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Abstract

This sequel to Afzali Borujeni et. al. (2015) considers minors and duals of infinite
gammoids. We prove that the class of gammoids defined by digraphs not containing
a certain type of substructure, called an outgoing comb, is minor-closed. Also,
we prove that finite-rank minors of gammoids are gammoids. Furthermore, the
topological gammoids of Carmesin (2014) are proved to coincide, as matroids, with
the finitary gammoids. A corollary is that topological gammoids are minor-closed.

It is a well-known fact that the dual of any finite strict gammoid is a transversal
matroid. The class of strict gammoids defined by digraphs not containing alternat-
ing combs, introduced in Afzali Borujeni et. al. (2015), contains examples which are
not dual to any transversal matroid. However, we describe the duals of matroids
in this class as a natural extension of transversal matroids. While finite gammoids
are closed under duality, we construct a strict gammoid that is not dual to any
gammoid.

Keywords: infinite matroids; gammoids; transversal matroids; matchings; linkages;
contractions

1 Introduction

Infinite matroid theory has recently seen a surge of activity (e.g. [1], [8], [11]), after
Bruhn et al [10] found axiomatizations of infinite matroids with duality, solving a long-
standing problem of Rado [23]. As part of this re-launch of the subject, we initiated an
investigation of infinite gammoids in [2]. In this paper we will continue to primarily use
the independence axioms for matroids as stated in Definition 2.1.

A dimaze is a digraph equipped with a specific set of sinks, the (set of) exits. A dimaze
contains another dimaze, if, in addition to digraph containment, the exits of the former
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include those of the latter. In the context of digraphs, any path or ray (i.e. one-way
infinite analogue of path) is forward oriented. An outgoing comb is a dimaze obtained
from a ray by adding infinitely many non-trivial disjoint paths, that meet the ray precisely
at their initial vertices, and declaring the sinks of the resulting digraph to be the exits.

The subsets of the vertex set of (the digraph of) an infinite dimaze that are linkable
to the exits by a set of disjoint paths need not be the independent sets of a matroid ([2]),
but if they are, this matroid is called a strict gammoid and the dimaze is a presentation
of it ([18, 21]). A gammoid is a matroid restriction of a strict gammoid; so, by definition,
the class of gammoids is closed under matroid deletion.

A pleasant property of the class of finite gammoids is that it is also closed under
matroid contractions, and hence, under taking minors. In contrast, whether the class of
all gammoids, possibly infinite, is minor-closed is an open question. Our aim in the first
part of this paper is to begin to address this and related questions.

A standard proof of the fact that finite gammoids are minor-closed as a class of ma-
troids proceeds via duality. The proof of this fact can be extended to infinite dimazes
whose underlying (undirected) graph does not contain any ray, but it breaks down when
rays are allowed. However, analysing the construction in more details, we are able to
bypass duality and relax the condition to the absence of outgoing combs (Theorem 3.11).

Theorem 1. The class of gammoids that admit a presentation not containing any out-
going comb is minor-closed.

If we do allow outgoing combs, combining the tools developed to prove the above
theorem with a proof of Pym’s linkage theorem [22], we can still establish the following
(Theorem 3.13).

Theorem 2. Any finite-rank minor of an infinite gammoid is a gammoid.

Outgoing combs naturally appeared in [12] where Carmesin used a topological ap-
proach to extend finite gammoids to the infinite case, in response to a question raised by
Diestel. Carmesin proved that the topologically linkable sets, the definition of which is
given in Section 2, of a dimaze form the independent sets of a finitary1 matroid on the
vertex set of the digraph. Any matroid isomorphic to such a matroid is called a strict
topological gammoid. A matroid restriction of a strict topological gammoid is called a
topological gammoid. Making use of this result together with Theorem 1, we prove the
following (Corollary 3.16 and Theorem 3.17).

Theorem 3. A matroid is a topological gammoid if and only if it is a finitary gammoid.
Moreover, the class of topological gammoids is minor-closed.

In the second part of the paper, we turn to duality. Recall that a transversal matroid
can be defined by taking a fixed vertex class of a bipartite graph as the ground set and its
matchable subsets as the independent sets. Ingleton and Piff [17] proved constructively

1 Finitary means that a set is independent if and only if all of its finite subsets are.
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that finite strict gammoids and finite transversal matroids are dual to each other, a key
fact to their proof that the class of finite gammoids is closed under duality. In contrast,
an infinite strict gammoid need not be dual to a transversal matroid, and vice versa
(Examples 4.11 and 4.15). Although these examples do not rule out the possibility that
infinite gammoids are closed under duality, we will see in Section 4.3 that there is a
gammoid which is not dual to any gammoid.

To better describe duals of strict gammoids, in Section 4.1, we introduce a superclass
of transversal matroids called the class of path-transversal matroids. These matroids differ
from transversal matroids in that certain matchings are forbidden in the definition of inde-
pendence, thereby forming a larger class of matroids. Still, as we will see in Example 4.12,
there is a strict gammoid whose dual is not a path-transversal matroid. This strict gam-
moid has the property that any dimaze defining it contains an alternating comb, a dimaze
that is studied to some details in [2]. It turns out that forbidding alternating combs
suffices for a strict gammoid to be dual to a path-transversal matroid (Theorem 4.9).

Theorem 4. A strict gammoid that admits a presentation not containing any alternating
comb is dual to a path-transversal matroid.

We remark that the theorem is used in [3] to characterize cofinitary transversal ma-
troids and cofinitary strict gammoids.

2 Preliminaries

In this paper, digraphs do not have any loops or parallel edges. We collect definitions,
basic results and examples. For notions not found here, we refer to [10] and [20] for
matroid theory, and [13] for graph theory.

2.1 Infinite matroids

Given a set E and a family of subsets I ⊆ 2E, let Imax denote the maximal elements of
I with respect to set inclusion. For a set I ⊆ E and x ∈ E, we write x, I + x, I − x for
{x}, I ∪ {x} and I \ {x} respectively.

Definition 2.1. [10] A matroid M is a pair (E, I), where E is a set and I ⊆ 2E, which
satisfies the following:

(I1) ∅ ∈ I.

(I2) If I ⊆ I ′ and I ′ ∈ I, then I ∈ I.

(I3) For all I ∈ I \ Imax and I ′ ∈ Imax, there is an x ∈ I ′ \ I such that I + x ∈ I.

(IM) Whenever I ∈ I and I ⊆ X ⊆ E, the set {I ′ ∈ I : I ⊆ I ′ ⊆ X} has a maximal
element.
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For a matroid M = (E, I), a subset of the ground set E is independent if it is in I;
dependent otherwise. A base is a maximal independent set, while a circuit is a minimal
dependent set. A circuit of size one is called a loop. We usually identify a matroid with
its set of independent sets.

Let X ⊆ E. A deletion minor M \ X is the pair (E \ X, I ∩ 2E\X), that is, the
independent sets are those of M that are contained in E \X. A contraction minor M/X
is the pair (E \ X, I ′) where a set I ⊆ E \ X is in I ′ if I ∪ B ∈ I for some basis B of
M \ (E \X). We also write M.X for M/(E \X). In general, a minor of M has the form
M/X \ Y for some disjoint X, Y ⊆ E, and is always a matroid.

The dual M∗ of M has as bases precisely the complements of the bases of M , and is
always a matroid. As usual, we use the prefix co to refer to an object in the dual matroid.
For example, a coloop of M is a loop of M∗, which is equivalent to the assertion that a
coloop is contained in every base of M . Similarly, a cocircuit is a set minimal with the
property of hitting every base of M and a set is coindependent if and only if it misses
a base of M . We also have a useful relation between duals and minors, namely, for any
X ⊆ E, (M \X)∗ = M∗/X. The following standard fact, a proof of which can be found
in [20, Lemma 3.3.2], simplifies investigations of minors.

Lemma 2.2. Every minor of a matroid M can be written in the form M/S \R where S
is an independent set and R is a coindependent set of M .

For a set system M = (E, I) let the set Ifin consist of the sets which have all their
finite subsets in I. Then Mfin := (E, Ifin) is called finitarisation of M , and M is called
finitary if M = Mfin. Applying Zorn’s Lemma one sees that finitary set systems always
satisfy (IM); in particular, if M is a matroid, Mfin is a matroid too.

2.2 Linkability systems

Given a digraph D, let V := V (D) and B0 ⊆ V be a set of sinks. Call the pair (D,B0) a
dimaze2 and B0 the (set of) exits. The requirement of the exits to be sinks rules out some
trivial cases and will not restrict the generality of the matroids that we will consider.

Given a (directed) path or ray P , Ini(P ) and Ter(P ) denote the initial and the terminal
vertex (if exists) of P , respectively. For a set P of paths and rays, let Ini(P) := {Ini(P ) :
P ∈ P} and Ter(P) := {Ter(P ) : P ∈ P}. A linkage P from A ⊆ V to B ⊆ B0 is a set
of vertex disjoint paths with Ini(P) = A and Ter(P) ⊆ B. Such a set A is linkable, and
if Ter(P) = B, it is linkable onto B.

Definition 2.3. Let (D,B0) be a dimaze. The pair of V (D) and the set of linkable subsets
is denoted by ML(D,B0). A strict gammoid is a matroid isomorphic to ML(D,B0) for
some (D,B0). A gammoid is a restriction of a strict gammoid. Given a gammoid M ,
(D,B0) is called a presentation of M if M = ML(D,B0)|X for some X ⊆ V (D).

In general, ML(D,B0) satisfies (I1), (I2) and (I3) but not (IM); see [2].

