > (1− ε)n, then

D contains an anti-directed Hamiltonian cycle.

Lemma 3.2. For all 0 < ε � β � λ � α � 1 there exists n0 such that if n > n0, D

is a directed graph on 2n vertices, δ0(D) > (1− ε)n, and D is not α-extremal, then there

exists a proper anti-directed path P ∗ with |P ∗| 6 λn such that for all W ⊆ V (D) \ V (P ∗)

with 2w := |W | 6 βn, D[V (P ∗) ∪W ] contains a spanning proper anti-directed path with

the same endpoints as P ∗.

Lemma 3.3. For all 0 < ε � β � λ � α � 1 there exists n0 such that if n > n0,

D is a directed graph on 2n vertices, δ0(D) > (1 − ε)n, D is not α-extremal, and P ∗ is

a proper anti-directed path with |P ∗| 6 λn, then D contains an anti-directed cycle on at

least (2− β)n vertices which contains P ∗ as a segment.

First we use Lemma 3.2 and Lemma 3.3 to prove Theorem 3.1.

Proof. Let α ∈ (0, 1/32) and choose 0 < ε � β � λ � σ � α. Let n0 be large

enough for Lemma 3.2 and Lemma 3.3. Let D be a directed graph on 2n vertices with

δ0(D) > (1−ε)n. Apply Lemma 3.2 to obtain an anti-directed path P ∗ having the stated

property. Now apply Lemma 3.3 to obtain an anti-directed cycle C∗ which contains P ∗

as a segment. Let W = D − C∗ and note that since C∗ is an anti-directed cycle, |C∗| is

even which implies |W | is even, since |D| is even. Finally apply the property of P ∗ to the

set W to obtain an ADHC in D.

3.1 Absorbing

To prove Lemma 3.2 we will use the following more general statement.

Lemma 3.4. Let m, d ∈ N, a > 0, b ∈ (0, a
2d

) and c ∈
(
0, 2b

(
a
2d
− b
))

. There exists n0

such that when V is a set of order n > n0 the following holds. For every S ∈
(
V
m

)
, let

f(S) be a subset of V d. Call T ∈ V d a good tuple if T ∈ f(S) for some S ∈
(
V
m

)
. If

|f(S)| > and for every S ∈
(
V
m

)
then there exists a set F of at most bn/d good tuples

such that |f(S)∩F| > cn for every S ∈
(
V
m

)
and the images of distinct elements of F are

disjoint.
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Proof. Pick ε > 0 so that

(1 + a)ε <
ab

d
− 2b2 − c.

Let b′ := b
d
, p := b′ − ε and c′ := c + (d2 + 1)p2. Let F ′ be a random subset of V d where

each T ∈ V d is selected independently with probability pn1−d. Let

O :=

{
{T, T ′} ∈

(
V d

2

)
: im(T ) ∩ im(T ′) 6= ∅

}
and OF ′ := O ∩

(F ′

2

)
.

We only need to show that, for sufficiently large n0, with positive probability |OF ′ | <
(d2 + 1)p2n, |F ′| < b′n and |f(S) ∩ F ′| > c′n for every S ∈

(
V
m

)
. We can then remove

at most (d2 + 1)p2n tuples from such a set F ′ so that the images of the remaining tuples

are disjoint. After also removing every T ∈ F ′ for which there is no S ∈
(
V
m

)
for which

f(S) = T , the resulting set F will satisfy the conditions of the lemma.

Clearly,

|O| 6 n · d2 · n2d−2 = d2n2d−1,

and for any {T, T ′} ∈
(
V d

2

)
, Pr({T, T ′} ⊆ F ′) = p2n2−2d. Therefore, by the linearity of

expectation, E[|OF ′|] < d2p2n. So, by Markov inequality,

Pr
(
|OF ′ | > (d2 + 1)p2n

)
6

d2

d2 + 1
.

Note that E[|F ′|] = pn and pn > E[|f(S) ∩ F ′|] > apn for every S ∈
(
V
m

)
. Therefore, by

the Chernoff inequality, Pr(|F ′| > b′n) 6 e−ε
2n/3 and, since

ap− c′ = ab

d
− aε− (d2 + 1)

(
b

d
− ε
)2

− c > ab

d
− 2b2 − c− aε > ε,

Pr(|F ′ ∩ f(S)| 6 c′n) < e−ε
2n/3 for every S ∈

(
V
m

)
. Therefore, for sufficiently large n0,

Pr
(
|OF ′ | > (d2 + 1)p2

)
+ Pr(|F ′| > b′n) +

∑
S∈(V

m)

Pr(|F ′ ∩ f(S)| 6 c′n) < 1.

Let P := V 2 − {(x, x) : x ∈ V }. For any (x, y) ∈ P , call (a, b, c, d) ∈ V 4 an (x, y)-

absorber if abcd is a proper anti-directed path and axcbyd is a proper anti-directed path

(see Figure 2) and call (a, b) ∈ V 2 an (x, y)-connector if xaby is an anti-directed path

where (a, b) is an edge (note that specifying one edge dictates the directions of all the

other edges).

Note that if (x′, x), (y, y′) ∈ ~E(D) and (a, b) is an (x, y)-connector disjoint from {x′, y′}
then x′xabyy′ is an anti-directed path.

For all (x, y) ∈ P , let fabs(x, y) = {T ∈ V 4 : T is an (x, y)-absorber} and fcon(x, y) =

{T ∈ V 2 : T is an (x, y)-connector}.
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x

a b c d

y

a x c b y d

Figure 2: (a, b, c, d) is an (x, y)-absorber

Claim 3.5. Let D satisfy the conditions of Lemma 3.2. For all (x, y) ∈ P we have

(i) |fabs(x, y)| > α12n4 and

(ii) |fcon(x, y)| > α3n2.

Proof. Let (x, y) ∈ P and let A = N−(x) and B = N+(y).

(i) By Observation 2.2 and Lemma 2.4, there exists A′ ⊆ A and B′ ⊆ B such that

A′ ∩ B′ = ∅ and δ+(A′, B′), δ−(B′, A′) > α2

16
(1 − ε)n > α3n + 1. For all (c, b) ∈

~E(A′, B′), we have |N−(b) ∩ A′| > α3n + 1 and |N+(c) ∩ B′| > α3n + 1. So there

are more than (α3n)2 choices for (b, c), α3n choices for a and α3n choices for d, i.e.

|fabs(x, y)| > α12n4.

