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Abstract

A permutation π of an abelian group G is said to destroy arithmetic progressions
(APs) if, whenever (a, b, c) is a non-trivial 3-term AP in G, that is c − b = b − a
and a, b, c are not all equal, then (π(a), π(b), π(c)) is not an AP. In a paper from
2004, the first author conjectured that such a permutation exists of Zn, for all
n 6∈ {2, 3, 5, 7}. Here we prove, as a special case of a more general result, that
such a permutation exists for all n > n0, for some explicitly constructed number
n0 ≈ 1.4 × 1014. We also construct such a permutation of Zp for all primes p > 3
such that p ≡ 3 (mod 8).

Keywords: Permutation; arithmetic progression; finite cyclic group

1 Introduction

Let G be an abelian group, S a subset of G. A bijection π : S → S is said to destroy1

arithmetic progressions (APs) if there is no triple (a, b, c) of elements of S satisfying
(i) a, b, c are not all equal,
(ii) c− b = b− a,
(iii) π(c)− π(b) = π(b)− π(a).

This notion was introduced by the first author in [2], though earlier Sidorenko [5] had
given an example of such a permutation in the case G = Z, S = N. It should not be
confused with the somewhat different, and probably more famous, notion of a permutation
containing no arithmetic progressions [1].

1The term avoid was used in [2]. The term destroy was preferred in [3], and we agree it captures the
notion better.
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The most important open question from [2] concerns the existence of AP-destroying
permutations of finite cyclic groups Zn. Conjecture C of that paper asserts that such
permutations exist if and only if n 6∈ {2, 3, 5, 7}. In this paper we come close to resolving
this conjecture in full. Before stating our main result, we need to define an extension of
the concept of AP-destroying permutation, in the special case of finite cyclic groups:

Definition 1. Let s, t ∈ N0. A permutation π of Zn is said to destroy (s, t)-almost APs
if there is no triple (a, b, c) of elements of Zn satisfying

(i) a, b, c are not all equal,
(ii) a+ c− 2b ≡ η1 (mod n) for some η1 ∈ {0, ±1, . . . , ±s},
(iii) π(a) + π(c)− 2π(b) ≡ η2 (mod n) for some η2 ∈ {0, ±1, . . . , ±t}.

Hence (s, t) = (0, 0) is the case of an AP-destroying permutation. We shall prove

Theorem 2. (i) There exists a permutation of Zn destroying arithmetic progressions for
all n > n0 where

n0 = (9× 11× 16× 17× 19× 23)2 ≈ 1.4× 1014.

(ii) For every s, t ∈ N0 there is an n0(s, t) such that there exists a permutation of Zn
destroying (s, t)-almost APs for all n > n0(s, t).

While (i) may seem to be a special case of (ii), we state it separately for two reasons.
First and foremost, we use (i) in the proof of (ii). Secondly, we have in this special case
tried to find the best constant n0 which our method will yield. Of course, we expect that
Conjecture C of [2] is true, but some additional ideas will probably be needed to prove it
in full.

The idea for the proof of (i) is to construct a “master permutation” of Z√n0 which is
(1, 2)-almost AP-avoiding, and then combine this with ideas from Proposition 2.3(ii) and
Lemma 3.5 of [2] to construct AP-destroying permutations of Zn for all n > n0. In our
proof, we break down the (1, 2)-destroyal property into a total of 14 simpler ones and
find, by simple computer search, permutations of 6 cyclic groups of pairwise relatively
prime orders satisfying different subsets of these simpler properties. Finally, the master
permutation is obtained via an application of the Chinese Remainder Theorem. The
proof of (ii) follows a similar strategy, but this time the “master permutation” destroys
(2, 2)-almost APs, and it requires a more subtle application of the aforementioned ideas
from [2] to get the final result. The full proof of Theorem 2 is presented in Section 2.

The values of n0(s, t) arising from our proof will be extremely large. Though we have
tried to optimise the value which our method gives for n0(0, 0), it remains completely
impractical to attempt to complete the proof of Conjecture C of [2] by a brute-force
computer search. The main point of our result is that we think it removes any substantial
doubt whether the conjecture is true. We will expand on this issue in the final section
of the paper. However, it remains interesting to try to prove the full conjecture and,
in particular, to try to do so without resorting to any large-scale computer searches. It
follows from Lemma 3.5 of [2] that, if we let P denote the set of those n ∈ N for which Zn
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admits an AP-destroying permutation, then P is closed under multiplication. Hence, a
natural strategy is to first focus on primes. The following result will be proven in Section
3:

Theorem 3. Let p be a prime such that p > 3 and p ≡ 3 (mod 8). Then there exists a
permutation of Zp destroying arithmetic progressions.