2Dimaze is short for directed maze.
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If D′ is a subdigraph of D and B′0 ⊆ B0, then (D,B0) contains (D′, B′0) as a subdimaze.
A dimaze (D′, B′0) is a subdivision of (D,B0) if it can be obtained from (D,B0) as follows.
We first add an extra vertex b0 and the edges {(b, b0) : b ∈ B0} to D. Then the edges of this
resulting digraph are subdivided to define a digraph D′′. Set B′0 as the in-neighbourhood
of b0 in D′′ and D′ as D′′ − b0. Note that this defaults to the usual notion of subdivision
if B0 = ∅.

The following dimazes play an important role in our investigation. An undirected ray
is a graph with an infinite vertex set {xi : i > 1} and the edge set {xixi+1 : i > 1}. We
orient the edges of an undirected ray in different ways to construct three dimazes:

1. RA by orienting (xi+1, xi) and (xi+1, xi+2) for each odd i > 1 and the set of exits is
empty;

2. RI by orienting (xi+1, xi) for each i > 1 and x1 is the only exit;

3. RO by orienting (xi, xi+1) for each i > 1 and the set of exits is empty.

A subdivision of RA, RI and RO is called alternating ray, incoming ray and (outgoing)
ray, respectively.

Let Y = {yi : i > 1} be a set disjoint from X. We extend the above types of rays to
combs by adding edges (and their terminal vertices) and declaring the resulting sinks to
be the exits:

1. CA by adding no edges to RA;

2. CI by adding the edges (xi, yi) to RI for each i > 2;

3. CO by adding the edges (xi, yi) to RO for each i > 2.

Furthermore we define the dimaze F∞ by declaring the sinks of the digraph ({v, vi :
i ∈ N}, {(v, vi) : i ∈ N}) to be the exits.

Any subdivision of CA, CI , CO and F∞ is called alternating comb, incoming comb,
outgoing comb and linking fan, respectively. The subdivided ray in any comb is called the
spine and the paths to the exits are the spikes.

A dimaze (D,B0) is calledH-free for a setH of dimazes if it does not have a subdimaze
isomorphic to a subdivision of an element in H. We usually drop the braces when H is a
singleton. Note that the dimaze RA is CA-free, since its empty set of exits cannot contain
the exits of an alternating comb. A (strict) gammoid is called H-free if it admits an
H-free presentation. In general, an H-free gammoid may admit a presentation that is not
H-free (see Figure 3 for H = {CA}).

Note that a maximally linkable set is certainly linkable onto the exits and the vertices
of out-degree 2 in an alternating comb is a set that can be linked onto the exits but is
not maximally linkable. A main result in [2] shows that the absence of alternating combs
guarantees that a set that is linkable onto the exits is maximally linkable.

Theorem 2.4. (i) Given a dimaze, the sets linkable onto the exits are maximally linkable
if and only if the dimaze is CA-free. (ii) Any CA-free dimaze defines a strict gammoid.
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In [2], it was shown that the matroid defined in Example 4.12 is not in the class
of CA-free gammoids, however, this class contains interesting examples including highly
connected matroids which are not nearly finitary ([4]) or the duals of such ones. This
class is also a fruitful source for wild matroids ([8]).

Let (D,B0) be a dimaze and Q a set of disjoint paths or rays (usually a linkage). A
Q-alternating walk is a sequence W = w0e0w1e1 . . . of vertices wi and distinct edges ei of
D not ending with an edge, such that every ei ∈ W is incident with wi and wi+1, and the
following properties hold for each i > 0 (and i < n in case W is finite, where wn is the
last vertex):

(W1) ei = (wi+1, wi) if and only if ei ∈ E(Q);

(W2) if wi = wj for any j 6= i, then wi ∈ V (Q);

(W3) if wi ∈ V (Q), then {ei−1, ei} ∩ E(Q) 6= ∅ (with e−1 := e0).

Let P be another set of disjoint paths or rays. A P-Q-alternating walk is a Q-
alternating walk whose edges are in E(P)∆E(Q), and such that any interior vertex wi
satisfies

(W4) if wi ∈ V (P), then {ei−1, ei} ∩ E(P) 6= ∅.

Two Q-alternating walks W1 and W2 are disjoint if they are edge disjoint, V (W1) ∩
V (W2) ⊆ V (Q) and Ter(W1) 6= Ter(W2).

Suppose that a dimaze (D,B0), a set X ⊆ V and a linkage P from a subset of X to
B0 are given. An X–B0 (vertex) separator S is a set of vertices such that every path from
X to B0 intersects S, and S is on P if it consists of exactly one vertex from each path
in P .

We recall a classical result due to Grünwald [15], which can be formulated as follows
(see also [13, Lemmas 3.3.2 and 3.3.3]).

Lemma 2.5. Let (D,B0) be a dimaze, Q a linkage, and Ini(Q) ⊆ X ⊆ V .

(i) If there is a Q-alternating walk from X \ Ini(Q) to B0 \ Ter(Q), then there is a
linkage Q′ with Ini(Q) ( Ini(Q′) ⊆ X onto Ter(Q) ( Ter(Q′) ⊆ B0.

(ii) If there is not any Q-alternating walk from X \ Ini(Q) to B0 \Ter(Q), then there is
an X–B0 separator on Q.

A set X ⊆ V in (D,B0) is topologically linkable3 if X admits a topological linkage,
which means that from each vertex x ∈ X, there is a topological path Px, i.e. Px is the
spine of an outgoing comb, a path ending at the centre of a linking fan, or a path ending in
B0, such that Px is disjoint from Py for any y 6= x. Thus, the spikes of the outgoing combs

3With a suitable topology on the undirected underlying graph, this notion of linkability has a topolog-
ical interpretation in which these sets of rays and paths are precisely those that link I to the topological
closure of the set of the exits [12].
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and the paths emanating from the centre of a linking fan may intersect other topological
paths and their spikes. Roughly speaking, a topological path from a vertex v does not
need to reach the exits as long as no finite vertex set avoiding that path can prevent an
actual connection of v to B0. Note that a finite topologically linkable set is linkable.

Denote by MTL(D,B0) the pair of V and the set of the topologically linkable sub-
sets. Carmesin gave the following connection between dimazes (not necessarily defining a
matroid) and topological linkages.

Corollary 2.6. [12, Corollary 5.7] Given a dimaze (D,B0), MTL(D,B0) = ML(D,B0)fin.
In particular, MTL(D,B0) is always a finitary matroid.

A strict topological gammoid is a matroid of the form MTL(D,B0), and its restrictions
are called topological gammoids. We will see in Section 3 that such matroids are precisely
the finitary gammoids.

2.3 Transversal systems

Let G = (V,W ) be a bipartite graph and call V and W , respectively, the left and the
right vertex class of G. A subset I of V is matchable onto W ′ ⊆ W if there is a matching
m of I such that m ∩ V = I and m ∩W = W ′; where we are identifying a set of edges
(and sometimes more generally a subgraph) with its vertex set. Given a set X ⊆ V or
X ⊆ W , we write m(X) for the set of vertices matched to X by m and m � X for the
subset of m incident with vertices in X. Given a matching m, an m-alternating walk is
a walk such that the consecutive edges alternate in and out of m in G. Given another
matching m′, an m-m′-alternating walk is a walk such that consecutive edges alternate
between the two matchings.

Definition 2.7. Given a bipartite graph G = (V,W ), the pair of V and all its matchable
subsets is denoted by MT (G). A transversal matroid is a matroid isomorphic to MT (G)
for some G. Given a transversal matroid M , G is a presentation of M if M = MT (G).

In general, a transversal matroid may have different presentations. The following is a
well-known fact whose proof uses m-alternating walks (see [9]).

Lemma 2.8. Let G = (V,W ) be a bipartite graph. Suppose there is a maximal element in
MT (G), witnessed by a matching m0. Then MT (G) = MT (G−(W \m0)), and N(W \m0)
is a subset of every maximal element in MT (G).

In case MT (G) is a matroid, the second part states that N(W \m0) is a set of coloops.
From now on, wherever there is a maximal element in MT (G), we assume that W is
covered by a matching. Thus, any presentation of a transversal matroid has the property
that W is covered by a matching.

If G is finite, Edmonds and Fulkerson [14] showed that MT (G) satisfies (I3), and so is
a matroid. When G is infinite, MT (G) still satisfies (I3) ([2]) but need not be a matroid.

A standard compactness proof shows that a left locally finite bipartite graph G =
(V,W ), i.e. every vertex in V has finite degree, defines a finitary transversal matroid.

the electronic journal of combinatorics 22(4) (2015), #P4.37 7



Lemma 2.9 ([19]). Every left locally finite bipartite graph defines a finitary transversal
matroid.

The following corollary is a tool to show that a matroid is not transversal.

Lemma 2.10. Any infinite circuit of a transversal matroid contains an element which
does not lie in any finite circuit.

Proof. Let C be an infinite circuit of some MT (G). Applying Lemma 2.9 on G− (V \C),
which is a presentation of the restriction of MT (G) to C, we see that there is a vertex in C
having infinite degree in G. However, such a vertex does not lie in any finite circuit.

3 Minors

The class of gammoids is closed under deletion by definition. So, if we want to show that
a minor of a gammoid is a gammoid, it suffices to show that a contraction minor M/S of
a strict gammoid M is a strict gammoid; where S may be assumed to be independent by
Lemma 2.2.

In [17], Ingleton and Piff gave a constructive proof that finite gammoids are closed
under contraction. The main part of this construction turns a presentation of a strict
gammoid into a presentation of its dual transversal matroid and vice versa. So a presen-
tation of M/S = (M∗ \S)∗ can be obtained from one of M by going to the dual, deleting
S there and dualizing again.

In case of general gammoids we can no longer appeal to duality, as we shall see in
Section 4. So we will ignore the intermediate step of going to the dual and directly
investigate the outcome of the construction mentioned above. We are then able to show
that the class of CO-free gammoids, i.e. gammoids that admit a CO-free presentation, is
minor-closed. In combination with the linkage theorem, we can also prove that finite rank
minors of gammoids are gammoids. It remains open whether the class of gammoids is
closed under taking minors.