(ii) Similarly, by Observation 2.2, we have ~e(A,B) > α2

2
n2 > α3n2, each of which is a

connector.

Claim 3.6 (Connecting-Reservoir). For all 0 < γ � α and D′ ⊆ D such that |D′| > (2−
λ)n, there exists a set of pairwise disjoint ordered pairs R such that if R = ∪(a,b)∈R{a, b},
then R ⊆ V (D′), |R| 6 γn and for all distinct x, y ∈ V (D), |fcon(x, y) ∩R| > γ2n.

Proof. For every (x, y) ∈ P

|{(a, b) ∈ fcon(x, y) : a, b ∈ V (D′)}| > |fcon(x, y)| − 2|D −D′|n > α3n2/2.

Therefore, we can apply Lemma 3.4 to obtain a set R of disjoint good ordered pairs such

that |R| 6 γn/2 and |fcon(x, y) ∩R| > γα3n/4− 2γ2n > γ2n and R ⊆ V (D′)2.

Now we prove Lemma 3.2.

Proof. Since |fabs(x, y) ∩ P(V ′)| > α12n4 we apply Lemma 3.4 to D obtain a set A of

disjoint good 4-tuples {A1, . . . , A`} such that |A| 6 λn/8 and |fabs(x, y)∩A| > λα12n/8−
2(λ/2)2n > λ2n. Let A = ∪(a,b,c,d)∈A{a, b, c, d} and note that |A| 6 λn/2.

Let (ai, bi, ci, di) := Ai for every i ∈ [l], so aibicidi is a proper ADP. Note that there are

less than 2|A|n ordered pairs that contain a vertex from A, so since λ� α, we can greedily
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choose vertex disjoint (xi, yi) ∈ fcon(di, ai+1) for each i ∈ [l − 1] such that xi, yi /∈ A. Set

P ∗ := A1x1y1A2x2y2A2 . . . Al−1xl−1yl−1Al and note that |P ∗| 6 λn and |P ∗| is a proper

ADP.

To see that P ∗ has the desired property, let W ⊆ V \ V (P ∗) such that 2w = |W | 6
βn. Arbitrarily partition W into pairs and since β � λ, we can greedily match the

disjoint pairs from W with 4-tuples in A. By the way we have defined an (x, y)-absorber,

D[V (P ′) ∪W ] contains a spanning proper anti-directed path starting with an out-edge

from a1 and ending with an in-edge to d`.

3.2 Covering

The main challenge in the proof of Lemma 3.3 is to show that if a maximum length anti-

directed path is not long enough, then we can build a constant number of vertex disjoint

anti-directed paths whose total length is sufficiently larger.

Claim 3.7. Under the conditions of Lemma 3.3, suppose P ∗ is a proper anti-directed path

with |P ∗| 6 λn. For all R ⊆ V (D−P ∗) with |R| 6 β2n, if P is a proper anti-directed path

in D − R with beginning segment P ∗ such that |P | < (2 − β)n, then there exist disjoint

proper anti-directed paths Q1, . . . , Qr ⊆ D − R, such that r 6 6, Q1 contains P ∗ as an

initial segment and

|Q1|+ · · · |Qr| > |P |+ ε

⌈
1

4
log n

⌉
.

First we show how this implies Lemma 3.3.

Proof. Let n be large enough so that we can apply Claim 3.6 and so that if m :=
⌈
1
4

log n
⌉
,

then

n >
4m22m

ε2β
and m > 10β−4ε−1. (1)

Let P ∗ be a proper anti-directed path with |P ∗| 6 λn. Let D′ = D − P ∗. Now apply

Claim 3.6 to D′ with γ = β2 to get R and R such that |fcon(x, y) ∩ R| > β4n for every

(x, y) ∈ P and |R| 6 β2n.

Let P be a maximum length proper anti-directed path in D−R that begins with P ∗.

If |P | < (2 − β)n, then we apply Claim 3.7. Now connect Q1, . . . , Qr into a longer path

using at most 5 pairs from R. Delete these vertices from R and reset R. We may repeat

this process as long as there are sufficiently many pairs remaining in R. On each step,

|fcon(x, y) ∩ R| may be reduced by at most 5. However, in less than 2n
εm

steps, we will

have a path of length greater than (2 − β)n in which case we would be done. By (1),

5 · 2n
εm

< β4n, so we can repeat the process sufficiently many times. Once we have a path

P with |P | > (2 − β)n, we use one more pair from R to connect the endpoints of P to

form an anti-directed cycle C, which is possible since |P | is even. Note that C contains

P ∗ as a segment by construction.
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Proof of Claim 3.7. Let n and m be as in (1). Let P be a maximum length proper ADP

in D − R containing P ∗ as an initial segment. Let P̂ be the shortest segment of P

immediately following P ∗ so that P ′ := v1 . . . vp = P − (P ∗ ∪ P̂ ) is a multiple of 2m; thus

|P̂ | < 2m. Set T := V \ (V (P ) ∪ V (R)), and Pi := v2m(i−1)+1 . . . v2mi for i ∈ [s] where

s := p
2m

(which is an integer by the choice of P̂ ). Note that |Pi| = 2m for every i ∈ [s].

Assume |T | > βn− |R| > βn/2.

Claim 3.8. Let c ∈ (ε2 − 1, 1), d ∈ [ε2, 1 + c), and b := d(1 + c− d)me. If ~e(T, Pi) >
(1 + c)m|T |, then there exists Xi ⊆ V (Pi) and Yi ⊆ T such that |Xi| = b, |Yi| > 2m and

Xi ⊆ N+(y) for every y ∈ Yi. In particular, D[V (Pi)∪ T ] contains a proper anti-directed

path on 2b vertices.

