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Abstract

In this paper, compositions of n are studied. These are sequences of positive
integers (σi)

k
i=1 whose sum is n. We define a maximum to be a part which is greater

than or equal to all other parts. We investigate the size of the descents immediately
following any maximum and we focus particularly on the largest and average of
these, obtaining the generating functions in each case. Using Mellin transforms, we
obtain asymptotic expressions for these quantities.

1 Introduction

Compositions π of n are finite sequences of positive integers σ1σ2 · · ·σk called parts where∑k
i=1 σi = n. We define a maximum σm to be a part satisfying σm > σi for all i such that

1 6 i 6 k. Our variables of interest are the average descent after any maximum and also
the size of the greatest of these descents. We define a descent to be σm − σm+1 if m < k,
we define the descent after the last part to be the size of that part.

We give one example for the composition of 17 illustrating these descents:
In 3 1 4 4 1 4, there are three maxima with value 4. The descent sizes are 0, 3 and 4.

Thus the average descent is 7/3 and the greatest descent is 4, at the end.
There are two main problems which we address in this paper. The first is how to

deal with the question of finding the greatest of all possible descents from a maximum
in general lattice structures (here specifically compositions). This is challenging because
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the discrete nature of the structure means that the usual analytic tools for optimisation
of continuous structures need to be rethought in this discrete case. We overcome this
problem in Section 3, Theorem 4 by the simple device of specifying the maximum descent
j and then accounting for all structures in a generating function that sums over all values
of j. The second idea which we tackle in Section 2 is to account for (the sum of) all
descents after any maximum. This question arose naturally out of our previous paper [5]
where some of the current authors studied the descents after the first and last maxima
(only). The new situation requires a much more intricate decomposition than that of [5]
to be employed and it is worth studying in its own right because it forms the conceptual
basis for the maximisation problem mentioned in the first part of this paragraph.

One of the earliest papers on maxima in compositions is by Odlyzko and Richmond
[18] in 1980. Ascents, descents and maxima were previously studied by Carlitz et al. in
[7, 8, 9] (followed by [6] and [10] on the same topic). Bender and Canfield (et al.) in
[1, 2, 3, 4] recently produced a series of four papers on locally restricted compositions,
including results for the sizes of the maximum parts.

More general investigations on compositions can be found in [13, 14, 16], and an in
depth discussion may be found in the book by Heubach and Mansour [15].

We decompose general compositions into blocks that occur before and after maxima,
and use generating functions to analyse the descents which follow them.

Asymptotics are provided (using Mellin transforms for analysis). These asymptotic
calculations are much more involved than those for just the first and last maximum, as
previously obtained in [5].

We need the following well-known lemma, see [15]:

Lemma 1. The generating function for compositions with largest part less than or equal
to h where h > 0, is

Ch(x) =
1

1−
∑h

j=1 x
j

=
1− x

1− 2x+ xh+1
.

We shall use the notation (R)∗ to represent a possibly-empty sequence of any number
of repeats of R, and (R)+ to represent a non-empty such sequence.

2 Average descent after any maximum in a composition

We define |π|, the sum of the parts of the composition π to be n. Let d(π) be the sum of
the descents after all maxima in the composition π of n, and let m(π) be the number of
maxima in the composition. The average of d(π) over all compositions of n is therefore

1
2n−1

∑
|π|=n

d(π)
m(π)

since there are 2n−1 compositions of n.

Here is an example. Let n = 4, then we have the following table:
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π m(π) d(π) d(π)/m(π)
1111 4 1 1/4
112 1 2 2
121 1 1 1
211 1 1 1
22 2 2 1
13 1 3 3
31 1 2 2
4 1 4 4

TOTAL 141
4

Thus the mean value is ∑
|π|=4

d(π)
m(π)

24−1 =
141

4

8
= 1.78125. (1)

Theorem 2. The generating function for
∑
|π|=n

d(π)
m(π)

, where x marks the size of the com-

position, is∑
h>1

(
1 +

2x− hx
1− 2x+ xh

+
hx− 1

1− 2x+ xh+1
+ h log(1− 2x+ xh)− h log(1− 2x+ xh+1)

)
.