Two other results that we will prove in this section is that finitary gammoids are
precisely the topological gammoids, and that they are also closed under taking minors.

3.1 Matroid contraction and shifting along a linkage

In this section, we investigate under which conditions a contraction minor M/S is a strict
gammoid.

The first case is that S is a subset of the exits.

Lemma 3.1. Let M = ML(D,B0) be a strict gammoid and S ⊆ B0. Then a dimaze
presentation of M/S is given by ML(D − S,B0 \ S).

Proof. Since S ⊆ B0 is independent, I ∈ I(M/S) ⇐⇒ I ∪ S ∈ I(M). Moreover,

I ∈ I(M/S) ⇐⇒ I ∪ S admits a linkage in (D,B0)

⇐⇒ I admits a linkage Q with Ter(Q) ∩ S = ∅ in (D,B0)

⇐⇒ I ∈ I(ML(D − S,B0 \ S)).
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Thus, it suffices to give a dimaze presentation of M such that S is a subset of the
exits. For this purpose we consider the process of “shifting a dimaze along a linkage”.

Throughout the section, (D,B0) denotes a dimaze, Q a set of disjoint paths or rays,
S := Ini(Q) and T := Ter(Q). Next, we define various maps which are dependent on Q.

We find it convenient to denote all of these maps and their inverses respectively by ~Q
and ~Q.

Define a bijection ~Q : V \ T → V \ S as follows: ~Q(v) := v if v /∈ V (Q); otherwise
~Q(v) := u where u is the unique vertex such that (v, u) ∈ E(Q).

Construct the digraph ~Q(D) from D by replacing each edge (v, u) ∈ E(D)\E(Q) with

( ~Q(v), u) and each edge (v, u) ∈ Q with (u, v). Equivalently, ~Q(D) can be constructed
by adding a loop (v, v) to each vertex v ∈ V \ B0, then replacing each edge (v, u) with

( ~Q(v), u) (including the loops), and deleting the resulting loops. Set for the rest of this
section

D1 := ~Q(D) and B1 := (B0 \ T ) ∪ S
and call (D1, B1) the Q-shifted dimaze.

For the finite case, the idea behind a Q-shifted dimaze can be found in [17], where
it is called “the transformed graph”. Mason [18] started the investigation of Q-shifting
in the special case when the linkage has only one edge, in order to alter the presentation
of a strict gammoid, in particular the exits. This case was called “swapping” by Ardila
and Ruiz in [5], where they investigated when two finite dimazes define the same strict
gammoid.

In order to investigate the relation between Q-alternating walks in a dimaze and paths
or rays in the Q-shifted dimaze, we give the following definitions: Given a Q-alternating
walk W = w0e0w1e1w2 . . . in D, let ~Q(W ) be obtained from W by deleting all the edges ei
and each vertex wi ∈ W with wi ∈ V (Q) but ei /∈ E(Q). For a path or ray P = v0v1v2 . . .

in D1, let ~Q(P ) be obtained from P by inserting after each vi ∈ P \ Ter(P ) one of the
following:

(vi, vi+1) if vi /∈ V (Q);

(vi+1, vi) if vi ∈ V (Q) and (vi+1, vi) ∈ E(Q);

(w, vi)w(w, vi+1) with w := ~Q(vi) if vi ∈ V (Q) but (vi+1, vi) /∈ E(Q).

We now show that ~Q(W ) is a path or ray in D1 and ~Q(P ) is a Q-alternating walk in D,
and that disjointness is preserved under shifting. For this purpose recall the definition of
disjoint Q-alternating walks from page 6.

Lemma 3.2. (i) A Q-alternating walk in D that is infinite or ends at t ∈ B1 is respec-

tively mapped by ~Q to a ray or a path ending at t in D1. Disjoint such walks are
mapped to disjoint paths/rays.

(ii) A ray or a path ending at t ∈ B1 in D1 is respectively mapped by ~Q to an infinite
Q-alternating walk or a finite Q-alternating walk ending at t in D. Disjoint such
paths/rays are mapped to disjoint Q-alternating walks.
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B0 B1

S

T

S

T

(D,B0) (D1, B1)

Q

v

~Q(v)

w

~Q(w)

W

~Q(P ) P

~Q(W )

Figure 1: A Q-shifted dimaze: D1 = ~Q(D), B1 = (B0 \ T ) ∪ S, where Q consists of the
vertical downward paths. A vertex is white or diamond shaped if it is respectively the
initial or terminal vertex of a (gray) Q-alternating walk (left) or its ~Q-images (right).

Proof. We just prove (i) since (ii) can be proved with similar ideas.
Let W = w0e0w1e1w2 . . . be a Q-alternating walk in D. If a vertex v in W is repeated,

then v occurs twice and there is i such that v = wi with ei−1 = (wi, wi−1) ∈ E(Q) and

ei /∈ E(Q). Hence, wi is deleted in P := ~Q(W ) and so v does not occur more than once
in P , that is, P consists of distinct vertices.

By construction, the last vertex of a finite W is not deleted, hence P ends at t. In
case W is infinite, by (W3), no tail of W is deleted so that P remains infinite.

Next, we show that (vi, vi+1) is an edge in D1. Let wj = vi be the non-deleted instance
of vi. If wj+1 has been deleted, then the edge (wj+1, wj+2) (which exists since the last

vertex cannot be deleted) in D has been replaced by the edge ( ~Q(wj+1), wj+2) = (vi, vi+1)
in D1. If both wj and vi+1 = wj+1 are in V (Q) then the edge (wj+1, wj) ∈ E(Q) has been
replaced by (vi, vi+1) in D1. In the other cases (wj, wj+1) = (vi, vi+1) is an edge of D and
remains one in D1.

Let W1,W2 be disjoint Q-alternating walks. By construction, ~Q(W1) ∩ ~Q(W2) ⊆
W1 ∩W2 ⊆ V (Q). By disjointness, at any intersecting vertex, one of W1 and W2 leaves

with an edge not in E(Q). Thus, such a vertex is deleted upon application of ~Q. Hence,
~Q(W1) and ~Q(W2) are disjoint paths/rays.

Note that for a path P in D1 and a Q-alternating walk W in D, we have

~Q( ~Q(P )) = P ; ~Q( ~Q(W )) = W.

This correspondence of sets of disjoint Q-alternating walks in (D,B0) and sets of
disjoint paths or rays in the Q-shifted dimaze will be used in various situations in order
to show, without the help of duality, that the independent sets associated with (D,B0)
and the Q-shifted dimaze are the same.

Given a set W of Q-alternating walks, define the graph

Q∆W := (V (Q) ∪ V (W), E(Q)∆E(W)).
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Lemma 3.3. Let J ⊆ V \ S and W a set of disjoint Q-alternating walks, each of which
starts from J and does not end outside of B1. Then there is a set of disjoint rays or paths
from X := J ∪ (S \ Ter(W)) to Y := T ∪ (Ter(W) ∩B0) in Q∆W.

Proof. Every vertex in Q∆W \ (X ∪ Y ) has in-degree and out-degree both 1 or both 0.
Moreover, every vertex in X has in-degree 0 and out-degree 1 (or 0, if it is also in Y ) and
every vertex in Y has out-degree 0 and in-degree 1 (or 0, if it is also in X). Therefore
every (weakly) connected component of Q∆W meeting X is either a path ending in Y or
a ray.

The following will be used to complete a ray to an outgoing comb in various situations.

Lemma 3.4. Suppose Q is a topological linkage. Any ray R that hits infinitely many
vertices of V (Q) is the spine of an outgoing comb.

Proof. The first step is to inductively construct an infinite linkable subset of V (R). Let
Q0 := Q and A0 := ∅. For i > 0, assume that Qi is a topological linkage that intersects
V (R) infinitely but avoids the finite set of vertices Ai. Since it is not possible to separate a
vertex on a topological path fromB0 by a finite set of vertices disjoint from that topological
path, there exists a path Pi from V (R)∩V (Qi) to B0 avoiding Ai. Let Ai+1 := Ai∪V (Pi)
and Qi+1 obtained from Qi by deleting from each of its elements the minimal initial
segment that intersects Ai+1. As Qi+1 remains a topological linkage that intersects V (R)
infinitely, we can continue the procedure. By construction {Pi : i ∈ N} is an infinite set
of disjoint finite paths from a subset of V (R) to B0. Let pi ∈ Pi be the last vertex of R

on Pi, then R is the spine of the outgoing comb: R ∪
⋃
i∈N

piPi.

Corollary 3.5. Any ray provided by Lemma 3.3 is in fact the spine of an outgoing comb
if Q is a topological linkage, and the infinite forward segments of the walks in W are the
spines of outgoing combs.

Proof. Observe that a ray R constructed in Lemma 3.3 is obtained by alternately following
the forward segments of the walks in W and the forward segments of elements in Q.

Either a tail of R coincides with a tail of a walk inW , and we are done by assumption;
or R hits infinitely many vertices of V (Q), and Lemma 3.4 applies.

With Lemma 3.3 we can transform disjoint alternating walks into disjoint paths or
rays. A reverse transform is described as follows.

Lemma 3.6. Let P and Q be two sets of disjoint paths or rays. LetW be a set of maximal
P-Q-alternating walks starting at distinct vertices of Ini(P). Then the walks in W are
disjoint and can only end in (Ter(P) \ T ) ∪ S.

Proof. Let W = w0e0w1 . . . be a maximal P-Q-alternating walk. Then W is a trivial walk
if and only if w0 ∈ (Ter(P) \ T ) ∪ S. If W is nontrivial then e0 ∈ E(Q) if and only if
w0 ∈ V (Q).
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Let W1 and W2 ∈ W . Note that for any interior vertex wi of a P-Q-alternating walk,
it follows from the definition that either edge in {ei−1, ei} determines uniquely the other.
So if W1 and W2 share an edge, then a reduction to their common initial vertex shows that
they are equal by their maximality. Moreover if the two walks share a vertex v /∈ V (Q),
then they are equal since they share the edge of P whose terminal vertex is v.