Proof. Let T ′ = {v ∈ T : deg+(v, Pi) > b} and since

(1 + c)m|T | 6 ~e(T, Pi) 6 (|T | − |T ′|)(b− 1) + |T ′|2m 6 |T |(1 + c− d)m+ |T ′|2m

we have |T ′| > d
2
|T |. Together with (1) this gives us

|T ′| > d

2
|T | > ε2βn/2 > 2m22m > 2m

(
2m

b

)
,

which by the pigeonhole principle implies that there exists Xi ⊆ V (Pi) with |Xi| = b and

Yi ⊆ T ′ such that |Yi| > 2m and Xi ⊆ NH(y) for every y ∈ Yi.

By Claim 3.8, if ~e(T, Pi) > (1 + ε)|T |m there exists a proper anti-directed path Q3 of

length

2
⌈
(1 + ε− ε2)m

⌉
> (2 + ε)m in D[T ∪ Pi].

Letting Q1 := P ∗P̂P1 · · ·Pi−1 and Q2 := Pi+1 · · ·Pq then satisfies the condition of the

lemma. Therefore, we can assume that,

~e(T, Pi) < (1 + ε)|T |m for every i ∈ [s]. (2)

We can also assume that

~e(T, T ) < ε|T |2. (3)

Otherwise by Lemma 2.4.(ii) there exists a proper anti-directed path Q2 of length ε
4
|T | >

εm in D[T ]. Then Q1 := P and Q2 satisfy the condition of the lemma.

So (3) implies that

~e(T, P ′) > (1− ε)n|T | − (|P ∗|+ |P̂ |+ |R|)|T | − ~e(T, T )

> (1− ε− λ− β2)n|T | − 2m|T | − ε|T |2 > (1− 2λ)n|T |
(4)

Let λ� σ � α and let

I := {i ∈ [s] : ~e(T, Pi) > (1− σ)|T |m}.
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By (2) and (4),

(1−2λ)n|T | 6 ~e(T, P ′) 6 (1−σ)m(s−|I|)|T |+(1+ε)m|I||T | 6 (1−σ)n|T |+(σ+ε)m|I||T |

which implies that m|I| > σ−2λ
σ+ε

n > (1− α
2
)n. Also note that n > |P |/2 > m|I|.

For every i ∈ I, let Xi ⊆ Pi and Yi ⊆ T be the sets guaranteed by Claim 3.8 with

c := −σ, d := σ and b := d(1−2σ)me. Let Zi := V (Pi)\Xi for i ∈ [I] and let Z :=
⋃
i∈I Zi.

Note that |Zi| = 2m− b for every i ∈ I so |Z| = (2m− b)|I| and(
1 +

α

2

)
n > (1 + 2σ)n > (2m− b)|I| > m|I| >

(
1− α

2

)
n.

Therefore by Observation 2.2, ~e(Z,Z) > α2

2
|Z|2. Because

α2

2
6
~e(Z,Z)

|Z|2
=

1

|I|2
∑
i∈I

∑
j∈I

~e(Zi, Zj)

(2m− b)2
,

there exists i, j ∈ I such that ~e(Zi, Zj) > α2(2m − b)2/2. Removing Pi and Pj divides

P into three disjoint proper anti-directed paths (note that some of these paths may be

empty). Label these paths Q1, Q2 and Q3 so that P ∗P̂ ⊆ Q1. By Lemma 2.4.(ii) there

exists a proper anti-directed path Q4 of length at least (α2/8)(2m − b) > (α2/8)m in

D[Zi ∪ Zj]. By Claim 3.8, there also exists a proper anti-directed path Q5 ⊆ D[Xi ∪ Yi]
such that |Q5| > 2(1− 2σ)m.

If i = j then Q4 ⊆ D[Zi] and |Q1|+ |Q2|+ |Q3| = |P | − 2m. Therefore it is enough to

observe that |Q4|+ |Q5| > 2(1− 2σ)m+ (α2/8)m > 2m+ εm.

If i 6= j, then Y ′j := Yj \V (Q4) has order at least 2m− b > m. So there exists a proper

anti-directed path Q6 ⊆ D[Xj∪Y ′j ] such that |Q6| > 2(1−2σ)m. Since |Q1|+|Q2|+|Q3| =
|P | − 4m and |Q4| + |Q5| + |Q6| > 4(1 − 2σ)m + (α2/8)m > 4m + εm, the proof is

complete.

4 Extremal Case

Let 0 < α � β � γ � 1. Let D be a directed graph on 2n vertices with δ0(D) > n

and suppose that D satisfies the extremal condition with parameter α and that D is not

isomorphic to F 1
n or F 2

n . We will first partition V (D) in the preprocessing section, then

we will handle the main proof. In this section we sometime use uv to denote the edge

(u, v).

4.1 Preprocessing

The point of this section is to make the following statement precise: If D satisfies the

extremal condition, then D is very similar to the digraph in Figure 1a.

the electronic journal of combinatorics 22(4) (2015), #P4.34 12



Proposition 4.1. If there exists an α-extreme pair of sets A,B ⊆ V (G), then there exists

a partition {X ′1, X ′2, Y ′1 , Y ′2 , Z} of V (G) such that

(i) |Z| 6 3α2/3n, ||X ′1| − |X ′2||, ||Y ′1 | − |Y ′2 || 6 3α2/3n and

(ii) δ0(X ′3−i, X
′
i), δ

−(Y ′3−i, X
′
i), δ

+(Y ′i , X
′
i) > |X ′i| − 2α1/3n and

δ0(Y ′i , Y
′
i ), δ

−(X ′i, Y
′
i ), δ

+(X ′3−i, Y
′
i ) > |Y ′i | − 2α1/3n for i = 1, 2.