Proof. In order to find the average descent after any maximum in a composition, we
construct the following generating function:

F (x, u, v) :=
∑
|π|=n

x|π|ud(π)vm(π).

Note that the required sum is∑
|π|=n

d(π)

m(π)
= [xn]

∂

∂u

∫ 1

0

F (x, u, v)

v
dv

∣∣∣∣
u=1

. (2)

We divide all compositions into two categories according to whether the composition ends
in a maximum or not. We then convert the symbolic decomposition in Figure 1 into
generating functions.

Now, consider the case of compositions ending in a maximum. This is represented
diagrammatically in Figure 1 where a wide rectangle represents a block or sequence of
parts which may be empty whereas a thin rectangle represents a single part. The < h
means each part is less than h.

Consequently, the generating function (with slight abuse of the ∗ and + notation) is(
Ch−1(x)(xhv)+

h−1∑
j=1

xjuh−j
)∗
Ch−1(x)(xhv)+uh. (3)
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< h

h
<

h < h

+

@
@
@R

Maximum * +

h

Figure 1: Symbolic decomposition of cases that end in a maximum

Since

uh
h−1∑
j=1

(x
u

)j
=
x(uh − xh)

(u− x)

and
1

1−
∑h

j=1 x
j

=
1− x

1− 2x+ xh+1
,

the generating function (3) for compositions which end in a maximum can be simplified
to

v(x− 1)uhxh(x− u)

xh (v(x− 1)xuh + (u− x)(v(2x− 1) + 1))− (u− 1)vx2h+1 − (2x− 1)(u− x)
. (4)

For compositions that do not end in a maximum, we have the diagram shown in
Figure 2.

< h

h
<

h < h

+

@
@
@R

Maximum +

Figure 2: Symbolic decomposition of cases that do not end in a maximum

Translating the decomposition in Figure 2 into a generating function means that for
compositions that do not end in a maximum, we have (again with the slight abuse of
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notation) (
Ch−1(x)(xhv)+

h−1∑
j=1

xjuh−j
)+

Ch−1(x)

=
(x− 1)2

(1− 2x+ xh)

(
(1−2x+xh)x−h(x−u)(vxh−1)

v(xuh−uxh)
+ x− 1

) . (5)

By adding together the generating functions in (4) and (5) and summing over all h we
find F (x, u, v) is

∑
h>1

v(1− x)xh
(
−uh+1

(
1− 2x+ xh

)
+ xuh

(
xh − x

)
+ u(1− x)xh

)
(1− 2x+ xh) (v(1− x)uhxh+1 + u (vxh+1(xh − 2) + (v − 1)xh + 2x− 1) + x (1− 2x+ xh) (1− vxh))

. (6)

As explained in (2), we now divide F (x, u, v) by v and then integrate with respect to
v from 0 to 1. Thereafter, differentiating with respect to u, and then substituting u = 1
(which are calculations best left to computer algebra) leads to∑
h>1

(
1 +

2x− hx
1− 2x+ xh

+
hx− 1

1− 2x+ xh+1
+ h log(1− 2x+ xh)− h log(1− 2x+ xh+1)

)
,

(7)

which is the result in Theorem 2.

Remark: The series expansion of this expression gives the coefficient of x4 as 57
4

,
which after division by 8 matches (1).

2.1 Asymptotic mean descent after any maximum

We now derive an asymptotic estimate for the mean descent:

Theorem 3. The mean descent after any maximum in a composition of n is asymptotic
to

log2 n−
5

2
+

γ

log 2
− δ(log2 n) as n→∞

where δ(x) is a continuous periodic function of period 1, mean zero, small amplitude and
Fourier expansion

δ(x) =
∑
k 6=0

Γ(χk)e
−2kπix

where χk = 2kπi/ log 2 for k ∈ Z \ {0}.
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Proof. First, it is convenient to replace the infinite sum on h in (7) with a sum to some
large fixed value N . The first three terms can be simplified as follows:

N∑
h=1

(
1 +

2x− hx
1− 2x+ xh

+
hx− 1

1− 2x+ xh+1

)