Therefore, if W1 6= W2 and they end at the same vertex v, then v ∈ V (P) ∩ V (Q).
More precisely, we may assume that v is the initial vertex of an edge in E(Q)∩E(W1) and
the terminal vertex of an edge e ∈ E(P)∩E(W2) (both the last edges of their alternating
walk). Since v is the initial vertex of some edge, it cannot be in B0, so the path (or ray) in
P containing e does not end at v. Hence we can extend W1 contradicting its maximality.

Similarly we can extend a P-Q-alternating walk that ends at some vertex v ∈ Ter(P)∩
T by the edge in E(Q) that has v as its terminal vertex, unless v ∈ S. So W is a set of
disjoint P-Q-alternating walks that can only end in (Ter(P) \ T ) ∪ S.

Now we investigate when a dimaze and its Q-shifted dimaze present the same strict
gammoid.

Lemma 3.7. Suppose that Q is a linkage from S onto T and I a set linkable in (D1, B1).
Then I is linkable in (D,B0) if (i) I \ S is finite or (ii) (D,B0) is CO-free.

Proof. There is a set of disjoint finite paths from I to B1 in (D1, B1), which, by Lemma 3.2,
gives rise to a set of disjoint finite Q-alternating walks from I to B1 in (D,B0). Let W
be the subset of those walks starting in J := I \ S. Then Lemma 3.3 provides a set P of
disjoint paths or rays from J ∪ (S \ Ter(W)) ⊇ I to Y ⊆ B0. It remains to argue that P
does not contain any ray. Indeed, any such ray would meet infinitely many paths in Q.
But by Lemma 3.4, the ray is the spine of an outgoing comb, which is a contradiction.

In fact the converse of (ii) holds.

Lemma 3.8. Suppose that (D,B0) is CO-free, and Q is a linkage from S onto T such that
there exists no linkage from S to a proper subset of T . Then a linkable set I in (D,B0)
is also linkable in (D1, B1), and (D1, B1) is CO-free.

Proof. For the linkability of I it suffices by Lemma 3.2 to construct a set of disjoint finite
Q-alternating walks from I to B1. Let P be a linkage of I in (D,B0).

For each vertex v ∈ I let Wv be the maximal P-Q-alternating walk starting at v. By
Lemma 3.6, W := {Wv : v ∈ I} is a set of disjoint Q-alternating walks that can only end
in (Ter(P) \ T ) ∪ S ⊆ B1.

If there is an infinite alternating walk W = Wv0 inW , then Lemma 3.3 applied on just
this walk gives us a set R of disjoint paths or rays from S + v0 to T . Since the forward
segments of W are subsegments of paths in P , by Corollary 3.5 any ray in R would extend
to a forbidden outgoing comb. Thus, R is a linkage of S + v0 to T . In particular, S is
linked to a proper subset of T contradicting the minimality of T . Hence W consists of
finite disjoint Q-alternating walks, as desired.

For the second statement suppose that (D1, B1) contains an outgoing comb whose

spine R starts at v0 /∈ S. Then W := ~Q(R) is a Q-alternating walk in (D,B0) by
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Lemma 3.2. Any infinite forward segment R′ of W contains an infinite subset linkable to
B1 in (D1, B1). By Lemma 3.7(ii) this subset is also linkable in (D,B0), so R′ is the spine
of an outgoing comb by Lemma 3.4, which is a contradiction.

On the other hand, suppose that W does not have an infinite forward tail. By investi-
gating W as we did with Wv0 above, we arrive at a contradiction. Hence, there does not
exist any outgoing comb in (D1, B1).

For later application as a refinement of Lemma 3.8, we note the following.

Lemma 3.9. If (D,B0) is F∞-free, then so is (D1, B1).

Proof. Suppose that (D1, B1) contains a subdivision of F∞ with centre v0. Then an infinite
subset X of the out-neighbourhood of v0, that is linkable in (D1, B1). By Lemma 3.2,

there exists an infinite set W of disjoint finite Q-alternating walks that avoid ~Q(v0) and
start in X. Inductively construct an infinite set of of disjoint finite paths as follows. Take
a walk W inW and follow it until it hits a vertex v of Q for the first time and from there
follow the path Q ∈ Q containing v until B0 to get a path in D that links the initial
vertex of W to B0. If there is no such vertex v, then W actually is a path ending in
B0 as desired. By deleting all the finitely many walks in W that hit Q together with W
fromW , we ensure that the constructed paths will be disjoint. As there are still infinitely
many walks left in W , we can continue the construction until we get an infinite linkable
subset of the out-neighbourhood of ~Q(v0), a forbidden linking fan in (D,B0).

Proposition 3.10. Suppose (D,B0) is CO-free and Q is a linkage from S onto T such
that S cannot be linked to a proper subset of T . Then ML(D1, B1) = ML(D,B0).

Proof. By Lemma 3.7(ii) and Lemma 3.8, a set I ⊆ V is linkable in (D,B0) if and only if
it is linkable in (D1, B1).

We remark that in order to show that ML(D,B0) = ML(D1, B1), the assumption in
Proposition 3.10 that (D,B0) is CO-free can be slightly relaxed. Only outgoing combs
constructed in the proofs of Lemma 3.7(ii) and Lemma 3.8 which have the form that all
the spikes are terminal segments of paths in the linkage Q need to be forbidden.

Theorem 3.11. The class of CO-free gammoids is minor-closed.

Proof. Let N := ML(D,B0) be a strict gammoid. It suffices to show that any minor M
of N is a gammoid. By Lemma 2.2, we have M = N/S \ R for some independent set S
and coindependent set R. First extend S by elements in B0 to a base B1 (by (IM)). This
gives us a linkage Q from S onto T := B0 \ B1 such that there exists no linkage from S
to a proper subset of T .

Assume that (D,B0) is CO-free. Then by Lemma 3.8, (D1, B1) is CO-free, and by
Proposition 3.10, ML(D,B0) = ML(D1, B1). Since S ⊆ B1, M = ML(D1, B1)/S \ R =
ML(D1 − S,B1 \ S) \R is a CO-free gammoid.

A partial converse of Lemma 3.7(i) can be proved by analyzing a proof of Pym’s linkage
theorem.
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Lemma 3.12. Let M = ML(D,B0) be a strict gammoid, Q a linkage from S onto T such
that B1 = (B0 \ T ) ∪ S is a base, and I ⊆ V \ S such that S ∪ I is linkable in (D,B0). If
I is finite, then it is linkable in (D1 − S,B1 \ S).

Proof. By Lemma 3.2 it suffices to construct a set of disjoint finite Q-alternating walks
from I to B0 \ T .

Let P be a linkage of S ∪ I in (D,B0). If we could show that the maximal P-Q-
alternating walks starting in I are all finite, we would be done by Lemma 3.6. Instead
of P we will use an auxiliary linkage Q∞. The linkage theorem of Pym [22] asserts the
existence of such a linkage Q∞ from S ∪ I onto some set Y ∞ ⊇ T . We first recall how it
is constructed using the notations introduced in [2]:

For each x ∈ S ∪ I, let Px be the path in P containing x. Define f 0
x := x and let

Q0 := Q. For each i > 0 and each x ∈ S ∪ I, let f ix be the first vertex on Px after (and
including) f i−1

x that is also in V (Qi−1), or Ter(Px) if no such vertex exists. Using the
notation about paths in [13], f ix can equivalently be defined as the last vertex v on f i−1

x Px
such that (f i−1

x Pxv̊)∩ V (Qi−1) = ∅. For y ∈ T , let Qy be the path in Q containing y and
tiy be the first vertex v ∈ Qy such that the terminal segment v̊Qy does not contain any
f ix. Define the linkage Qi := Bi ∪ Ci with

Bi := {Pxf ixQy : x ∈ S ∪ I, y ∈ T and f ix = tiy},
Ci := {Px ∈ P : f ix ∈ B0 \ T}.

There exist integers ix, iy > 0 such that f ixx = fkx , t
iy
y = tly for all integers k > ix and

l > iy. Define f∞x := f ixx , t
∞
y := t

iy
y and

B∞ := {Pxf∞x Qy : x ∈ S ∪ I, y ∈ T and f∞x = t∞y },
C∞ := {Px ∈ P : f∞x ∈ B0 \ T}.

Then Q∞ := B∞ ∪ C∞ is the linkage given by the linkage theorem.
Extend the independent set (B0 \ Y ∞)∪ (S ∪ I) to a base B2 using elements from the

base B1 and let Y := Y ∞ \ T . Then B2 \B1 = I and B1 \B2 ⊆ Y . As |B2 \B1| is finite,
by [10, Lemma 3.7], we have |I| = |B2 \B1| = |B1 \B2| 6 |Y |.