Proof. Let A,B ⊆ V (D) such that (1− α)n 6 |A|, |B| 6 (1 + α)n, ∆+(A,B) 6 αn, and

∆−(B,A) 6 αn. We have that

δ+(A,B) > (1− α)n, and (5)

δ−(B,A) > (1− α)n. (6)

Set X̃1 = V \ (A ∪ B), X̃2 = A ∩ B, Ỹ1 = A \ B, Ỹ2 = B \ A. Note that Ỹ1 ∪ X̃2 = A

and Ỹ2 ∪ X̃2 = B. Therefore, ||Ỹ1| − |Ỹ2|| 6 2αn, and ||X̃1| − |X̃2|| 6 2αn, because

|X̃1| − |X̃2| = |V | − |A| − |B|.
Let

Ŷ1 = {v ∈ Ỹ1 : deg−(v, X̃2) < |X̃2| − α1/3n or deg−(v, Ỹ1) < |Ỹ1| − α1/3n},

Ŷ2 = {v ∈ Ỹ2 : deg+(v, X̃2) < |X̃2| − α1/3n or deg+(v, Ỹ2) < |Ỹ2| − α1/3n},

X̂1 = {v ∈ X̃1 : deg−(v, Ỹ1) < |Ỹ1| − α1/3n or deg+(v, Ỹ2) < |Ỹ2| − α1/3n or

deg0(v, X̃2) < |X̃2| − α1/3n},

B̂ = Ŷ1 ∪ X̂1 and Â = Ŷ2 ∪ X̂1. Note that B̂ ⊆ B and Â ⊆ A. Now we show that each of

these sets are small.

Claim 4.2. |Ŷ1|, |Ŷ2|, |X̂1| 6 2α2/3n and |Ŷ1|+ |Ŷ2|+ |X̂1| 6 3α2/3n

Proof. By (5) and the definition of X̂1, Ŷ1, we have

|Ỹ1 ∪ X̃2|(1− α)n = |A|(1− α)n 6 ~e(A,B) 6 (|B| − |B̂|)|A|+ |B̂|(|A| − 2α1/3n)

This implies

|Ŷ1 ∪ X̂1| = |B̂| 6
|A|(|B| − (1− α)n)

2α1/3n
6

(1 + α)n((1 + α)n− (1− α)n)

2α1/3n
= (1 + α)α2/3n

Now using (6), the same calculation (with the symbol A exchanged with the symbol

B) gives that |Ŷ2 ∪ X̂1| = |Â| 6 (1 + α)α2/3n.

Thus |Ŷ1|+ |Ŷ2|+ |X̂1| 6 2(1 + α)α2/3n 6 3α2/3n.

Let X ′1 = X̃1 \ X̂1, X
′
2 = X̃2, Y

′
i = Ỹi \ Ŷi for i = 1, 2, and Z = X̂1 ∪ Ŷ1 ∪ Ŷ2. Note

that |Z| 6 3α2/3n and ||X ′1| − |X ′2||, ||Y ′1 | − |Y ′2 || 6 2αn+ 2α2/3n < 3α2/3n. The required

degree conditions all follow from (5) and (6); the definitions of X̂1, Ŷ1 and Ŷ2; and Claim

4.2.
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4.2 Preliminary results

The following facts immediately follow from the Chernoff bound for the hypergeometric

distribution [13].

Lemma 4.3. For any ε > 0, there exists n0 such that if D is a digraph on n > n0 vertices,

S ⊆ V (D), m 6 |S| and c := m/|S| then there exists T ⊆ S of order m such that for

every v ∈ V

||N±(v) ∩ T | − c|N±(v) ∩ S|| 6 εn and

||N±(v) ∩ (S \ T ) | − (1− c)|N±(v) ∩ S|| 6 εn.

We will need the following theorem and corollary and an additional lemma.

Theorem 4.4 (Moon, Moser [14]). If G is a balanced bipartite graph on n vertices such

that for every 1 6 k 6 n/4 there are less than k vertices v such that deg(v) 6 k then G

has a Hamiltonian cycle.

Corollary 4.5. Let G be a U, V -bipartite graph on n vertices such that n is sufficiently

large and 0 6 |U | − |V | 6 1 and let C > 3 be a positive integer. If n is even, let a ∈ U
and b ∈ V and if n is odd, let a, b ∈ U . If δ(G) > 2C and deg(v) > 2n/5 for all but at

most C vertices v then G has a Hamiltonian path with ends a and b.

Proof. If n is even then iteratively pick v0 ∈ N(b)−a, v1 ∈ N(v0)−b and v2 ∈ N(a)−b−v1
and set R = {a, b, v0, v1, v2}. If n is odd then iteratively pick v1 ∈ N(a) and v2 ∈ N(b)−v1.
and set R = {a, b, v1, v2}. In both cases, we can select v1, v2 to have degree greater than

2n/5. Applying Theorem 4.4 to the graph formed by removing R from the graph and

adding a new vertex to V which is adjacent to N(v1)∩N(v2)\R completes the proof.

Definition 4.6. Let S be a star with k leaves. If every edge of S is oriented away from

the center, we say S is a k-out star, if every edge is oriented towards the center, we say

S is a k-in star.

Lemma 4.7. Let G be a directed graph on n vertices and let 1 6 d 6 D � n. If δ+(G) > d

and ∆−(G) 6 D, then G has at least (d−1)n−4(d−1+D)
3(d+D−1) disjoint 2-in-stars together with two

independent edges.

Proof. We start by noting that since δ+(G) > d > 1 and ∆−(G) 6 D there is a matching

of size at least 2. Let M be a maximum collection of two independent edges together with

m > 0 vertex disjoint 2-in stars and let L = V (G) \ V (M). Note that
∑

v∈L deg+(v, L) 6
|L| = n− 3m− 4 otherwise

∑
v∈L deg−(v, L) =

∑
v∈L deg+(v, L) > |L| would give a 2-in

star disjoint from M . Thus

(d− 1)(n− 3m− 4) 6 d(n− 3m− 4)−
∑
v∈L

deg+(v, L) 6 ~e(L,M) 6 (3m+ 4)D

which gives m > (d−1)n−4(d−1+D)
3(d+D−1) .
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4.3 Finding the ADHC

Looking ahead (in what will be the main case), we are going to distribute vertices from