As we shall see, there are obvious ways one could try to tinker with this proof so as to
make it work also for other primes. So far, however, we have not found any such tinkering
that works. This and other outstanding issues will be addressed in Section 4.

2 Proof of Theorem 2

We introduce some further notation. Let s, t ∈ N0. A permutation π of Zn is said to
destroy the pattern s 7→ t if there is no triple (a, b, c) of elements of Zn satisfying

(i) a, b, c are not all equal,
(ii) a+ c− 2b ≡ s (mod n),
(iii) π(a) + π(c)− 2π(b) ≡ t (mod n).

Hence, π destroys (s, t)-almost APs if and only if it destroys the patterns s′ 7→ t′, for
all s′ ∈ [−s, s] and t′ ∈ [−t, t]. In the following assertions, ξ−1 denotes the inverse of ξ
modulo n. The proofs are almost trivial:

Lemma 4. (i) Suppose π : Zn → Zn is a permutation destroying the pattern 0 7→ 1 and
that GCD(t, n) = 1. Then π1 : Zn → Zn given by

π1(x) = tπ(x)

is a permutation destroying the pattern 0 7→ t.
(ii) Suppose π : Zn → Zn is a permutation destroying the pattern 1 7→ 1 and that
GCD(s, n) = GCD(t, n) = 1. Then π2 : Zn → Zn given by

π2(x) = tπ(s−1x)

is a permutation destroying the pattern s 7→ t.
(iii) If π : Zn → Zn is a permutation destroying the pattern s 7→ t, then π−1 destroys
t 7→ s.

The reader is encouraged to write their own program to check the correctness of the
data in Table 1, which was obtained by computer search. Note that we are here identifying
Zn with the set {0, 1, . . . , n−1}, and following standard practice in identifying the string
(a0, a1, . . . , an−1) with the permutation π : i 7→ ai.

For each i ∈ {1, 2, 3, 4, 6}, let πi be the permutation of Zni
given in Table 1. Let

π5 be the permutation of Z19 given by π5(x) = 2π−1(x), where π is as in Table 1, and
observe that, by Lemma 4, π5 destroys the patterns 0 7→ 0, 1 7→ 2, 1 7→ −2. Thus,
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i ni π : Zni
→ Zni

Patterns destroyed by π,
together with 0 7→ 0

1 9 (0, 1, 8, 3, 2, 6, 4, 7, 5) 0 7→ 2, −1 7→ −2
2 11 (0, 1, 8, 10, 6, 9, 5, 7, 3, 2, 4) 0 7→ −2, −1 7→ 2
3 16 (0, 2, 5, 3, 15, 12, 1, 14, 10, 8, 11, 13, 4, 7, 6, 9) 1 7→ 1, −1 7→ −1
4 17 (0, 1, 3, 9, 11, 7, 4, 8, 15, 12, 16, 10, 14, 5, 2, 13, 6) −1 7→ 1, 1 7→ −1
5 19 (0, 2, 14, 4, 10, 17, 9, 13, 18, 3, 6, 15, 1 7→ 1, −1 7→ 1

8, 12, 5, 1, 7, 11, 16)
6 23 (0, 1, 4, 3, 21, 22, 2, 11, 12, 7, 8, 5, 0 7→ 1, 1 7→ 0,

10, 9, 6, 19, 16, 15, 20, 17, 18, 13, 14) 0 7→ −1, −1 7→ 0
7 25 (0, 2, 5, 1, 3, 9, 13, 20, 10, 15, 23, 4, 21, 1 7→ 1, −1 7→ 1

17, 24, 7, 22, 18, 12, 16, 19, 8, 14, 6, 11)
8 29 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1

9, 24, 16, 14, 20, 18, 25, 23, 27, 26, 28, 17,
15, 21, 11, 19, 22)

9 31 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1
9, 11, 14, 20, 27, 23, 25, 24, 26, 29, 28, 30,

16, 18, 17, 19, 22, 21, 15)
10 37 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 9, 1 7→ 1

11, 14, 18, 15, 17, 21, 24, 22, 32, 31, 35, 30,
33, 19, 34, 36, 23, 20, 27, 25, 29, 26, 28, 16)

11 41 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1
9, 11, 14, 18, 15, 17, 21, 23, 22, 25, 29, 35,
38, 36, 31, 34, 40, 19, 37, 39, 16, 27, 26, 28,