We next construct a familyW of walks that will help to control the Q∞-Q-alternating
walks starting in I. Let v ∈ V (D) be a vertex with the property that v = f j+1

xj+1
for some

integer j and a vertex xj+1 ∈ S ∪ I such that f jxj+1
6= f j+1

xj+1
. We backward inductively

construct a walk W (v) that starts from I and ends at v as follows:
Given xi+1 for a positive integer i 6 j, let Qi be the path in Q containing f ixi+1

(if

there is no such path, then f ixi+1
∈ I and i = 0). Since f ixi+1

6= f i+1
xi+1

, it follows that

F i ∩ f̊ ixi+1
Qi 6= ∅, where F i := {f ix : x ∈ S ∪ I}. Let xi be such that f ixi is the first vertex

of F i on f̊ ixi+1
Qi. Moreover, since f ixi+1

∈ Qi, F i−1 ∩ f̊ ixi+1
Qi = ∅, so f i−1

xi
6= f ixi . Hence we

can complete the construction down to i = 1 and define:

W (v) := f 0
x1
P1f

1
x1
∪

⋃
0<i<j

f ixi+1
Qif

i
xi
∪ f ixi+1

Pi+1f
i+1
xi+1

. (1)
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Note that f 0
x1
6= f 1

x1
and for any x ∈ S, the definition of f 1

x implies f 0
x = f 1

x . Hence,
f 0
x1

, the initial vertex of W (v), is in (S ∪ I) \ S = I. Now we examine the interaction
between two such walks:

Claim. Let x, x′ ∈ S ∪ I be given such that f j+1
x 6= f jx and f j

′+1
x′ 6= f j

′

x′ .

(i) If j = j′ and f j+1
x 6= f j

′+1
x′ , then Ini(W (f j+1

x )) 6= Ini(W (f j
′+1
x′ )).

(ii) If W (f j+1
x ) and W (f j

′+1
x′ ) start at the same vertex in I, then one is a subwalk of

the other.

Proof. For (i) we first note that f j+1
x and f j

′+1
x′ are on distinct paths in P and apply

induction on j. If j = j′ = 0, then Ini(W (f j+1
x )) = x 6= x′ = Ini(W (f j

′+1
x′ )). For j > 0 the

walk W (f j
′+1
x′ ) has the form W (f jx′j

)∪ f jx′j+1
Q′jf

j
x′j
∪ f jx′j+1

P ′j+1f
j+1
x′j+1

and analogue W (f j+1
x ).

The vertices f jx′j+1
and f jxj+1

are on distinct paths in P and therefore distinct. Then it

follows from the definition that f jxj 6= f jx′j
and we use the induction hypothesis to see that

Ini(W (f jx′j
)) 6= Ini(W (f jxj)) and hence Ini(W (f j+1

x′j+1
)) 6= Ini(W (f j+1

xj+1
)), as desired.

For (ii) suppose that f j+1
x 6= f j

′+1
x′ , then (i) implies j 6= j′, say j < j′. If f j+1

x′j+1
6= f j+1

xj+1
,

then, by (i), Ini(W (f j+1
x )) 6= Ini(W (f j+1

x′j+1
)) = Ini(W (f j

′+1
x′ )). Hence W (f j+1

x ) is a subwalk

of W (f j
′+1
x′ ).

Each vertex y ∈ Y \ I is on a non-trivial path in Q∞, so there exists a least integer

iy > 0 such that y = f
iy
xiy for some xiy ∈ S ∪ I. For y ∈ Y ∩ I let W (y) be the trivial walk

at y, so that we can define W := {W (y) : y ∈ Y }.
Suppose y and y′ are two vertices in Y \ I such that Ini(W (y)) = Ini(W (y′)). Since

there is no edge of Q ending at either of these vertices, (ii) implies that W (y) = W (y′)
and therefore y = y′. Since the initial vertex of a non-trivial walk in W is not in B0,
we have Ini(W (y)) 6= Ini(W (y′)) for any two distinct vertices y, y′ in Y . That means
Ini(W) = I, since |I| 6 |Y |.

We are finally in the position to show that the maximal Q∞-Q-alternating walks
starting in I are not only disjoint (by Lemma 3.6) but also finite. To that end, let e be
an edge of such a walk. As E(W) is finite, it suffices to show that e ∈ E(W ) for some
W ∈ W . By definition, e ∈ E(Q∞)∆E(Q). The following case analysis completes the
proof.

1. e ∈ E(Q∞) \ E(Q): e is on some initial segment Pxf
∞
x of a path Px in P . More

precisely, there is an integer i, such that e ∈ f ixPxf i+1
x . By construction e ∈ W (f i+1

x )
and Ini(W (f i+1

x )) ∈ I. Let W be the walk inW whose initial vertex is Ini(W (f i+1
x )),

then (ii) implies that e is on W .

2. e ∈ E(Q) \ E(Q∞): e is on some initial segment Qf∞x of a path Q in Q. More
precisely, there is an integer i and x, x′ ∈ S ∪ I, such that e ∈ f ixQf

i
x′ . Since

f ix 6= f i+1
x , similar to the previous case, there is a walk in W containing e.

Here is another condition under which a minor of a gammoid is a gammoid.
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Theorem 3.13. Any finite-rank minor of a gammoid is also a gammoid.

Proof. The setting follows the first paragraph of the proof of Theorem 3.11. Suppose
that M = N/S \ R has finite rank r. Since R is coindependent, V \ R is spanning in N .
Therefore, N/S also has rank r. Let I ∈ML(D1−S,B1\S), then r = |B0\T | = |B1\S| >
|I| and, by Lemma 3.7(i), I is in I(N/S). Conversely, if I ∈ I(N/S), then I is finite.
By Lemma 3.12, I is linkable in (D1 − S,B1 \ S). Hence ML(D1 − S,B1 \ S) is a strict
gammoid presentation of N/S and M = ML(D1 − S,B1 \ S) \R is a gammoid.

An immediate corollary is that any forbidden minor, of which there are infinitely many
([16]), for the class of finite gammoids is also a forbidden minor for infinite gammoids.

3.2 Topological gammoids

Here we show that topological gammoids coincide with the finitary gammoids. As a corol-
lary, we see that topological gammoids are minor-closed. As the first step we investigate
how a topological gammoid can be expressed as gammoid.

Lemma 3.14. Every strict topological gammoid is a strict gammoid.

Proof. The difference between a topological linkage and a linkage is that paths ending at
the centre of a linking fan and spines of outgoing combs are allowed. Thus, it suffices to
give a {CO, F∞}-free dimaze presentation for a given strict topological gammoid M .

Let (D′, B′0) be a dimaze such that M = MTL(D′, B′0), and F be the set of all vertices
that are the centre of a subdivision of F∞. Let (D,B0) be obtained from (D′, B′0) by
deleting all edges whose initial vertex is in F and define B0 := B′0 ∪ F .

We claim that MTL(D,B0) = MTL(D′, B′0). Let P be a topological linkage of I in
(D′, B′0). Then the collection of the initial segments of each element of P up to the first
appearance of a vertex in F forms a topological linkage of I in (D,B0). Conversely, let P
be a topological linkage of I in (D,B0). Note that any linkage in (D,B0) is a topological
linkage in (D′, B′0). In particular the spikes of an outgoing comb whose spine R is in P
form a topological linkage. Hence, R is also the spine of an outgoing comb in (D′, B′0) by
Lemma 3.4. So I is topologically linkable in (D,B0).

Let S ∪B0 be a base of MTL(D,B0) and Q a set of disjoint spines of outgoing combs
starting from S. We show that a set I is topologically linkable in (D,B0) if and only if it
is linkable in the Q-shifted dimaze (D1, B1).

Let P be a topological linkage of I in (D,B0). By Lemma 3.6, the set W of maximal
P-Q-alternating walks starting in I is a set of disjoint Q-alternating walks possibly ending
in Ter(P) ∪ S ⊆ B1. If there were an infinite walk, then it would have to start outside S
and give rise to a topologically linkable superset of S∪B0, by Lemma 3.3 and Lemma 3.4.
So each walk in W is finite. By Lemma 3.2, I is linkable in (D1, B1).

Conversely let I be linkable in (D1, B1) and W a set of disjoint finite Q-alternating
walks in (D,B0) from I to B1 provided by Lemma 3.2. By Lemma 3.3, Q∆W contains a
set R of disjoint paths or rays in (D,B0) from I to B0. By Corollary 3.5, any ray in R is
in fact the spine of an outgoing comb, so I is topologically linkable in (D,B0).
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Now we can characterize strict topological gammoids among strict gammoids.

Theorem 3.15. The following are equivalent:

1. M is a strict topological gammoid;

2. M is a finitary strict gammoid;

3. M is a strict gammoid such that any presentation is {CO, F∞}-free;

4. M is a {CO, F∞}-free strict gammoid.

Proof. 1. ⇒ 2. : By Corollary 2.6, M is a finitary matroid and by Lemma 3.14 it is a
strict gammoid.

2.⇒ 3. : Let ML(D,B0) be any presentation of M . Note that the union of any vertex
v ∈ V \ B0 and all the vertices in B0 to which v is linkable forms a circuit in M (the
fundamental circuit of v and B0). Suppose (D,B0) is not {CO, F∞}-free, then there is a
vertex linkable to infinitely many vertices in B0. But then M contains an infinite circuit
and is not finitary.

3.⇒ 4. : Trivial.
4.⇒ 1. : Take a {CO, F∞}-free presentation of M . Then topological linkages coincide

with linkages. Hence M is a topological gammoid.

Next we also characterize topological gammoids among gammoids.

Corollary 3.16. The following are equivalent:

1. M is a topological gammoid;

2. M is a finitary gammoid;

3. M is a {CO, F∞}-free gammoid.

Proof. 1.⇒ 3. : There exist a dimaze (D,B0) and X ⊆ V such that M = MTL(D,B0)\X.
By Theorem 3.15, there is a {CO, F∞}-free dimaze (D1, B1) such that ML(D1, B1) =
MTL(D,B0). Hence, M is a {CO, F∞}-free gammoid.

3. ⇒ 2. : There exists a {CO, F∞}-free presentation of a strict gammoid N of which
M is a restriction. By Theorem 3.15, N is finitary, thus, so is M .

2. ⇒ 1. : There exist (D,B0) and X ⊆ V such that M = ML(D,B0) \ X. Since M
is finitary, we have M = Mfin, which is equal to ML(D,B0)fin \X. By Corollary 2.6, the
latter equals MTL(D,B0) \X. Hence, M is a topological gammoid.