=
N∑
h=1

(
1 +

2x− hx
1− 2x+ xh

)
+

N+1∑
h=2

(h− 1)x− 1

1− 2x+ xh

= 1 +
2x− x

1− 2x+ x
+

N∑
h=2

(
1 +

2x− hx
1− 2x+ xh

)
+

N∑
h=2

(h− 1)x− 1

1− 2x+ xh
+

Nx− 1

1− 2x+ xN+1

=
1

1− x
+

Nx− 1

1− 2x+ xN+1
+

N∑
h=1

(
1 +

x− 1

1− 2x+ xh

)

=
1

1− x
− 1

1− 2x+ xN+1
+

N∑
h=1

(
1 +

x

1− 2x+ xN+1
+

x− 1

1− 2x+ xh

)
.

In order to obtain coefficients of xn in the above expression, we may choose any N >
n. Since we are only interested in the terms up to xn, the terms with denominator
1 − 2x + xN+1 can be replaced by the simpler denominator 1 − 2x. Also, we need only
sum up to n as any further terms will have exponents which are too large. Hence we need
only find

[xn]

{
1

1− x
− 1

1− 2x
+

n∑
h=1

(
1 +

x

1− 2x
+

x− 1

1− 2x+ xh

)}
= 1− 2n + [xn]

n∑
h=1

(
1− x
1− 2x

+
x− 1

1− 2x+ xh

)
. (8)

We now consider
∑n

h=1

(
1−x
1−2x −

1−x
1−2x+xh

)
. For h > 1, let ρh be the smallest positive

root of 1 − 2x + xh that lies between 1
2

and 1. An application of the principle of the
argument shows such a root ρh exists, with all other roots being of larger modulus.

The denominator 1− 2x+ xh behaves like a perturbation of 1− 2x near x = 1
2
, so one

expects ρh to be approximated by 1
2

as h→∞. By “bootstrapping” we find that

ρh =
1

2
(1 + 2−h +O(h2−2h)) (9)

and hence ch = 1
2
(1 +O(h2−h)). By dominant pole analysis, see [11, 12], the residue

−Res

[
1− x

1− 2x+ xh
x−n−1, z = ρh

]
= chρ

−n
h with ch =

1

2− hρh−1h

1− ρh
ρh

will give the main contribution to the coefficients of 1−x
1−2x+xh . As in [12], Rouche’s theorem

shows that 1 − 2x + xh has no other zeros inside |x| = 3
4
. Now exactly as in [12, pages
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309-310], equation (26),

qn,h := [xn]
1− x

1− 2x+ xh
= ch ρ

−n
h +O

((
2

3

)n)
which holds uniformly with respect to h.

Again as in Knuth [17] or Chapter 5 of [12], the central terms of
∑n

h=1 qn,h occur for
a restricted range of h such as 3

4
log2 n 6 h 6 2 log2 n, for which

qn,h = 2n−1(1− 2−h)n
(

1 +O

(
log n√
n

))
= 2n−1e−n/2

h

(
1 +O

(
log n√
n

))
. (10)

Outside of this range by following [12] we bound the terms to get that for h < 3
4

log2 n,

qn,h = O(2ne−
1
2
n1/4

) and for h > 2 log2 n + y, 2n−1 − qn,h = 2n−1O( e
−2y

n
). We may thus

incorporate the tails of the sums to show

fn := [xn]
n∑
h=1

(
1− x
1− 2x

− 1− x
1− 2x+ xh

)
= 2n−1

(
∞∑
h=1

(1− e−n/2h) + o(1)

)
. (11)

Let

g(x) :=
∞∑
h=1

(1− e−x/2h),

from [12, page 765], we have

g(n) ∼ log2 n−
1

2
+

γ

log 2
− 1

log 2

∑
k 6=0

Γ(χk)e
−2kπi log2 n. (12)

We note that we divide all the terms including 1− 2n from (8) by 2n−1, which means that
in the statement of Theorem 3 the value −5

2
replaces the −1

2
in (12).