32, 24, 33, 30, 20)
12 43 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1

9, 11, 14, 18, 15, 17, 21, 23, 22, 19, 26, 35,
41, 36, 39, 34, 16, 33, 40, 38, 37, 27, 24, 20,

28, 42, 25, 31, 29, 32, 30)
13 47 (0, 2, 1, 3, 6, 5, 7, 4, 13, 12, 8, 10, 1 7→ 1

9, 11, 14, 18, 15, 17, 21, 23, 22, 19, 26, 20,
31, 16, 29, 39, 41, 44, 37, 43, 24, 45, 38, 28,

46, 25, 33, 27, 34, 30, 40, 42, 36, 32, 35)
14 13 (0, 1, 4, 2, 7, 6, 12, 9, 11, 8, 3, 5, 10) 0 7→ 1
15 49 (0, 1, 4, 2, 3, 6, 7, 12, 5, 8, 9, 15, 11, 0 7→ 1

13, 10, 16, 14, 21, 20, 22, 28, 17, 25, 18, 19,
23, 24, 35, 38, 40, 37, 43, 44, 48, 45, 41, 42,
31, 47, 46, 26, 32, 36, 27, 30, 29, 39, 34, 33)

Table 1: Permutation data
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for each of the 14 non-zero pairs (si, ti) ∈ {−1, 0, 1} × {−2, −1, 0, 1, 2}, there is some
i ∈ [1, 6] such that πi destroys the pattern si 7→ ti. Let σ : Z√n0 →

∏6
i=1 Zni

be the
natural isomorphism of abelian groups given by the Chinese Remainder Theorem, i.e.:
σ(x (mod

√
n0)) =

∏6
i=1(x (mod ni)). We claim that the map π0 : Z√n0 → Z√n0 given by

π0 = σ−1 ◦ (π1, . . . , π6) ◦ σ (1)

is a permutation destroying (1, 2)-almost APs. This will be our master permutation for
the proof of Theorem 2(i).

We now show that π0 has the desired property. Let s ∈ {0,±1} and let (a, b, c)
be a non-trivial (that is, a, b, c are not all equal) triple of elements in Z√n0 such that
a+ c− 2b ≡ s (mod

√
n0). Let (ai, bi, ci), i = 1, . . . , 6, be the projections on the various

factors of this triple, after applying σ. We note that ai + ci − 2bi ≡ s (mod ni), and

π0(a) + π0(c)− 2π0(b) ≡ πi(ai) + πi(ci)− 2πi(bi) (mod ni) (2)

for every i. Since (a, b, c) is non-trivial, there must be at least one factor, i1 say, such that
(ai1 , bi1 , ci1) is non-trivial. We consider two cases:

Case 1: There is some i2 such that ai2 = bi2 = ci2 .

Clearly, this can only occur if s = 0, so (a, b, c) and all its projections are APs. As πi1 is
AP-destroying, we have πi1(ai1)+πi1(ci1)−2πi1(bi1) 6≡ 0 (mod ni1). Furthermore, we triv-
ially have πi2(ai2)+πi2(ci2)−2πi2(bi2) ≡ 0 (mod ni2). Hence, by (2), π0(a)+π0(c)−2π0(b)
is a non-zero multiple of ni2 > 2.

Case 2: (ai, bi, ci) is non-trivial for every i.

For any t ∈ {0,±1,±2} we have that, by choice of π1, . . . π6, there exists an i such
that πi destroys the pattern s 7→ t. Hence, we have π0(a) + π0(c)− 2π0(b) 6≡ t (mod

√
n0)

as, by 2, they are not even congruent modulo ni.

This completes the proof that π0 destroys (1, 2)-almost APs.

To prove Theorem 2(i), it thus remains to show how to use the master permutation
π0 to construct an AP-destroying permutation of Zn for every n > n0. To begin with,
let m, n be any positive integers and write n = k ·m + l, where 0 6 l < m. Place the
numbers 0, 1, . . . , n − 1 clockwise around a circle, and divide them up into consecutive
blocks B0, . . . , Bm−1, each of which has size k or k+1. Thus there will be exactly l blocks
of size k + 1. Let β(x) denote the number of the block containing x, i.e.: x ∈ Bβ(x). We
make two claims:

Claim 1: If k > m then no matter which blocks have size k + 1, if (a, b, c) is an
AP modulo n, then β(a) + β(c)− 2β(b) ∈ {0, ±1, ±2} (mod m).
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To see this, consider a “worst case” where a = 0 and b is the furthest clockwise (last)
element of block Bi, for some 0 6 i < m/2 and such that 2b < n. Then k(i + 1) − 1 6
b 6 (k + 1)(i + 1) − 1 and so 2k(i + 1) − 2 6 2b 6 2(k + 1)(i + 1) − 2. For the claim to
hold, we need 2b to lie in one of the blocks B2i−2, . . . , B2i+2. The last element of B2i−3
is at most (k+ 1)(2i− 2), while the first element of B2i+3 is at least k(2i+ 3). Hence the
claim holds provided

(k + 1)(2i− 2) < 2k(i+ 1)− 2 and 2(k + 1)(i+ 1)− 2 < k(2i+ 3).