Theorem 3.17. The class of finitary gammoids (or equivalently topological gammoids)
is closed under taking minors.

Proof. Let M be a finitary gammoid. By Corollary 3.16, M is a {CO, F∞}-free gammoid.
Any minor of M is a CO-free gammoid by Theorem 3.11, and also F∞-free by Lemma 3.9.
So any minor of M is a finitary gammoid by Corollary 3.16.
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4 Duality

While finite transversal matroids and finite strict gammoids are dual to each other [17],
this does not hold in the infinite case: There is an infinite transversal matroid whose
dual is not a strict gammoid (Example 4.15) and the dual of the strict gammoid defined
by CA is not a transversal matroid (Example 4.11). Since this latter dual happens to
be a gammoid, it does not rule out the possibility that infinite gammoids are, like finite
gammoids, closed under duality. However, a more badly behaved example exists: in
Example 4.19, we give a strict gammoid which is not dual to any gammoid.

Trying to understand the duals of strict gammoids, we introduce a natural extension
of transversal matroids and show that it captures the duals of CA-free strict gammoids
introduced in [2] (Theorem 4.9). However, as we shall see in Example 4.12, this extension
does not contain the duals of all strict gammoids.

4.1 Strict gammoids and path-transversal matroids

Let us begin by introducing a dual object of a dimaze. Given a bipartite graph G =
(V,W ) and a matching m0 onto W , we call the pair (G,m0) a bimaze4. We adjust two
constructions of [17] (see also [20, Section 2.4]) for our purposes.

Definition 4.1. Given a dimaze (D,B0), define a bipartite graph D?
B0

, with bipartition
(V, (V \ B0)?), where (V \ B0)? := {v? : v ∈ V \ B0} is disjoint from V ; and E(D?

B0
) :=

m0 ∪ {vu? : (u, v) ∈ E(D)}, where m0 := {vv? : v ∈ V \ B0}. Call (D,B0)? := (D?
B0
,m0)

the converted bimaze of (D,B0).

Starting from a dimaze (D,B0), we write (V \B0)?, m0 and v? for the corresponding
objects in Definition 4.1.

Definition 4.2. Given a bimaze (G,m0), where G = (V,W ), define a digraph G?
m0

such
that V (G?

m0
) := V and E(G?

m0
) := {(v, w) : wv? ∈ E(G) \m0}, where v? is the vertex in

W that is matched by m0 to v ∈ V . Let B0 := V \ V (m0). Call (G,m0)? := (G?
m0
, B0)

the converted dimaze of (G,m0).

Starting from a bimaze (G,m0), we write B0 and v? for the corresponding objects in
Definition 4.2 and (V \B0)? for the right vertex class of G.

Note that these constructions are inverse to each other (see Figure 2). In particular,
if (G,m0) is a bimaze, then

(G,m0)?? = (G,m0). (2)

Note that for any matching m, each component of G[m0∪m] is either a path, an even
cycle, a ray or a double ray. If G[m0 ∪m] consists of only finite components, then m is
called an m0-matching. A set I ⊆ V is m0-matchable if there is an m0-matching of I.

Definition 4.3. Given a bimaze (G,m0), the pair of V and the set of all m0-matchable
subsets of V is denoted by MPT (G,m0). If MPT (G,m0) is a matroid, it is called a path-
transversal matroid.

4Short for bipartite maze.
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Figure 2: Converting a dimaze to a bimaze and vice versa

The correspondence between finite paths and m0-matchings is depicted in the following
lemma.

Lemma 4.4. Let (D,B0) be a dimaze. Then B is linkable onto B0 in (D,B0) if and only
if V \B is m0-matchable onto (V \B0)? in (D,B0)?.

Proof. Suppose a linkage P from B onto B0 is given. Let

m := {vu? : (u, v) ∈ E(P)} ∪ {ww? : w /∈ V (P)}.

Note that m is a matching from V \ B onto (V \ B0)? in D?
B0

. Any component induced
by m0 ∪m is finite, since any component which contains more than one edge corresponds
to a path in P . So m is a required m0-matching in (D,B0)?.

Conversely, let m be an m0-matching from V \B onto (V \B0)?. Define a linkage from
B onto B0 in (D,B0) as follows. From every vertex v ∈ B, start an m0-m-alternating
walk, which is finite because m is an m0-matching. Moreover, the walk cannot end with
an m0-edge because m covers (V \ B0)?. So the walk is either trivial or ends with an
m-edge in B0. As the m-edges on each walk correspond to a path from B to B0, together
they give us a required linkage in (D,B0).

Note that, for a finite dimaze, this defaults to the usual duality construction between
strict gammoids and transversal matroids that was used in [17] to prove that the dual
and a contraction of a finite gammoid is a gammoid. We remark that the notion of the
Q-shifted dimaze introduced in Section 3 can be expressed by the converted dimaze as
follows: Given a dimaze (D,B0) and a linkageQ from S onto B0 (extended by trivial paths
if needed), let m1 be the m0-matching of V \ S in (D,B0)? whose existence is claimed by
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Lemma 4.4. Then the converted dimaze of the bimaze (D?
B0
,m1) is the Q-shifted dimaze

of (D,B0).
Let us show that path-transversal matroids are transversal matroids.

Proposition 4.5. Let MT (G) be a transversal matroid and m0 a matching of a base B.
Then MT (G) = MPT (G,m0).

Proof. Suppose I ⊆ V admits a matching m. By the maximality of B, infinite components
of m∪m0 do not intersect V \B. To find an m0-matching of I, in the infinite components,
replace each m-edge with the m0-edge with which it shares a vertex in V .

In fact, the class of path-transversal matroids contains the class of transversal matroids
as a proper subclass; see the remark after Example 4.11.

Just as we can extend a linkage to cover the exits by trivial paths, any m0-matching
can be extended to cover W .

Lemma 4.6. Let (G,m0) be a bimaze. For any m0-matchable I, there is an m0-matching
from some B ⊇ I onto W .

Proof. Let m be an m0-matching of I. Take the union of all connected components of
m ∪ m0 that meet W \ m. The symmetric difference of m and this union is a desired
m0-matching of a superset of I.

We find it convenient to abstract two properties of a dimaze and a bimaze. Given a
dimaze (D,B0), let (†) be

I ∈ML(D,B0) is maximal ⇔ ∃ linkage from I onto B0. (†)

Analogously, given a bimaze (G,m0), let (‡) be

I ∈MPT (G,m0) is maximal ⇔ ∃ m0-matching from I onto (V \B0)?. (‡)

In some sense (†) and (‡) are dual to each other.

Lemma 4.7. A dimaze (D,B0) satisfies (†) if and only if (D,B0)? satisfies (‡).

Proof. Assume (D,B0) satisfies (†). The forward direction of (‡) follows from Lemma 4.6.
To prove the backward direction of (‡), suppose there is an m0-matching from V \ B
onto (V \ B0)?. By Lemma 4.4, there is a linkage from B onto B0. Therefore, B is
maximal in ML(D,B0) by (†). By Lemma 4.6, any m0-matchable superset of V \B may
be extended to one, say V \ I, that is m0-matchable onto (V \ B0)?. As before, I ⊆ B is
maximal in ML(D,B0), so I = B and hence, V \B is a maximal m0-matchable set.

Assume (D,B0)? satisfies (‡). The forward direction of (†) is trivial. For the backward
direction, suppose there is a linkage from B onto B0. Then there is an m0-matching from
V \B onto (V \B0)? by Lemma 4.4. By (‡), V \B is maximal in MPT (D,B0)?. With an
argument similar to the above, we can conclude that B is maximal in ML(D,B0).

Now let us see how (†) helps to identify the dual of a strict gammoid.
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Lemma 4.8. If a dimaze (D,B0) satisfies (†), then the dual of ML(D,B0) is MPT (D,B0)?.

Proof. By Lemma 4.7, (D,B0)? satisfies (‡). Let B be an independent set in ML(D,B0).
Then B is maximal if and only if there is a linkage from B onto B0. By Lemma 4.4, this
holds if and only if there is an m0-matching from V \ B onto (V \ B0)?, which by (‡) is
equivalent to V \B being maximal in MPT (D,B0)?.

To complete the proof, it remains to see that every m0-matchable set can be extended
to a maximal one, which follows from Lemma 4.6 and (‡).

Note that while we do not need it, the twin of Lemma 4.8 is true, namely, if a bimaze
(G,m0) satisfies (‡), then MPT (G,m0) is a matroid dual to ML(G,m0)?.

To summarize, the dual of strict gammoids examined in Theorem 2.4 is given as
follows.

Theorem 4.9. (i) Given a CA-free dimaze (D,B0), ML(D,B0) is a matroid dual to
MPT (D,B0)?.

(ii) Given a bimaze (G,m0), if (G,m0)? is CA-free, then MPT (G,m0) is a matroid
dual to ML(G,m0)?.

Proof. (i) This is the direct consequence of Theorem 2.4 and Lemma 4.8.
(ii) Apply part (i) and (2).

One might hope that, in the first part of the theorem, the path-transversal matroid
MPT (D,B0)? is in fact the transversal matroid MT (D,B0)?. However, the dimaze RI de-
fines a strict gammoid whose dual is not the transversal matroid defined by the converted
bimaze. It turns out that RI is the only obstruction to this hope.

Theorem 4.10. (i) Given an {RI , CA}-free dimaze (D,B0), ML(D,B0) is a matroid dual
to MT (D?

B0
).

(ii) Given a bimaze (G,m0), if (G,m0)? is {RI , CA}-free, then MT (G) is a matroid
dual to ML(G,m0)?.

Proof. (i) This follows from Theorem 4.9(i) and the fact that for an RI-free dimaze
(D,B0), we have MT (D?