Z to the sets X ′1, X
′
2, Y

′
1 , Y

′
2 to make sets X1, X2, Y1, Y2. Then we are going to partition

each of the sets X1 = X1
1 ∪X2

1 , X2 = X1
2 ∪X2

2 , Y1 = Y 1
1 ∪ Y 2

1 , and Y2 = Y 1
2 ∪ Y 2

2 (so that

each set is approximately split in half). Then we are going to look at the bipartite graphs

induced by edges from X1
2 ∪ Y 1

1 to X1
1 ∪ Y 2

1 and from X2
1 ∪ Y 2

2 to X2
2 ∪ Y 1

2 respectively

(see Figure 3). By the degree conditions for X ′1, X
′
2, Y

′
1 , Y

′
2 , these bipartite graphs will

be nearly complete, however we must be sure that the vertices from Z each have degree

at least γn in the bipartite graph. This next claim shows that the vertices of Z can be

distributed so that this condition is satisfied.

|X1| ≈ n− k

|X2| ≈ n− k

|Y1| ≈ k |Y2| ≈ k

(a)

U2

V2

Y 1
2X2

2

≈ n−k
2

≈ n−k
2

Y 2
2

Y 1
1

≈ k
2

≈ k
2

Y 2
1

≈ n−k
2

≈ n−k
2

X1
2

X2
1X1

1

V1

U1 ≈ k
2

≈ k
2

(b)

Figure 3: The objective partition, before and after.

Definition 4.8. For z ∈ Z and A,B ∈ {X ′1, X ′2, Y ′1 , Y ′2}, we say z ∈ Z(A,B) if

deg+(z,B) > 5γn and deg−(z, A) > 5γn.

Claim 4.9. Every vertex in Z belongs to at least one of the following sets:

(i) Z(X ′i, X
′
i),

(ii) Z(Y ′i , Y
′
i ),

(iii) Z(X ′i, X
′
3−i),

(iv) Z(Y ′i , Y
′
3−i),

(v) Z1 :=
⋂

16i,j62

Z(Y ′i , X
′
j) or

(vi) Z2 :=
⋂

16i,j62

Z(X ′i, Y
′
j ).
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Proof. Let v ∈ Z and suppose that v is in none of the sets (i) − (iv). Note that v must

have at least (n− |Z|)/4 out-neighbors in some set A ∈ {X ′1, X ′2, Y ′1 , Y ′2}.
Assume A = X ′i for some i = 1, 2. Because of the degree condition and the fact that

v is in none of the sets (i)− (iv), we have

deg−(v, Y1 ∪ Y2) > n− 10γn− |Z| > (1− 11γ)n, which implies

deg+(v,X1 ∪X2) > n− 10γn− |Z| > (1− 11γ)n.

This implies, ||X1 ∪X2| − n|, ||Y1 ∪ Y2| − n| 6 11γn. With Proposition 4.1, we have that

(1/2− 6γ)n 6 |X1|, |X2|, |Y1|, |Y2| 6 (1/2 + 6γ)n so v ∈ Z1.

If A = Y ′i for some i = 1, 2, the previous argument (with the symbol X exchanged

with the symbol Y ) gives us that v ∈ Z2.

Since a vertex may be in multiple sets (i)− (vi), we assign each vertex to the first set

it is a member of in the ordering (i)− (vi). Now we distribute vertices from Z.

Procedure 4.10. (Distributing the vertices from Z) For 1 6 i 6 2, set

• Xi := X ′i ∪ Z(X ′3−i, X
′
3−i) ∪ Z(Y ′i , Y

′
3−i) and

• Yi := Y ′i ∪ Z(Y ′i , Y
′
i ) ∪ Z(X ′3−i, X

′
i) ∪ Zi.

By Claim 4.9, {X1, X2, Y1, Y2} is a partition of V . (We allow empty sets in our parti-

tions). Note that the vertices from Z1 ∪ Z2 have no obvious place to be distributed, thus

our choice is arbitrary.

Call a partition of a set into two parts nearly balanced if the sizes of the two part differ

by at most 2βn. Call a partition
⋃

16i,j62{X
j
i , Y

j
i } of V a splitting of D if {X1

i , X
2
i } is a

nearly balanced partition of Xi and {Y 1
i , Y

2
i } is a nearly balanced partition of Yi. Define

Ui := X i
3−i∪Y i

i and Vi := X i
i ∪Y 3−i

i (see Figure 3). Note that, with Proposition 4.1, ||A|−
n/2| 6 3βn for any A ∈ {U1, U2, V1, V2}. Furthermore, if u ∈ Ui \ Z, by Proposition 4.1,

deg+(u,X ′i ∪ Y ′i ) > |X ′i ∪ Y ′i | − 4α1/3n, so

deg+(u, Vi) > |Vi| − 4α1/3n− |Z| > |Vi| − 2βn. (7)

Similarly, if v ∈ Vi \ Z, then

deg−(v, Ui) > |Ui| − 2βn. (8)

Let G be the bipartite graph on vertex sets U1 ∪ U2, V1 ∪ V2 such that {u, v} ∈ E(G)

if and only if u ∈ U1 ∪ U2, v ∈ V1 ∪ V2, and (u, v) ∈ E(D). Let Gi := G[Ui, Vi] and

Qi = {v ∈ V (Gi) : degG(v) < (1 − γ)n/2}. Call a splitting good if δ(Gi) > γn and

|Qi| 6 βn for i ∈ 1, 2.

The following claim says that we can obtain a good splitting of the graph obtained

after Procedure 4.10 even if there are a small number of vertices which must be assigned

to certain sets in the splitting.
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Claim 4.11. For all 1 6 i, j 6 2, let xji , p(x
j
i ), y

j
i , p(y

j
i ) be non-negative integers and let

P(Xj
i ) ⊆ Xi and P(Y j

i ) ⊆ Yi such that |P(Xj
i )| = p(xji ) and |P(Y j

i )| = p(yji ). If

(i)
∑

16i,j62 p(x
j
i ) + p(yji ) 6 βn

(ii) xji > p(xji ) and yji > p(yji );

(iii) x1i + x2i = |Xi| and y1i + y2i = |Yi|; and

(iv) ||Xi|/2− xji |, ||Yi|/2− y
j
i | 6 βn,

then there exists a good splitting {X1
1 , X

2
1 , X

1
2 , X

2
2 , Y

1
1 , Y

2
1 , Y

1
2 , Y

2
2 } of D such that for all

1 6 i, j 6 2, |Xj
i | = xji and P(Xj

i ) ⊆ Xj
i , and |Y j

i | = yji and P(Y j
i ) ⊆ Y j

i .