Both inequalities are easily checked to hold provided k > m. The symmetric “worst case”
where a is the last and b the first element in their respective blocks is handled similarly.

Claim 2: For any n, if numbers are placed in blocks according to β(x) := bmx/nc,
then every block has size k or k + 1 and, for any (a, b, c) an AP modulo n, one has the
stronger conclusion that β(a) + β(c)− 2β(b) ∈ {0, ±1} (mod m).

This claim is easily verified by plugging in the formula for β(x).

Now suppose n > n0. Write n = k ·√n0 + l, where 0 6 l <
√
n0. Imagine the numbers

0, 1, . . . , n − 1 placed clockwise around a circle. We shall describe a rearrangement of
this circular string of n numbers such that, if π(x) denotes the location of the number x
after the rearrangement, then π will be an AP-destroying permutation of Zn.

Firstly, divide the n numbers into consecutive clockwise blocks B0, . . . , B√n0−1, such

that β(x) = bx
√
n0

n
c. For each i = 0, 1, . . . ,

√
n0 − 1, let τi be a permutation of the

elements of block Bi which destroys APs, considering the elements of the block as lying
in the group Z of ordinary integers. It follows from Proposition 2.3(ii) of [2] that such
permutations exist. Note that the τi will automatically also destroy APs modulo n. Our
AP-destroying permutation π of Zn is gotten by first rearranging the blocks according to
the master permutation π0, and then applying τi within each block (or vice versa, the
two operations commute). In other words, after applying π to the circular arrangement
of numbers, the blocks Bπ−1

0 (0), Bπ−1
0 (1), . . . , Bπ−1

0 (
√
n0−1) appear in clockwise order and,

within block Bi, its integer elements have been permuted according to τi. Since π0 is
(1, 2)-almost AP-destroying, it is easily deduced from Claims 1 and 2 that π destroys
APs modulo n. This completes the proof of Theorem 2(i).

We now turn to part (ii) of the theorem and divide the proof into three steps.

Step 1: There exists a (2, 2)-almost AP-destroying permutation of Zr for some r.

Proof. Let π1, . . . , π6 be as above. Using Table 1 and Lemma 4, it is easy to check
that we can also find permutations π7, . . . , π15 of Zn7 , . . . , Zn15 respectively which col-
lectively destroy all of the patterns s 7→ t, s ∈ {±2}, t ∈ {0, ±1, ±2}. Hence, by a
similar argument to above, there exists a (2, 2)-almost AP-destroying permutation χr of
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Zr, where r =
∏15

i=1 ni.

Step 2: For every s, t ∈ N0 there exists r0(s, t) ∈ N and an (s, t)-almost AP-destroying
permutation of Zr0(s, t).

Proof. Let m be an integer such that there exists an AP-destroying permutation of Zm,
and let χm be such a permutation. Identify ZN with the set {0, 1, . . . , N − 1} for any N .
Let r = r0(2, 2) be as in Step 1. Then (see Lemma 3.5 of [2]) the map χrm : Zrm → Zrm
given by

χrm(rx+ y) = rχm(x) + χr(y), 0 6 x < m, 0 6 y < r,

is easily seen to be (2, 2)-almost AP-destroying, provided m > 2. Thus, by the already
proven Theorem 2(i), there exists a (2, 2)-almost AP-destroying permutation χrm of Zrm,
for all sufficiently large m. Moreover, after a suitable translation, we can choose χrm so
that rm−1 is a fixed point. In this case, the restriction of χrm to {0, 1, . . . , rm−2} can be
considered as a permutation of Zrm−1 and, since χrm was (2, 2)-almost AP-destroying, it
is easily seen that this restriction is (1, 1)-almost AP-destroying. To summarise, we have
shown that there is an infinite arithmetic progression A, consisting of numbers congruent
to −1 (mod r), such that there exists a (1, 1)-almost AP-destroying permutation of Zn
for all n ∈ A. Furthermore, since the first term and common difference of A are relatively
prime, there is an infinite subsequence a1, a2, . . . of elements of A consisting of pairwise
relatively prime numbers. This follows from Dirichlet’s theorem, though it is actually
trivial to prove, in a similar manner to Euclid’s proof of the existence of infinitely many
primes.