We now simplify the remaining terms in (7), again replacing the infinite sum on h
with a sum to some fixed value N , and obtain

N∑
h=1

(
h log(1− 2x+ xh)− h log(1− 2x+ xh+1)

)
=

N∑
h=1

h log(1− 2x+ xh)−
N+1∑
h=1

(h− 1) log(1− 2x+ xh)

=
N∑
h=1

log(1− 2x+ xh)−N log(1− 2x+ xN+1)

=
N∑
h=1

(
log(1− 2x+ xh)− log(1− 2x+ xN+1)

)
.

the electronic journal of combinatorics 22(4) (2015), #P4.38 7



Now provided we choose N > n, we can consider

[xn]
n∑
h=1

(
log(1− 2x+ xh)− log(1− 2x)

)
=

[xn−1]

n

n∑
h=1

(
hxh−1 − 2

1− 2x+ xh
+

2

1− 2x

)
=

2

n
[xn−1]

n∑
h=1

(
1

1− 2x
− 1

1− 2x+ xh

)
+

[xn−1]

n

n∑
h=1

(
hxh−1

1− 2x+ xh

)
=: sn−1 + rn−1.

By the same methods as used for fn in (11), we find that sn−1 = 2
n
O(2n log n).

It remains to compute

rn−1 =
[xn−1]

n

n∑
h=1

hxh−1

1− 2x+ xh
.

As before, we can show that for the dominant range of terms in 1 6 h 6 n, namely for h
satisfying 3

4
log2 n 6 h 6 2 log2 n

[xn−1]
hxh−1

1− 2x+ xh
= h2n+1−he−n/2

h

(
1 +O

(
log n√
n

))
.

Then incorporating the asymptotically small tails of the sum over h,

rn =
1

n
O

(
2n

∞∑
h=1

h2−he−n/2
h

)
.

Estimating the latter sum using Mellin transforms yields

rn = O

(
2n log n

n2

)
.

For the mean value, we must divide by the total number of compositions of n. In particular
sn−1+rn−1

2n−1 → 0 and this completes the proof of Theorem 3.

3 Greatest descent after any maximum

We now turn our attention to the greatest descent after any maximum. Let Gj(x) be the
generating function for the number of compositions for which the greatest descent after
any maximum value h is less than or equal to j. We use symbolic notation to allow us to
keep track of these maxima and their descents.

For example, the composition 55646651 is counted by any Gj(x) for any j > 2.
We shall prove the following theorem:
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Theorem 4. The generating function for the sum of the greatest descent size occurring
after any maximum in a composition is given by

∞∑
j=0

(
x

1− 2x
−Gj(x)

)

=
∞∑
j=0

(
1− x
1− 2x

− 1− x
1− 2x+ xj+1

)
−
∞∑
j=0

∞∑
h=j+1

(1− x)x2h−j(1− xj)
(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

.

(13)

Proof. We have two cases depending on whether a maximum occurs at the end. These
are illustrated below:

< h

h
<

h < h OR

?

Descent of
size 6 j

6 h

h

+

@
@
@R

Maximum

@
@
@R

+

@
@
@R

Maximum: σk

Figure 3: Decomposition of descents after all maxima

From the decomposition in Figure 3, with slight abuse of the notation ( )+ we have

Gj(x) =
∑
h>1

(
Ch−1(x)

xh

1− xh
xh−Min{h−1,j}(1− xMin{h−1,j})

1− x

)+

Ch−1(x) +

j∑
h=1

Ch(x)xh

=
∑
h>1

C2
h−1(x) xh

1−xh
xh−Min{h−1,j}(1−xMin{h−1,j})

1−x

1− Ch−1(x) xh

1−xh
xh−Min{h−1,j}(1−xMin{h−1,j})

1−x

+

j∑
h=1

Ch(x)xh (14)

whereas in Lemma 1,

Ch(x) =
1− x

1− 2x+ xh+1

is the generating function for compositions with height less than or equal to h.
The generating function for the sum of the maximum descent size occurring after any

occurrence of the maximum is given by
∞∑
j=0

(
x

1−2x −Gj(x)
)
.
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Thus, after simplification,
∞∑
j=0

(
x

1−2x −Gj(x)
)

is

∞∑
j=0

(
x

1− 2x
−

j∑
h=1

(1− x)xh

1− 2x+ x1+h
−

j∑
h=1

(1− x)xh+1(1− xh−1)
(1− 2x+ xh)(1− 2x+ x1+h)

−
∞∑

h=j+1

(1− x)x2h−j(1− xj)
(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

)
. (15)