Proof. Set P = ∪16i,j62P(Xj
i )∪P(Y j

i ). Note that conditions (i)-(iv) allow for a splitting

of D which satisfies the conclusions, so we are left to show that there exists such a splitting

which is good.

When |Xi| > 5γn, by Lemma 4.3, we can also ensure that for every v ∈ V ,

|N±(v) ∩Xj
i | > |N±(v) ∩ (Xi \ P)|x

j
i − p(x

j
i )

|Xi \ P|
− αn

>
(
|N±(v) ∩Xi| − βn

)
(1/2− 2βn/|Xi|)− αn

> |N±(v) ∩Xi|/2− γn,

since 2β/5γ � γ. By a similar calculation, if |Yi| > 5γn we can partition Yi so that

|N±(v) ∩ Y j
i | > |N±(v) ∩ Yi|/2− γn for every v ∈ V .

Let v ∈ V (Gi) for some i ∈ {1, 2}. If v ∈ Z, by the previous calculation, Claim 4.9 and

Procedure 4.10, dGi
(v) > γn. If v /∈ Z, by (7) and (8), dGi

(v) > (1 − γ)n/2. Therefore,

δ(Gi) > γn and |Qi| 6 βn.

Proposition 4.12. If there exists a good splitting of D and two independent edges uv

and u′v′ such that either

(i) u ∈ U1, v ∈ V2, u′ ∈ U2, v
′ ∈ V1 and |Ui| = |Vi| for i = 1, 2; or

(ii) there exists i = 1, 2 such that u, u′ ∈ Ui, v, v′ ∈ V3−i, |Ui| = |Vi| + 1 and |V3−i| =

|U3−i|+ 1

then D contains an ADHC.

Proof. Apply Corollary 4.5 to get a Hamiltonian path Pi in Gi so that the ends of P1 and

P2 are the vertices {u, u′, v, v′}. These paths and the edges uv and u′v′ correspond to an

ADHC in D.
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Note that the edges uv and u′v′ played a special role in the previous proposition. Now

we discuss what properties these edges must have and how we can find them (this will

be the bottleneck of the proof in each case and is the only place where the exact degree

condition will be needed).

Definition 4.13. Let uv be an edge in D. We call uv a connecting edge if for some

i = 1, 2, u ∈ Xi and either v ∈ Xi or v ∈ Yi; or u ∈ Yi and either v ∈ Y3−i or v ∈ X3−i.

Basically, connecting edges are edges which do not behave like edges in the graph

shown in Figure 3a.

The following simple inequalities are used to help find connecting edges and follow

directly from the degree condition. For any A ⊆ V and v ∈ A

deg0(v, A) > n− |A| (9)

deg0(v, A) > n− (|A| − 1) = n+ 1− |A|. (10)

At this point, we split the proof into two main cases depending on the order of the

sets Y1 and Y2.

Case 1: min{|Y1|, |Y2|} > βn

Without loss of generality, suppose |X1 ∪ Y1| > |X2 ∪ Y2|.
If |X1 ∪Y1| > n and |X1| 6 2, then let X ′′1 ⊆ {v ∈ X1 : deg−(v, Y2 ∪X ′′1 ) > 5γn} be as

large as possible subject to |X ′′1 | 6 |X1∪Y1|−n. Reset X1 := X1 \X ′′1 and Y2 := Y2∪X ′′1 .

If |X1 ∪ Y1| = n and |X1| = 1, say X1 = {v1}, then if deg−(v1, Y2) > 5γn and there exists

v2 ∈ X2 such that deg−(v2, Y1) > 5γn, then we reset Xi := Xi \ {vi} and Yi := Yi ∪{v3−i}
for i = 1, 2.

It is easy to check that the conclusions of Claim 4.11 still hold with the possibly

redefined sets {X1, X2, Y1, Y2}. Furthermore, after these modifications, we still have that

|X1 ∪ Y1| > |X2 ∪ Y2| and the following two conditions are satisfied:

If |X1| = 1, then there exists i ∈ [2] such that for all v ∈ Xi, deg−(v, Y3−i) < 5γn. (11)

If |X1 ∪ Y1| > n and |X1| 6 2, then for every v ∈ X1, deg−(v, Y2) < 5γn. (12)

Claim 4.14. For each i = 1, 2, there exists a partition of Xi as {X1
i , X

2
i } with ||X1

i | −
|X2

i || 6 αn and Wi := Yi ∪X i
1 ∪X i

2 such that either

(i) |W1|, |W2| are odd and there are two independent connecting edges directed from Wj

to W3−j for some j = 1, 2 such that both edges have at least one endpoint in Y1∪Y2;
or

(ii) |W1|, |W2| are even and there are two independent connecting edges, one directed

from W1 to W2 and the other directed from W2 to W1 such that both edges have at

least one endpoint in Y1 ∪ Y2.
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Proof. Case 1 (|X1 ∪ Y1| = |X2 ∪ Y2|). For all u ∈ Y1 and u′ ∈ Y2, we have deg0(u,X2 ∪
Y2), deg0(u′, X1 ∪ Y1) > 1 by (10). From this we get independent edges uv and u′v′ with

u ∈ Y1, u′ ∈ Y2, v ∈ X2 ∪ Y2 and v′ ∈ X1 ∪ Y1. We would be done unless n is odd and

X1 ⊆ {v′} and X2 ⊆ {v}, as otherwise we could obtain the partition Wi := Yi ∪X i
1 ∪X i

2

for i = 1, 2 with u, v′ ∈ W1 and v, u′ ∈ W2 and |W1|, |W2| even. If there exists u′′ ∈ Y1
having an outneighbor in X2∪Y2 different from v, then we would be done, likewise if there

exists u′′ ∈ Y2 having an out-neighbor in X1∪Y1 different than v′. Therefore, we are done

if X1 = ∅, because then every v′′ ∈ Y2 with v′′ 6= v must have an in-neighbor in Y1. So we

must have that X1 = {v′} and X2 = {v} with deg−(v, Y1) > |Y1| and deg−(v′, Y2) > |Y2|,
but this contradicts (11).