Now fix s, t ∈ N0. For a permutation of some Zn to be (s, t)-almost AP-destroying,
it just needs to destroy a finite number of patterns. Using Lemma 4 it follows that there
exists an i = i(s, t) and (1, 1)-almost AP-destroying permutations χj of Zaj , j = 1, . . . , i,
which collectively destroy every pattern s′ 7→ t′, |s′| 6 s, |t′| 6 t. Then, by a construction
similar to (1), we can construct an (s, t)-almost AP-destroying permutation of Zr0(s, t),
where r0(s, t) =

∏i(s, t)
j=1 aj.

Step 3: Theorem 2(ii) holds.

Proof. Clearly, it suffices to prove the theorem when s = t and t = 0 has already
been dealt with. So fix t > 0. We claim the theorem holds with

n0(s, t) = [r0(4t+ 7, 4t+ 7)]2 .

To simplify notation, set M := r0(4t + 7, 4t + 7) and fix n > M2. Our task is to con-
struct a (t, t)-almost AP-destroying permutation of Zn. Write n = kM + l, 0 6 l < M
and place the numbers 0, 1, . . . , n − 1 clockwise around a circle. As before, we find it
most convenient to describe our permutation in terms of a rearrangement of this circular
string of n numbers. The rearrangement will be broken down into 4 stages, of which
stages 2 and 3 correspond to the procedure in the proof of part (i) of Theorem 2, while
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stages 1 and 4 deal with the fact that t > 0. Stage 4 is essentially the “reverse” of Stage 1.

Stage 1: First divide the n numbers into M consecutive clockwise blocks B0, . . . , BM−1,
each of size bn/Mc or dn/Me. Unlike in the proof of part (i), here it doesn’t matter which
blocks have which size, as we will only appeal in the end to Claim 1 from earlier. Let
β1(x) denote the number of the block containing x ∈ [0, n) at this point.

Next, partition the blocks Bi into b M
t+1
c “superblocks” C0, . . . , CbM/(t+1)c, each con-

sisting of either t+ 1 or t+ 2 ordinary blocks, with the larger superblocks placed furthest
clockwise from zero. Thus

C0 = (B0, . . . , Bt), C1 = (Bt+1, . . . , B2t+1), etc. (3)

Note that since M is extremely large compared to t, there is no problem in making this
subdivision of ordinary blocks. Now rearrange the individual numbers in each superblock
in such a way that, if the superblock contains t+ i ordinary blocks, i ∈ {1, 2}, then after
this rearrangement, the numbers inside any ordinary block will form an AP of common
difference t + i. For example, consider the superblock C0. There is a unique reordering
(i0, i1, . . . , it) of (0, 1, . . . , t) such that|Bi0| > |Bi1| > . . . > |Bit | and the indices are
increasing as long as the block sizes are constant. After rearrangement, Bi0 would contain
0, t + 1, 2(t + 1), . . . , Bi1 would contain 1, t + 2, 2t + 3, . . . and so on up to Bit which
would contain t, 2t+ 1, . . . .

Let β2(x) denote the (ordinary) block containing x at this point and note that

|β2(x)− β1(x)| 6 t+ 1, (4)

where plus one comes from the fact that some superblocks may contain t + 2 ordinary
blocks.

Stage 2: Choose a (4t + 7, 4t + 7)-almost AP-destroying permutation π0 of ZM and
permute the ordinary blocks according to this - in other words, after applying π0 the
blocks Bπ−1

0 (0), . . . , Bπ−1
0 (M−1) appear in clockwise order. Let Bi := Bπ−1

0 (i) and let β3(x)
denote the scripted block containing x at this point. Thus

β3(x) = π0(β2(x)). (5)

Stage 3: Let τ 0, τ 1 be AP-destroying permutations of
{

1, . . . , b n
M
c
}

and
{

1, . . . , d n
M
e
}

respectively, considered as subsets of N. From Proposition 2.3(ii) of [2] we know that such
permutations exist. Given any set S of integers which forms an AP of length bn/Mc (resp.
dn/Me), it is obvious how to extract from τ 0 (resp. τ 1) an AP-destroying permutation of
S. We perform such a permutation on each scripted block Bi.