Consider the first three terms of the outer sum in (15):

x

1− 2x
−

j∑
h=1

(1− x)xh

1− 2x+ x1+h
−

j∑
h=1

(1− x)xh+1(1− xh−1)
(1− 2x+ xh)(1− 2x+ x1+h)

=
x

1− 2x
−

j∑
h=1

(1− x)xh

1− 2x+ x1+h
−

j∑
h=1

(
x− 1

x
+

x− 1

1− 2x+ xh
+

(x− 1)2

x(1− 2x+ x1+h)

)

=
x

1− 2x
−

j+1∑
h=2

(1− x)xh−1

1− 2x+ xh
−

j∑
h=1

x− 1

x
−

j∑
h=2

x− 1

1− 2x+ xh
+ 1−

j+1∑
h=2

(x− 1)2

x(1− 2x+ xh)

=
x

1− 2x
−

j∑
h=2

(1− x)xh−1 + x− 1

1− 2x+ xh
− (1− x)xj

1− 2x+ xj+1
−

j∑
h=1

x− 1

x
+ 1

−
j∑

h=2

(x− 1)2

x(1− 2x+ xh)
− (x− 1)2

x(1− 2x+ xj+1)

=
x

1− 2x
−

j∑
h=2

(1− x)(xh − x+ 1− x)

x(1− 2x+ xh)
− (1− x)xj

1− 2x+ xj+1
−

j∑
h=1

x− 1

x
+ 1

− (x− 1)2

x(1− 2x+ xj+1)

=
x

1− 2x
−

j∑
h=2

1− x
x
− (1− x)xj

1− 2x+ xj+1
−

j∑
h=1

x− 1

x
+ 1− (x− 1)2

x(1− 2x+ xj+1)

=
x

1− 2x
+

1− x
x
− (1− x)xj

1− 2x+ xj+1
+ 1− (x− 1)2

x(1− 2x+ xj+1)

=
1− x
1− 2x

− 1− x
1− 2x+ xj+1

.

Summing these over j yields

∞∑
j=0

(
1− x
1− 2x

− 1− x
1− 2x+ xj+1

)
,

which concludes the proof.
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This series expansion begins

x+ 3x2 + 7x3 + 16x4 + 34x5 + 73x6 + 152x7 + 318x8 + 659x9 + 1363x10

+ 2809x11 + 5780x12 + 11860x13 + 24301x14 + 49707x15 · · · .

We illustrate the term 16x4 in the table below. It shows the eight compositions of 4
with the size of the greatest descent from any maximum. The total maximum descent is
16 and the relevant maxima are indicated in bold.

Compositions of 4 1111 211 121 112 13 31 22 4 Total

Size of maximum descent 1 1 1 2 3 2 2 4 16

3.1 Asymptotic average greatest descent after any maximum

We now consider the asymptotic growth of the greatest descent as n tends to infinity.

Theorem 5. The average greatest descent after any maximum in compositions of n is
asymptotic to (ignoring fluctuations)

log n− 1

2
+

γ

log 2
− 1

log 2

∑
i>1

2−i

i(1− 2−i)
,

as n→∞.

Proof. Consider the first sum in (13). For this we use fn defined in (11) and its estimate
in (12) (ignoring the fluctuations) to obtain

fn = [xn]
∞∑
j=0

(
1− x
1− 2x

− 1− x
1− 2x+ xj+1

)
∼ 2n−1

(
log n− 1

2
+

γ

log 2

)
. (16)

Next, consider the coefficients of the last term of (13)

gn :=[xn]

(
−
∞∑
j=0

∞∑
h=j+1

(1− x)x2h−j(1− xj)
(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

)
(17)

=[xn]

(
−
∞∑
h=1

h−1∑
j=0

(1− x)x2h−j(1− xj)
(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

)
. (18)

As shown in (9) the dominant root of 1− 2x+ xh satisfies

ρh ∼
1

2
(1 + 2−h) as h→∞.
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Similarly we use bootstrapping on the second factor 1−2x−x2h−j+2x1+h, and approximate
the dominant root ρh,j of

1− 2x− x2h−j + 2x1+h = 0

by x = 1
2

+ ε, as h→∞ and 2h− j →∞.