Case 2 (|X1 ∪ Y1| > |X2 ∪ Y2|). By the case, we can choose distinct u, u′ ∈ Y2 such

that deg0(u,X1 ∪ Y1), deg0(u′, X1 ∪ Y1) > 2 by (10). Thus we can choose distinct v ∈
N+(u) ∩ (X1 ∪ Y1) and v′ ∈ N+(u′) ∩ (X1 ∪ Y1), with a preference for choosing vertices

in Y1. For i = 1, 2, let {X1
i , X

2
i } be a partition of Xi such that ||X1

i | − |X2
i || 6 αn and

Wi := Yi ∪X i
1 ∪X i

2 with u, u′ ∈ W1 and v, v′ ∈ W2. If this can be done so that |W1| and

|W2| are odd then we are done, so suppose not. Then it must be the case that X2 = ∅ and

X1 ⊆ {v, v′}. If X1 6= ∅, then every vertex in Y2 has an out-neighbor in X1 which implies

that deg−(v, Y2) > |Y2|/2 for some v ∈ X1, contradicting (12). So suppose X1 = ∅. Now

we can finish by choosing v′′ ∈ Y2 distinct from u and letting u′′ ∈ (N−(v′′)∩Y1)\{v}.

Apply Claim 4.14 to get connecting edges uv, u′v′ and for 1 6 i, j 6 2, set xji := |Xj
i |.

By Claim 4.14 and Proposition 4.1 for i = 1, 2 we have |xi1−xi2| 6 αn+ 3α2/3n (note that

we are comparing the size of a subset of X1 and a subset of X2, which is different from

Claim 4.14 where we are comparing the size of two subsets of Xi). So since |Yi| > βn for

i = 1, 2, we can choose integers y1i , y
2
i so that |(y1i + xi2) − (y2i + xi1)| 6 1 and that xji , y

j
i

satisfy the conditions of Claim 4.11 for all 1 6 i, j 6 2 (see Figure 3b).

We will now show how to apply Claim 4.11 depending on the connecting edges and

the integers xji , y
j
i computed above (note that the partition obtained from Claim 4.14

is only being used to compute the integers xji , y
j
i and that we will be applying Claim

4.11 to obtain a possibly different partition). Let uv and u′v′ be the connecting edges

from Claim 4.14. Suppose Claim 4.14.(i) holds and fix i ∈ {1, 2} so that u, u′ ∈ Wi and

v, v′ ∈ W3−i. Assign u, u′, v and v′ to the sets P(Xj
i ),P(Y j

i ) so that after splitting D with

Claim 4.11, u, u′ ∈ Ui and v, v′ ∈ V3−i. Since |W1| and |W2| are odd, we can ensure that

|Ui| = |Vi| + 1 and |V3−i| = |U3−i| + 1. We can then apply Proposition 4.12.(ii) to find

an ADHC. Now suppose Claim 4.14.(ii) holds and let u, v′ ∈ W1, v, u
′ ∈ W2 so that uv

and u′v′ are the connecting edges. Assign u, u′, v and v′ to the sets P(Xj
i ),P(Y j

i ) so that

after splitting D with Claim 4.11, u ∈ U1,v ∈ V2, u′ ∈ U2 and v′ ∈ V1. Since |W1| and

|W2| are even, we can apply Proposition 4.12.(i) to find an ADHC.

Case 2: min{|Y1|, |Y2|} 6 βn
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Without loss of generality, suppose |X1| > |X2|. If |X1 ∪ Y1| > n, then let

X ′′1 ⊆ {v ∈ X1 : deg−(v,X1) > 5γn} ∪ {v ∈ Y1 : deg−(v,X1) > 5γn}

be as large as possible subject to |X ′′1 | 6 |X1 ∪ Y1| − n. Reset X1 := X1 \ X ′′1 and

Y1 := Y1 \X ′′1 and X2 := X2 ∪X ′′1 . If we still have |X1 ∪ Y1| > n, then because of how we

distributed the vertices in Claim 4.9 and Procedure 4.10 together with how we reassigned

the vertices of X ′′1 , we have

∆−(X1 ∪ Y1, X1) < 5γn. (13)

By Proposition 4.1, |X ′1| 6 n + 2α2/3 and |Z| 6 3α2/3, thus |X ′′1 | 6 5α3/2 � βn.

Therefore, the conclusions of Claim 4.11 still hold with the redefined sets {X1, X2, Y1, Y2}.
Case 2.1: |X1| 6 n. If Y1 = ∅ or Y2 = ∅, say Y1 = ∅, then we can split Y2 = Y 1

2 ∪ Y 2
2

so that |X1 ∪ Y 1
2 | = n = |X2 ∪ Y 2

2 |. In this case we can directly find the ADHC by only

considering edges from X1 ∪ Y 1
2 to X2 ∪ Y 2

2 . So suppose Y1 6= ∅ and Y2 6= ∅.
Suppose |X1 ∪ Y1| = |X2 ∪ Y2| = n. We first note that two independent connecting

edges uv, u′v′ will allow us to either assign u, u′ so that u ∈ U1 and u′ ∈ U2 and v, v′ so

that v ∈ V1 and v′ ∈ V2, or assign u, u′ so that u, u′ ∈ Ui and v, v′ so that v, v′ ∈ V3−i
(this is possible since Y1, Y2 6= ∅). In the first case we can apply Claim 4.11, so that

|U1|+ |V2| = |U2|+ |V1| = n, |U1| = |V1| and |U2| = |V2|; in the second case we can apply

Claim 4.11 so that |Ui|+ |V3−i| = n+ 1, |U3−i| = |V3−i|+ 1 and |Vi| = |Ui|+ 1. Applying

Proposition 4.12.(i) or (ii) then gives the desired ADHC.

So in this case we show that D must contain two independent connecting edges (here

is the only place where we make use of the fact that D is not isomorphic to F 1
2n or F 2

2n).