Stage 4: Divide the scripted blocks into superblocks in the same way as in (3), thus

C0 = (B0, . . . , Bt), C1 = (Bt+1, . . . , B2t+1), etc.
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We then rearrange the numbers in each superblock in such a way that, for each block
Bi, the positions of its elements after rearrangement form an AP of common difference
|C0| ∈ {t+1, t+2}. This is accomplished by reversing the procedure in Stage 1 - we hope
it is clear what is meant by this and spare the reader further details. Let β4(x) be the
number of the scripted block containing x at this point and note that, analogous to (4),
one has

|β4(x)− β3(x)| 6 t+ 1. (6)

Let π : Zn → Zn be the permutation defined by the rearrangement accomplished in
Stages 1-4, that is, π(x) denotes the location of the number x in the string after the
rearrangement. We claim that π is (t, t)-almost AP-destroying. To see this, let (a, b, c)
be a triple of elements of Zn satisfying

(I) a, b, c not all equal,
(II) a+ c− 2b ≡ η (mod n) for some η ∈ [−t, t]

and consider two cases:

Case 1: a, b, c all lie in the same ordinary block Bi at the end of Stage 1.

Since a, b, c are not all equal and the numbers in Bi, as it stands after Stage 1, form
an AP with common difference strictly greater than t, property (II) can only hold if
a, b, c form a non-trivial AP modulo n. But since the appropriate τ j destroys APs of
integers, and hence also APs modulo n since n is much larger than M , we see that the
locations of a, b, c will not form an AP modulo n after Stage 3. But they will still lie
in the same scripted block hence, after Stage 4, π(a) + π(c) − 2π(b) must be a non-zero
multiple of t+ i, i ∈ {1, 2}. In particular, π(a) + π(c)− 2π(b) (mod n) 6∈ [−t, t].

Case 2: a, b, c are not all in the same ordinary block upon completion of Stage 1.

By definition, what we’re assuming in this case is that β2(a), β2(b), β2(c) are not all
equal. If a, b, c formed an AP modulo n then it would follow from Claim 1 in the proof
of part (i) of Theorem 2 that

β1(a) + β1(c)− 2β1(b) (mod M) ∈ [−2, 2].

Given that (II) holds and that each ordinary block has size greater than t, we can at least
be sure that

β1(a) + β1(c)− 2β1(b) (mod M) ∈ [−3, 3].

Combined with (4) it follows that

β2(a) + β2(c)− 2β2(b) (mod M) ∈ [−(4t+ 7), 4t+ 7].

But the permutation π0 is (4t+ 7, 4t+ 7)-almost AP-destroying and thus, by (5),

β3(a) + β3(c)− 2β3(b) (mod M) 6∈ [−(4t+ 7), 4t+ 7].
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By (6), this implies in turn that

β4(a) + β4(c)− 2β4(b) (mod M) 6∈ [−3, 3].

Since the scripted blocks still have size greater than t, it follows from Claim 1 on page 4
that π(a) + π(c)− 2π(b) (mod n) 6∈ [−t, t], as desired.

3 Proof of Theorem 3

Let p be a prime. We denote by Rp (resp. Np) the collection of quadratic residues (resp.
non-residues) modulo p. We will be slightly abusive in this context and use the same
notations to denote subsets of Zp and of Z. Hence, as subsets of Zp one has

Rp = {x2 : x ∈ Zp}, Np = Zp\Rp,

whereas, as subsets of Z,

Rp =

{
x ∈ Z :

(
x

p

)
∈ {0, 1}

}
, Np = Z\Rp =

{
x ∈ Z :

(
x

p

)
= −1

}
.

Lemma 5. Let p be a prime such that p ≡ 3 (mod 8). Then both −1 and 2 are in Np.

Proof. This is elementary number theory. That −1 is not a square mod p follows from
Lagrange’s theorem for groups. That 2 is not a square follows from Gauss’ Lemma.

Lemma 6. Let p > 3 be a prime. Then there exists an integer ξ such that both ξ and
ξ − 1 lie in Np.

Proof. This follows immediately from the fact that |Np| = |Rp|−1 and {0, 1, 4} ⊆ Rp.

Lemma 7. Let p > 2 be a prime, and let a, b, c be integers not divisible by p. Then (0, 0)
is the only solution in Zp to the congruence ax2 + bxy + cy2 ≡ 0 (mod p) if and only if
b2 − 4ac ∈ Np.

Proof. Elementary. Suppose we have a solution with y 6≡ 0. Then completion of squares
gives

xy−1 ≡ (2a)−1
(
−b±

√
b2 − 4ac

)
,

which is meaningful if and only if b2 − 4ac ∈ Rp.