Substituting this approximation into the above polynomial gives

1− 2

(
1

2
+ ε

)
−
(

1

2
+ ε

)2h−j

+ 2

(
1

2
+ ε

)1+h

= 0.

Therefore
1− 1− 2ε− 2−2h+j + 2−h ∼ 0

and so

ε ∼ 1

2

(
−2−2h+j + 2−h

)
.

Thus

ρh,j ∼
1

2

(
1− (2−2h+j − 2−h)

)
as h→∞ and 2h− j →∞.

We now show that ρh and ρh,j are the only zeros of the denominator polynomials of
(18) for |x| 6 2

3
.

Lemma 6. There are no further zeros of 1− 2x+ xh = 0 and 1− 2x− x2h−j + 2x1+h = 0
with |x| 6 2

3
for h > 5.

Proof. Firstly, let f1(x) = 1− 2x+ xh and g(x) = 1− 2x, we apply Rouché’s theorem to
the circle centered around the origin with radius 2/3. Thus

|f1(x)− g(x)| = |xh| =
(

2

3

)h
<

1

3
for h > 3

and

|g(x)| = |1− 2x| = 2|x− 1

2
| > 1

3
.

This implies that f1 and g have the same number of roots with |x| 6 2
3

for h > 3. Now
for the second polynomial, let f2(x) = 1− 2x− 22h−j + 2x1+h and g(x) = 1− 2x, then

|f2(x)− g(x)| 6 |x|2h−j + 2|x|1+h 6 3|x|1+h < 1

3

for h > 5 and 0 6 j 6 h − 1. Hence also f2 and g have the same number of roots with
x 6 2

3
for h > 5.

Next for x = 2
3
,∣∣∣∣ (1− x)x2h−j(1− xj)

(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

∣∣∣∣ 6 2 · 1 · 2
(1
3
−
(
2
3

)h
)(2

3
− 3(2

3
)1+h)

6 C
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for some constant C.
Thus

[xn]
(1− x)x2h−j(1− xj)

(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)
(19)

=
1

2πi

∮
|x|= 2

3

(1− x)x2h−j(1− xj)
(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

dx+Res1 +Res2 (20)

= O

((
3

2

)n)
, (21)

where

Res1 := −Res
[

(1− x)x2h−j(1− xj)
(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

, z = ρh

]
and

Res2 := −Res
[

(1− x)x2h−j(1− xj)
(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

, z = ρh,j

]
.

So that

∞∑
h=1

h−1∑
j=0

∮
|x|= 2

3

(1− x)x2h−j(1− xj)
(1− 2x+ xh)(1− 2x− x2h−j + 2x1+h)

dx (22)

=
∞∑
h=1

h−1∑
j=0

[
Res1 +Res2 +O

((
2

3

)−n)]

=
∞∑
h=1

h−1∑
j=0

[
Res1 +Res2

]
+O

(
n2

(
3

2

)n)
. (23)

(Although (21) holds for h > 5, the cases 1 6 h < 5 are asymptotically negligible in (23)).
Now the central range of terms in the double sum (23) occurs, similarly to the proof

of Theorem 2, for 3
4

log2 n 6 h 6 2 log2 n and 0 6 j 6 h− 1. In this range of h and j,

Res1 ∼ 2−1−h−j+n(1− 2−h)n(−2 + 2h)(−1 + 2j)

and
Res2 ∼ 2−2h+j(1− 2−j)(−1 + 2h−j − 2−1+2h−j)(2(1− 2−h(1− 2−h+j)))n.

For the average we divide the residues through by 2n−1, the number of compositions
of n to get in the central range,

Res1 +Res2 ∼2
(
2−1−h−j(1− 2−h)n(−2 + 2h)(−1 + 2j)

+ 2−2h+j(1− 2−j)(−1 + 2h−j − 2−1+2h−j)(1− 2−h(1− 2−h+j))n
)
.

Now as in (10) we have for 3
4

log2 n 6 h 6 2 log2 n and 0 6 j 6 h− 1,

(1− 2−h)n ∼ e−n2
−h
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and
(1− 2−h(1− 2−h+j))n ∼ e−n2

−h(1−2−h+j).