B0
) = MPT (D,B0)?. The proof of the latter is similar to the

one given to Proposition 4.5 and omitted.
(ii) Apply part (i) and (2).

It appears that CA is a natural constraint in the above theorem.

Example 4.11. The strict gammoid defined by the dimaze CA (Figure 3a) is not co-
transversal.

Proof. Since (V \ B0) + v is a base for every v ∈ B0, B0 is an infinite cocircuit. On
the other hand, every vertex v of B0 is contained in a finite cocircuit, namely v and its
in-neighbours. So by Lemma 2.10, the dual is not transversal.
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We remark that CA and CI define the same strict gammoid via the isomorphism
depicted in Figure 3. So while the dual of the strict gammoid defined by CA is not a
transversal matroid, it is the path-transversal matroid defined by the converted bimaze
of CI . It also is a gammoid by the lines above Conjecture 5.5.

Although the class of path-transversal matroids contains that of transversal matroids
properly, not every strict gammoid has its dual of this type.

Example 4.12. Given a rooted tree such that each vertex has infinitely many children,
let B0 consist of the root and vertices on the alternating levels. Form a digraph T by
directing the edges towards B0. Then ML(T , B0) is a strict gammoid that is not dual to
any path-transversal matroid.

Proof. In [2, Corollary 3.5], it was proved that M := ML(T , B0) is a matroid. Suppose
that M∗ = MPT (G,m′). Let Q be a linkage from B1 := V \m′ onto B0. Since (T , B0) is
CO-free, by Proposition 3.10, we have M = ML(D1, B1) where (D1, B1) is the Q-shifted
dimaze. By construction, the underlying graph of D1 is also a tree.

By [2, Corollary 3.6], (D1, B1) contains an alternating comb R. Let {si : i > 1} :=
R ∩ B1 and U = {ui : i > 1} be the set of vertices of out-degree 2 on R such that ui
is joined to si and si+1 in R. Let Si := {v ∈ T : v can be linked to si in D1 \ U} and
Ui := {v ∈ T : v is separated from R ∩B1 by ui}, in particular Ui contains ui. Since D1

is a tree, {Ui, Si : i > 1} is a collection of pairwise disjoint sets.
Let C :=

⋃
i>1 Si. Any linkable set in V \C has a linkage that misses an exit in R∩B1.

Since D1 is a tree, (B1 \ R) ∪ U + c for any c ∈ C is a base of M . Hence, C is a circuit
in M∗. For a contradiction, we construct an m′-matching of C in (G,m′).

As a first step, we note the following connection between fundamental circuits in
MPT (G,m′) and adjacency in G: If C ′ is the fundamental circuit of u with respect to the
base matched by m′, then N(C ′) = m′(C ′ − u). Clearly, N(u) ⊆ m′(C ′ − u). To see that
no v ∈ C ′ − u can have a neighbour outside m′(C ′ − u), it is enough to note that there is
always an m′-alternating walk from u to v. The latter follows from the fact that for any
m′-matching m of C ′ − v, the m-m′-alternating walk from u ends at v.

In M∗, the fundamental circuit of si with respect to V \ B1 is Si ∪ Ui−1 ∪ Ui (with
U0 := ∅). Hence, we have N(Si ∪ Ui−1 ∪ Ui) = m′(Si ∪ Ui−1 ∪ Ui − si) for i > 1.

We claim that for i > 1, in any m′-matching m of
⋃
j6i Sj, the maximal m-m′-

alternating walk from sj ends in m′(Uj) for j 6 i. Note that such a walk cannot end
in m′(Sj) as those vertices are incident with m-edges. Since N(S1) ⊆ m′(S1 ∪ U1), the
claim is true for i = 1. Assume that it is true for i − 1. Consider an m′-matching m1

of
⋃
j6i Sj. Let Pj be the maximal m1-m′-alternating walk starting from sj. By assump-

tion, Pj ends in m′(Uj) for each j < i. As Pi ends in m′(Ui−1 ∪ Ui), we are done unless it
ends in m′(Ui−1). In that case, the union of an m′-matching of C \⋃j6i Sj with

(m′ �
⋃
j6i

Sj)∆
⋃
j6i

E(Pj)

is an m′-matching of C, a contradiction.
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Figure 3: An alternating comb and an incoming comb which define the same gammoid

Therefore, there is a collection of pairwise disjoint m′-alternating walks {P ′i : i > 1}
where P ′i starts from si and ends in m′(Ui). Then m′∆

⋃
i>1E(P ′i ) is an m′-matching of C,

a contradiction which completes the proof.

4.2 Finitary transversal matroids

Our aim in this section is to give a transversal matroid that is not dual to any strict
gammoid. To this end, we extend some results in [6] and [7]. The following identifies
edges that may be added to a presentation of a finitary transversal matroid without
changing the matroid.

Lemma 4.13. Suppose that MT (G) is finitary. Let K be a subset of {vw /∈ E(G) : v ∈
V,w ∈ W}. Then the following are equivalent:

1. MT (G) 6= MT (G+K);

2. there is vw ∈ K and a circuit C with v ∈ C and w /∈ N(C);

3. there is vw ∈ K such that v is not a coloop of MT (G) \N(w).

Proof. 1. holds if and only if there is a circuit C in MT (G) which is matchable in G+K.
This, since C is finite, in turn holds if and only if there is v ∈ C that can be matched
outside N(C) in G+K, i.e. 2. holds.

The equivalence between 2. and 3. is clear since an element is not a coloop if and only
if it lies in a circuit.

Let MT (G) be a transversal matroid. Recall that G is a maximal presentation of
MT (G) if MT (G + vw) 6= MT (G) for any vw /∈ E(G) with v ∈ V,w ∈ W . Thus,
the previous lemma implies that if MT (G) is finitary, then G is maximal if and only if
MT (G) \ N(w) is coloop-free for any w ∈ W . Bondy [6] asserted that for any finite
transversal matroid, there is a unique maximal presentation (recall that a presentation
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of a transversal matroid necessitates that W is covered by a matching of a base); here
two presentations of a transversal matroid by bipartite graphs G and H are isomorphic
if there is a graph isomorphism from G to H fixing the left vertex class pointwise.

Proposition 4.14. Every finitary transversal matroid M has a unique maximal presen-
tation.

Proof. Let M = MT (G). Adding all vw with the property that there is not any circuit
C with v ∈ C and w /∈ N(C) gives a maximal presentation of M by Lemma 4.13.
In particular, any coloop is always adjacent to every vertex in W . So without loss of
generality, we assume that M is coloop-free.

Now let G and H be distinct maximal presentations of M .
Claim 1. For any finite subset F of V , the induced subgraphs G[F ∪ NG(F )] and

H[F ∪NH(F )] are isomorphic.
For every v ∈ F pick a circuit Cv with v ∈ Cv. By Lemma 4.13, for every vw ∈ {xy /∈

E(G) : x ∈ F, y ∈ NG(F )}, there is a circuit Cvw with v ∈ Cvw and w /∈ NG(Cvw). Let
FG be the union of all Cv’s and Cvw’s. Analogously define FH and let F ′ := FG ∪ FH .
As the circuits involved are all finite and a vertex in a finite circuit must have finite
degree, the presentations G[F ′ ∪NG(F ′)] and H[F ′ ∪NH(F ′)] of M |F ′ are finite. So we
can, by Bondy’s result, extend them to get maximal presentations G′ and H ′ respectively
and a graph isomorphism between them which fixes the left vertex class pointwise. As
by definition of F ′ and Lemma 4.13, no non-edge between F and NG(F ) is an edge in
G′ (analogously between F and NH(F ) in H ′), the restriction of the isomorphism to
F ∪NG(F ) is the claimed isomorphism of G[F ∪NG(F )] and H[F ∪NH(F )].

As G is left locally finite, for any A ⊆ V , |{w ∈ W (G) : NG(w) = A}| is finite. As G
and H are distinct presentations, without loss of generality, there is A ⊆ V such that

g := |{w ∈ W (G) : NG(w) = A}| < |{w ∈ W (H) : NH(w) = A}| =: h.

Note that as H is a maximal presentation, by Lemma 4.13, M \ A is coloop-free.
As M is coloop-free, so is M.A. Let B1 be a base of M.A and B2 a base of M \A. Let m

be a matching of B1∪B2. Since M \A is coloop-free, by Lemma 2.8, the neighbourhood of
each vertex matched by m to a vertex in B1 is a subset of A. Thus, M.A can be presented
with the subgraphs induced by A ∪ {w ∈ W : N(w) ⊆ A} in both graphs G and H; call
these subgraphs G1 and H1. For any w ∈ W (G1), since M \NG1(w) is coloop-free, so is
M.A \NG1(w). By Lemma 4.13, G1 (analogously H1) is a maximal presentation of M.A.

Claim 2. Given a family (Nj)j∈J of finite subsets of W , if the intersection of any
finite subfamily has size at least k, then the intersection of the family has size at least k.

Let N :=
⋂
j∈J Nj. Suppose |N | < k. Fix some j0 ∈ J and for each element y ∈ Nj0\N

pick some Ny such that y /∈ Ny. Then |Nj0 ∩
⋂
y∈Nj0

\N Ny| = |N | < k, which is a

contradiction.

By Claim 2, there is a finite set F ⊆ A such that |⋂v∈F NG1(v)| = g. But Claim 1
says that F has at least h > g common neighbours in H1; this contradiction completes
the proof.
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Figure 4: A transversal matroid which is not dual to a strict gammoid and a gammoid
presentation of its dual

In [3], it is proved that a cofinitary strict gammoid always admits a presentation that
is {RI , CA}-free. To show that the following finitary transversal matroid is not dual to a
strict gammoid, it suffices to show that there is no bimaze presentation whose converted
dimaze is CA-free.