Note that:

δ+(Yi, X3−i ∪ Y3−i) > n− (|Xi ∪ Yi| − 1) = 1 for i = 1, 2 (14)

If there is an edge in D[X1] or an edge in D[X2]; or |Y1| > 2 and |Y2| > 2, then we easily

obtain two independent connecting edges using (14). If say |Y1| = 1 and |Y2| > 2, then

|Y1 ∪ X2| 6 n − 1 so δ−(Y1, X1 ∪ Y2) > 2 and δ−(X1, Y2) > n − |Y1 ∪ X2| > 1, which

together give two independent edges. Finally, if |Y1| = 1 = |Y2|, let {yi} = Yi for i = 1, 2.

If there exists x1 ∈ X1 and x2 ∈ X2 such that xix3−i is not an edge for some i ∈ [2], then

because of the semi-degree condition and the fact that X1 and X2 are independent sets,

it must be that xiyi and x3−iy3−i are edges, giving us two independent connecting edges.

If there exists xi ∈ Xi such that yixi is not an edge, then, by the semi-degree condition

and the fact that Xi is an independent set, y3−ixi is an edge. Also by the semi-degree

condition, yi must have an out-neighbor in X3−i and, with the edge y3−ixi, this gives us

two independent connecting edges. If there exists xi ∈ Xi such that xiy3−i is not an edge,

then an analogous argument gives two independent connecting edges. So we have proved

that D contains a subgraph isomorphic to F2n,1. Since |X1 ∪ Y2| = |X2 ∪ Y1| = n, the

semi-degree condition implies that every vertex in y ∈ Y1 ∪ Y2 is incident to at least two
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connecting edges: one oriented away from y and the other oriented towards y. If {y1, y2}
is an independent set, then we clearly have two connecting edges, so assume that yiy3−i
is an edge. If y3−iyi is an edge, then since D is not isomorphic to F 1

2n, there must exist

at least one more edge in D. Since F 1
2n is an edge-maximal graph without an ADHC, D

must contain an ADHC. So we can assume y3−iyi is not an edge, and thus yi must have an

in-neighbor xi in Xi and y3−i must have an out-neighbor x′i in Xi. If xi 6= x′i, then we have

two independent connecting edges. If xi = x′i, then D contains a subgraph isomorphic to

F 2
2n, and as before since D is not isomorphic to F 2

2n, D must contain an ADHC.

Now suppose |Xi ∪ Yi| > |X3−i ∪ Y3−i| for some i = 1, 2. By (9), deg0(u,Xi ∪ Yi) > 1

for all u ∈ Xi ∪ Yi and deg+(u,Xi ∪ Yi) > n − (|X3−i ∪ Y3−i| − 1) > 2 for all u ∈ Y3−i.
Let u ∈ Y3−i, let v1, v2 ∈ N+(u) ∩ (Xi ∪ Yi), and let u′ ∈ Xi \ {v1, v2}. Choose distinct

v ∈ N+(u) ∩ (Xi ∪ Yi) and v′ ∈ N+(u′) ∩ (Xi ∪ Yi) with a preference for choosing v and

v′ in Xi (this can be done since we chose u′ distinct from v1, v2). If |Xi| 6 n − 2, then

|Xi ∪ {u, u′, v, v′}| 6 n + 1, and when i = 2, |X2 ∪ Y2| > |X1 ∪ Y1|, and |Y1| > 1 imply

that n− 2 > |X1| > |Xi|. So suppose i = 1 and n− 1 6 |X1| 6 n. Note that in this case,

for every u ∈ X1, deg+(u,X1 ∪ Y1) > max{1, |Y1| − 1} > |Y1|/2, so the bound in implies

that there are two disjoint edges in G[X1].

So we can assume, in all cases, that |Xi ∪ {u, u′, v, v′}| 6 n + 1. Therefore, after

assigning u, u′ to X3−i
i and v, v′ to X i

i or Y 3−i
i as appropriate, we can apply Claim 4.11 to

get |U3−i|+|Vi| = n+1, |U3−i| = |V3−i|+1 and |Vi| = |Ui|+1. Applying Proposition 4.12.(ii)

then completes this case.

Case 2.2: |X1| > n+ 1.

Set d = |X1| − n and recall that d � βn. By (9), δ+(D[X1]) > d. By the case,

X ′′1 ∩X1 = ∅, so ∆−(D[X1]) < 5γn and (d−1)n−4(d−1+5γn)
3(d−1+5γn)

> d − 1. Applying Lemma 4.7

gives two independent edges uv, u′v′ and a collection of d − 1 vertex disjoint 2-in stars

{S1, . . . , Sd−1} in D[X1]. Assign u, u′ and the vertices in S1, . . . , Sd−1 to X2
1 . Also, assign

v and v′ to X1
1 . Recall that X1

1 ∪ X2
1 ⊆ U2 ∪ V1, so we can use Claim 4.11, to get a

good splitting of D such that |U2| = dn/2e + d, |V1| = bn/2c, |V2| = dn/2e − d + 1 and

|U1| = bn/2c − 1. We then use Corollary 4.5, to find a Hamiltonian path P1 in G1 with

ends v and v′.

We now move the roots of the stars S1, . . . , Sd−1 from U2 to V2 and then use Corol-

lary 4.5 to complete the proof. More explicitly, we greedily find a matching M between

the leaves of the stars S1, . . . , Sd−1 and the vertices in V2 of degree at least (1− γ)n/2 in

G2. For each 1 6 i 6 d− 1, let ai and bi be the vertices matched to the leaves of Si and

replace V (Si) ∪ {ai, bi} in G2 with a new vertex adjacent to NG2(ai) ∩NG2(bi) minus the

vertices of the stars. Apply Corollary 4.5 to get a Hamiltonian path P2 in the resulting

graph with ends u and u′. The stars S1, . . . , Sd−1; the edges in M ; the paths P1 and P2;

and the edges uv and u′v′ correspond to an ADHC in D.
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5 Conclusion

We end with the following conjecture which along with Theorem 1.5 would provide a full

generalization of Dirac’s theorem to directed graphs with respect to minimum semi-degree.

Conjecture 5.1. Let D be a directed graph on n vertices and let ~C be an orientation of

a cycle on n vertices which is not anti-directed. If δ0(D) > n
2
, then ~C ⊆ D.

We believe that the methods developed in this paper along with the ideas in [10] and

[11] provide an approach to this problem. We intend to carry out this program in a

subsequent paper.
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