At this stage we reintroduce the double sum from (17) and incorporate the terms corre-
sponding to the asymptotically small tails for h < 3

4
log2 n and h > 2 log2 n, to obtain

gn
2n−1

∼ 1

2n−2

b2 log2 nc∑
h=b 3

4
log2 nc

h−1∑
j=0

(Res1 +Res2)

∼ 1

2n−1

∞∑
j=0

∞∑
h=j+1

(Res1 +Res2)

∼ 2
∞∑
j=0

∞∑
h=j+1

[
2−1−h−j e−n2

−h

(−2 + 2h)(−1 + 2j)

+ 2−2h+j(1− 2−j)(−1 + 2h−j − 2−1+2h−j) e−n2
−h(1−2−h+j)

]
= 2

∞∑
j=0

∞∑
k=0

[
2−2−k−2j e−n2

−k−j−1

(−2 + 2k+j+1)(−1 + 2j)

+ 2−2k−j−2 2−j(1− 2j)(1− 2k+1 + 21+2k+j) e−n2
−k−j−1(1−2−k−1)

]
= 2

∞∑
j=0

∞∑
k=0

2−2(1+j+k)(1− 2j)

×
[
21+k(1− 2k+j)e−n2

−k−j−1

+ (1− 2k+1 + 21+2k+j) e−n2
−k−j−1(1−2−k−1)

]
.

In order to find an asymptotic expression for this double sum, we again apply the
Mellin transform).

Firstly the Mellin transform of
∑

k>0 e
−n2−k

is
∑

k>0 Γ(s)2ks, where Re(s) > 0.
Thus, after taking the Mellin transform of the whole expression we have

2Γ(s)
∞∑
j=0

∞∑
k=0

2−2(1+j+k)(1− 2j)

×
[
21+k(1− 2k+j) 2(k+j+1)s + (1− 2k+1 + 21+2k+j)

2(1+j+k)s

(1− 2−k−1)s

]
= 2Γ(s)

∞∑
j=0

∞∑
k=0

2(1+j+k)(s−2)(1− 2j)

[
21+k − 2j+2k+1 +

1− 2k+j + 21+2k+j

(1− 2−k−1)s

]

∼ 2Γ(s)
∞∑
j=0

∞∑
k=0

2(1+j+k)(s−2)(1− 2j)2k+1(1− 2j+k)
[
1− (1− 2−k−1)−s

]
∼ Γ(s)

∞∑
j=0

∞∑
k=0

2(1+j+k)s(1− 2−j)
[
1− (1− 2−k−1)−s

]
.
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Using the binomial expansion, we can write this as

2sΓ(s)
∑
j>0

∑
k>0

(1− 2−j)2sj+sk
∑
i>1

(
−s
i

)
(−2−1−k)i

= Γ(s)
∑
i>1

(
−s
i

)
(−1)i2s−i

∑
j>0

∑
k>0

(1− 2−j)2sj−k(i−s)

= Γ(s)
∑
i>1

(
s+ i− 1

i

)
2s−i

(∑
j>0

∑
k>0

2sj−k(i−s) −
∑
j>0

∑
k>0

2−j(1−s)−k(i−s)
)

=
∑
i>1

Γ(s+ i)

i!
2s−i

(
1

1− 2s
1

1− 2−i+s
− 1

1− 2−1+s
1

1− 2−i+s

)
=
∑
i>1

Γ(s+ i)

i!
2s−i

1

1− 2−i+s
2s−1

(1− 2s)(1− 2−1+s)
.

Since i > 1, we have a fundamental strip 〈−1,∞〉 for the gamma function terms.
The convergence for the above geometric series will occur for s < 0, so altogether the
fundamental strip is 〈−1, 0〉.

For fixed i, by the Mellin inversion formula, the negative residue at s = 0 of

Γ(s+ i)2−i−1+2sn−s

i!(1− 2s)(1− 2−1+s)(1− 2−i+s)
is

−2−i

i log 2(1− 2−i)
.

The sum of the negative residues is thus

− 1

log 2

∑
i>1

2−i

i(1− 2−i)
. (24)

Thus adding (24) to (16), we obtain our final result.
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