We are now ready to prove Theorem 3. Let p > 3 be a prime congruent to 3 (mod 8)
and let ξ be any integer satisfying the conditions of Lemma 6. Define the map f : Zp → Zp
as follows:

f(x) =

{
x2, if x ∈ {0, 2, 4, . . . , p− 1},
ξx2, if x ∈ {1, 3, 5, . . . , p− 2}.
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Note that f is one-to-one. Let (a, b, c) be an arithmetic progression modulo p. Denote
a := x, b := x+ y, c := x+ 2y. We need to show that

f(x) + f(x+ 2y) ≡ 2f(x+ y)⇒ y ≡ 0. (7)

Denote also E := {0, 2, 4, . . . , p−1} and O := {1, 3, 5, . . . , p−2}. We do a case-by-case
analysis.

Case 1: a, b, c ∈ E.

The congruence in (7) becomes

x2 + (x+ 2y)2 ≡ 2(x+ y)2,

which reduces to 2y2 ≡ 0, hence y ≡ 0 since p > 2. Thus (7) holds in this case.

The case when a, b, c ∈ O is completely analogous to Case 1.

Case 2: a, b ∈ E, c ∈ O.

The congruence in (7) becomes

x2 + ξ(x+ 2y)2 ≡ 2(x+ y)2,

which can be expanded as

(ξ − 1)x2 + 4(ξ − 1)xy + 2(2ξ − 1)y2 ≡ 0. (8)

By the choice of ξ we know that ξ − 1 ∈ Np, so in particular ξ − 1 6≡ 0. Also, 2ξ − 1 6≡ 0,
for otherwise we would have ξ − 1 ≡ −1/2, contradicting Lemma 5 and the fact that
ξ − 1 ∈ Np. Hence all the coefficients in the binary quadratic form in (8) are non-zero
modulo p, so we can apply Lemma 7 and deduce that there is no solution with y 6≡ 0 if
and only if [4(ξ − 1)]2 − 8(ξ − 1)(2ξ − 1) ∈ Rp. But

[4(ξ − 1)]2 − 8(ξ − 1)(2ξ − 1) = [4(ξ − 1)]2 ·
(
−1

2(ξ − 1)

)
,

hence this lies in Rp if and only if −1
2(ξ−1) does so. But the latter contradicts Lemma 5 and

the choice of ξ.

The case when a ∈ O, b, c ∈ E is completely analogous to Case 2.

Case 3: a, c ∈ E, b ∈ O.

The congruence in (7) becomes

x2 + (x+ 2y)2 ≡ 2ξ(x+ y)2,
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which can be expanded as

(ξ − 1)x2 + 2(ξ − 1)xy + (ξ − 2)y2 ≡ 0.

Once again, all the coefficients are non-zero modulo p, so we can apply Lemma 7 and
deduce that there is no solution with y 6≡ 0 if and only if [2(ξ−1)]2−4(ξ−1)(ξ−2) ∈ Rp.
But

[2(ξ − 1)]2 − 4(ξ − 1)(ξ − 2) = [2(ξ − 1)]2 ·
(

1

ξ − 1

)
,

hence this lies in Rp if and only if 1
ξ−1 does so. But the latter contradicts the choice of ξ.

Case 4: a, b ∈ O, c ∈ E.

The congruence in (7) becomes

ξx2 + (x+ 2y)2 ≡ 2ξ(x+ y)2,

which can be expanded as

(ξ − 1)x2 + 4(ξ − 1)xy + 2(ξ − 2)y2 ≡ 0.

The coefficients are all non-zero modulo p so, by Lemma 7, there is no solution with y 6≡ 0
if and only if [4(ξ − 1)]2 − 8(ξ − 1)(ξ − 2) ∈ Rp. But

[4(ξ − 1)]2 − 8(ξ − 1)(ξ − 2) = [4(ξ − 1)]2 ·
(

ξ

2(ξ − 1)

)
,

hence this lies in Rp if and only if ξ
2(ξ−1) does so. Once again, this contradicts Lemma 5

and the choice of ξ.

The case when a ∈ E, b, c ∈ O is completely analogous to Case 4.

Case 5: a, c ∈ O, b ∈ E.

The congruence in (7) becomes

ξx2 + ξ(x+ 2y)2 ≡ 2(x+ y)2,

which can be expanded as

(ξ − 1)x2 + 2(ξ − 1)xy + (2ξ − 1)y2 ≡ 0.