Example 4.15. Define a bipartite graph G as V (G) = {vi, Ai : i > 1} and E(G) =
{v1A1, v2A1, v1A3, v2A3} ∪ {v2i−3Ai, v2i−2Ai, v2i−1Ai, v2iAi : i > 2} (Figure 4(a)). Then
M := MT (G) is not dual to a strict gammoid.

Proof. As G is left locally finite, M is a finitary matroid. Assume for a contradiction
that M∗ = ML(D,B0). By a characterization of cofinitary strict gammoids in [3], we may
assume that (D,B0) is {RI , CA}-free. Then by Theorem 4.10, M = MT (D,B0)?.

Now it can be checked that all M \N(Ai) are coloop-free. By Lemma 4.13, G is the
maximal presentation of M . The same lemma also implies that any minimal presentation
G′ is obtained by deleting edges from {v1A3, v2A3} and at most one from {v1A2, v2A2}.
In particular, all presentations of M differ from G only finitely. It is not difficult to check
that with any matching m0 of a base, (G,m0)? contains an alternating comb. Hence, there
is no bimaze presentation of M such that the converted dimaze is CA-free, contradicting
that (D,B0)? is such a presentation.

We remark that the above transversal matroid is dual to a gammoid, see Figure 4.
However, in the next section, we give a transversal matroid that is not dual to any
gammoid.

4.3 Infinite tree and gammoid duality

To show that there is a strict gammoid not dual to a gammoid, we prove the following lem-
mas, whose common setting is that a given dimaze (D,B0) defines a matroid ML(D,B0).
For a linkage Q and any X ⊆ Ini(Q), Q � X := {Q ∈ Q : Ini(Q) ∈ X}; when X = {x},
we write simply Qx.
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Lemma 4.16. Let b be an element in an infinite circuit C, Q a linkage from C− b. Then
b can reach infinitely many vertices in C via Q-alternating walks.

Proof. Given any x ∈ C − b, let P be a linkage of C − x. Let W be a maximal P-Q-
alternating walk starting from b. If W is infinite, then we are done. Otherwise, W ends
in either Ter(P) \Ter(Q) or Ini(Q) \ Ini(P) = {x}. The former case does not occur, since
it gives rise to a linkage of C by Lemma 2.5(i), contradicting C being a circuit. As x was
arbitrary, the proof is complete.

Lemma 4.17. For i = 1, 2, let Ci be a circuit of M , xi, bi distinct elements in Ci \C3−i.
Suppose that (C1 ∪ C2) \ {b1, b2} admits a linkage Q. Then any two Q-alternating walks
Wi from bi to xi, for i = 1, 2, are disjoint.

Proof. Suppose that W1 = w1
0e

1
0w

1
1 . . . w

1
n and W2 = w2

0e
2
0w

2
1 . . . w

2
m are not disjoint. Then

there exists a first vertex v = w1
j on W1 such that v = w2

k ∈ W2 and either v ∈ V (Q)
and e1

j = e2
k ∈ E(Q) or v /∈ V (Q). In both cases W3 := W1vW2 is a Q-alternating

walk from b1 to x2. Let v′ be the first vertex of W3 in V (Q � (C2 − b2) \ C1) and Q the
path in Q containing v′. Then W3v

′Q is a (Q � (C1 − b1))-alternating walk from b1 to
B0 \Ter(Q � (C1− b1)), which by Lemma 2.5(i) contradicts the dependence of C1. Hence
W1 and W2 are disjoint.

Lemma 4.18. Let {Ci : i ∈ N} be a set of circuits of M ; xi, bi distinct elements in
Ci \

⋃
j 6=iCj. Suppose that

⋃
i∈N Ci \ {bi : i ∈ N} admits a linkage Q. Let Wi be a Q-

alternating walk from bi to xi. If X ⊆ V is a finite set containing Ci ∩Cj for any distinct
i, j, then only finitely many of Wi meet Q � X.

Proof. By Lemma 4.17, the walks Wi are pairwise disjoint. Since Q � X is finite, it can
be met by only finitely many Wi’s.

We are now ready to give a counterexample to classical duality in infinite gammoids.

Example 4.19. Let (T , B0) be the dimaze defined in Example 4.12. The dual of the
strict gammoid M = ML(T , B0) is not a gammoid.

Proof. Suppose that M∗ = ML(D,B1) � V , where V := V (T ). Fix a linkage Q of V \B0

in (D,B1). For b ∈ B0, let Cb be the fundamental cocircuit of M with respect to B0. Then
for any (undirected) ray b0x0b1x1 · · · in T , C :=

⋃
k∈NCbk \ {xk : k ∈ N} is a cocircuit

of M . We get a contradiction by building a linkage for C in (D,B1) inductively using
disjoint Q-alternating walks.

Let b0 be the root of T . By Lemma 4.16, there is a Q-alternating walk W0 from b0

to one of its children x0. At step k > 0, from each child b of xk−1 in T , by Lemma 4.16,
there is a Q-alternating walk Wb in (D,B1) to a child x of b. Applying Lemma 4.18 on
{Ci : i ∈ N−(xk−1) − bk−1} with X = {xk−1}, we may choose bk := b, xk := x such that
Wk := Wb avoids Qxk−1

.
By Lemma 4.17, distinct Wk and Wk′ are disjoint. Moreover, as each Wk avoids Qxk−1

,
Lemma 2.5(i) implies that Wk can only meet Q at Qx where x ∈ Cbk − xk−1. Then
E(Q)4⋃

k∈NE(Wk) contains a linkage of C.
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By ignoring the directions of the edges of T and adding a leaf to each vertex in B0, we
can present ML(T , B0) as a transversal matroid [2]. Thus, not every transversal matroid
is dual to a gammoid.

5 Open problems

In Section 3, we proved that the classes of CO-free gammoids (see Section 2.2 for defini-
tions), and the finitary gammoids are separately closed under taking minors. However,
the main question remains open.

Question 5.1. Is the class of all gammoids minor-closed?

Theorem 4.9(i) says that if a dimaze (D,B0) is CA-free, then ML(D,B0) is a matroid
whose dual is a path-transversal matroid. Here is a question that is in some sense converse
to the theorem.

Question 5.2. Is every strict gammoid which is dual to a path-transversal matroid CA-
free?

If we restrict ourselves to dimazes that are {CA, RI}-free, then Theorem 4.10(i) tells
us that ML(D,B0) is a matroid whose dual is a transversal matroid. Analogous to the
above question is the following.

Question 5.3. Is every cotransversal strict gammoid {CA, RI}-free?

We have introduced path-transversal systems as a way to describe duals of CA-free
strict gammoids. It may be interesting to investigate path-transversal systems further.
For example, while a path-transversal system need not satisfy (IM), it might be the case
that (I3) always holds.

Question 5.4. Does every path-transversal system satisfy (I3)?

In [2], it was proved that the strict gammoid (T , B0) in Example 4.19 (whose dual
is not a gammoid) is not CA-free. On the other hand, it is possible to extend Mason’s
construction for duality [18] to prove that any RA-free strict gammoid is dual to a gam-
moid. For this purpose let (D,B0) be an RA-free dimaze and M := ML(D,B0). Let
V ′ := {v′ : v ∈ V } be a disjoint copy of V . Let D′ be a digraph on V ′ obtained by
reversing the directions of the edges of D. Define D′′ with vertex set V ′ ∪ V , edges of D′,
together with {(v, v′) : v ∈ B0}∪{(v′, v) : v ∈ V \B0}. As (D,B0) is RA-free, (D′′, V \B0)
is CA-free. So ML(D′′, V \ B0) defines a strict gammoid and any set linkable onto the
exits is necessarily a base (see [2]). Then it can be checked that M∗ = ML(D′′, V \B0)|V .

We conjecture that CA-free gammoids are well-behaved under duality.

Conjecture 5.5. The class of CA-free gammoids is closed under duality.
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As the class of gammoids is not closed under duality, one may try to find reasonably
large subclasses that are closed under duality. Another way to approach the duality
problem is trying to find reasonably small superclasses of gammoids that are dual-closed.

Proposition 4.14 says that a finitary transversal matroid has a unique maximal pre-
sentation. On the other hand, minimal presentations [7] are presentations in which the
removal of any edge changes the transversal system. It is easy to see that any finitary
transversal matroid has a minimal presentation. Indeed, let M = MT (G) be a finitary
transversal matroid where G = (V,W ). We construct a minimal presentation of M in-
ductively and index each step by an ordinal. In step α, we define a bipartite graph Gα

on V ∪W and the set of deletable edges Eα := {e ∈ E(Gα) : MT (Gα) = MT (Gα − e)}.
Set G0 := G and Gα+1 := Gα − e for some e ∈ Eα. For a limit ordinal β, let E(Gβ) :=⋂
α<β E(Gα). If Eα = ∅ for some ordinal α, then it is not difficult to see that Gα is a

minimal presentation of M . However, we do not know if this plan works in general.

Question 5.6. Does every transversal matroid admit a minimal presentation?

A finite transversal matroid is a gammoid by simply declaring the right hand side of
an arbitrary presentation (V,W ) as exits, directing the edges towards W and restricting
the resulting strict gammoid to V . This construction fails in the infinite case due to the
following example: Take a complete bipartite graph as a presentation of the free matroid
on a countable ground set. Then the linkability system of the dimaze constructed as
above fails to satisfy the matroid axiom (IM) because a superset of V is linkable if and
only if it misses infinitely many vertices in W . As the construction works fine when we
start with a minimal presentation of the free matroid, we ask:

Question 5.7. Is every infinite transversal matroid a gammoid?

Note that an approach to this question would be to modify the definition of gammoid
in that we don’t require the linkability system of the whole dimaze to define a matroid
but just the one restricted to the ground set. This approach has some disadvantages, for
example some proofs in Section 3 like that of Theorem 3.11 use the fact that a gammoid
is a restriction of a strict gammoid.
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