The coefficients are still non-zero modulo p so, by Lemma 7, there is no solution with
y 6≡ 0 if and only if [2(ξ − 1)]2 − 4(ξ − 1)(2ξ − 1) ∈ Rp. But

[2(ξ − 1)]2 − 4(ξ − 1)(2ξ − 1) = [2(ξ − 1)]2 ·
(
−ξ
ξ − 1

)
,

hence this lies in Rp if and only if −ξ
ξ−1 does so. Once again we have a contradiction to

Lemma 5 and the choice of ξ. This covers all possible cases and completes the proof of
Theorem 3.
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4 Final remarks

We don’t know of any reason to suspect that Conjecture C of [2] may be false. However,
a full proof of it remains a challenging problem, given that the value of n0 in Theorem
2(i) still leaves a brute-force computational attack way out of reach. A less ambitious
goal could be to see how small n0 can be made using the ideas of this paper.

An obvious approach to Conjecture C is to consider a uniformly random permutation
π of Zn and let X be the number of non-trivial APs not destroyed by π. It is easy to check
that E[X] = Θ(n). As a first hypothesis, one might guess that the events that individual
APs are not destroyed by π are almost independent and hence that X is approximately
Poisson distributed. In that case, the proportion of AP-destroying permutations of Zn
would decrease exponentially with n. A priori, this approach could still only yield Conjec-
ture C for n sufficiently large, but probably with a value of n0 which is sufficiently small to
complete the proof by direct computation. However, it remains an open question whether
this intuition can be made rigorous. A successful moment analysis was carried out in [3]
for permutations destroying APs of length 4, with the important point being that the
expected number of non-trivial 4-term APs not destroyed by a random permutation of
Zn is O(1). This provides some additional circumstantial evidence for Conjecture C.

An AP of length 4 is a common solution to the pair of linear equations x1−2x2+x3 = 0,
x2 − 2x3 + x4 = 0. It is natural to ask the following more general question:

Question 8. Let k, m ∈ N and let Li(x1, . . . , xk) = 0, i = 1, . . . , m, be linear equations
with integer coefficients. When is it the case that there is an n0 = n0(L1, . . . , Lm) such
that there exists a permutation of Zn destroying all non-trivial solutions (as defined in
[4]) to L1 = · · · = Lm = 0 for all n > n0 ?

Indeed, it seems reasonable even to ask this kind of question for general polynomial
equations, not just linear ones. Here we confine further speculation to the case of a single
linear equation a0 +

∑k
i=1 aixi = 0, ai 6= 0 ∀ i > 0. Recall that the equation is said to be

(translation) invariant if a0 =
∑k

i=1 ai = 0. One can make the following straightforward
observations:

(i) Suppose a0 6= 0. If n > 2|a0|, then there exists a unit u ∈ Z×n such that ua0 6≡
a0 (mod n). Then the permutation x 7→ ux (mod n) will destroy all solutions to the
equation.

(ii) Suppose
∑k

i=1 ai 6= 0. If n >
∣∣∣∑k

i=1 ai

∣∣∣ then the translation x 7→ x + 1 (mod n)

will destroy all solutions to the equation.
(iii) Suppose the equation is invariant and k = 2, so the equation reads a1(x1−x2) = 0,

for some a1 6= 0. A permutation π of Zn will destroy all non-trivial solutions if and only if,
whenever x1 and x2 are distinct but lie in the same congruence class modulo n

GCD(a1, n)
,

then π(x1) and π(x2) lie in different congruence classes. Clearly, such a permutation exists
for all n > [GCD(a1, n)]2.
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Hence, for a single linear equation, Question 8 is only interesting if the equation is
invariant and k > 3. If we then consider a uniformly random permutation of Zn, it is easy
to see that the expected number of non-trivial solutions not destroyed is Θ(nk−2). This
suggests that permutations destroying all non-trivial solutions should exist when k = 3,
but perhaps do not do so at all when k > 3. We therefore ask the following:

Question 9. Let L(x1, . . . , xk) = a0 +
∑k

i=1 aixi = 0, ai,∈ Z, ai 6= 0 ∀ i > 0, be a linear
equation. Is it true that the following statements are equivalent:

(i) There is an n0 = n0(L) such that, for every n > n0, there exists a permutation π
of Zn destroying all non-trivial solutions of L = 0.

(ii) Either the equation L = 0 is variant, or it is invariant and k ∈ {2, 3} ?

As a final remark, note that in Proposition 2.3(i) of [2] we proved that no permutation
of any finite abelian group can destroy all non-trivial solutions to the Sidon equation
x1 +x2−x3−x4 = 0. However, we do not see at this point how to modify that argument
for equations in four or more variables in general.
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