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Abstract

In this paper we provide constructive proofs that the following three statistics
are equidistributed: the number of ascent plateaus of Stirling permutations of order
n, a weighted variant of the number of excedances in permutations of length n and
the number of blocks with even maximal elements in perfect matchings of the set
{1, 2, 3, . . . , 2n}.

Keywords: Stirling permutations; Excedances; Perfect matchings; Eulerian poly-
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1 Introduction

In this paper we will study the relationship between Stirling permutations, the cycle
structure of permutations and perfect matchings, and will give constructive proofs for the
equidistribution of some combinatorial statistics on these combinatorial structures.

Stirling permutations were introduced by Gessel and Stanley [6]. A Stirling permuta-
tion of order n is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that every element
between the two occurrences of i is greater than i for each i ∈ [n], where [n] = {1, 2, . . . , n}.
We refer the reader to [1, 7, 8, 11] for some recent results on Stirling permutations.

Let Qn be the set of Stirling permutations of order n. For any σ = σ1σ2 · · ·σ2n ∈ Qn,
an occurrence of an ascent (resp. a plateau) is an index i such that σi < σi+1 (resp.
σi = σi+1). We say that an index i ∈ [2n − 1] is an ascent plateau if σi−1 < σi = σi+1,
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where σ0 = 0 (see [11]). Let ap (σ) be the number of the ascent plateaus of σ. Then as
an example, ap (221133) = 2. Let

Pn(x) =
∑
σ∈Qn

xap (σ) =
n∑
k=1

P (n, k)xk.

Then Pn(1) = #Qn = (2n−1)!!, where (2n−1)!! is the double factorial of 2n−1. By [11,
Theorem 3], the numbers P (n, k) satisfy the recurrence relation

P (n+ 1, k) = 2kP (n, k) + (2n− 2k + 3)P (n, k − 1), (1)

with the initial values P (1, 1) = 1 and P (1, k) = 0 for k 6 0 or k > 2.
Let Sn denote the symmetric group of all permutations of [n] and π = π1π2 · · · πn ∈

Sn. An excedance in π is an index i such that πi > i. Let exc (π) denote the number of
excedances in π. The classical Eulerian polynomials An(x) are defined by

A0(x) = 1, An(x) =
∑
π∈Sn

xexc (π) for n > 1,

and have been extensively investigated (see [4, 5] for instance). In [5], Foata and Schützenberger
introduced a q-analog of the Eulerian polynomials defined by

An(x; q) =
∑
π∈Sn

xexc (π)qcyc (π),

where cyc (π) is the number of cycles in π. Brenti [2, 3] further studied q-Eulerian poly-
nomials and established the link with q-symmetric functions arising from plethysm. In
particular, Brenti [3, Proposition 7.3] obtained the exponential generating function for
An(x; q):

1 +
∑
n>1

An(x; q)
zn

n!
=

(
1− x

ez(x−1) − x

)q
.

For any k > 1, the 1/k-Eulerian polynomials A
(k)
n (x) are defined by

∑
n>0

A(k)
n (x)

zn

n!
=

(
1− x

ekz(x−1) − x

) 1
k

. (2)

Let e = (e1, e2, . . . , en) ∈ Zn. Let In,k = {e | 0 6 ei 6 (i− 1)k}, which is known as the
set of n-dimensional k-inversion sequences. The number of ascents of e is defined by

asc (e) = #

{
i : 1 6 i 6 n− 1

∣∣ ei
(i− 1)k + 1

<
ei+1

ik + 1

}
.

Recently, Savage and Viswanathan [12] discovered that

A(k)
n (x) =

∑
e∈In,k

xasc (e) = knAn(x; 1/k). (3)
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A perfect matching of [2n] is a set partition of [2n] with blocks (disjoint nonempty
subsets) of size exactly 2. Let M2n be the set of matchings of [2n], and let M ∈ M2n.
The standard form of M is a list of blocks {(i1, j1), (i2, j2), . . . , (in, jn)} such that ir < jr
for all 1 6 r 6 n and 1 = i1 < i2 < · · · < in. Throughout this paper we always write M in
standard form. It is well known that M can be regarded as a fixed-point-free involution
on [2n]. We call (a, b) a marked block (resp. an unmarked block) if b is even (resp. odd)
and large than a. Let mark(M) be the number of marked blocks of M.

Let

Nn(x) =
∑

M∈M2n

xmark(M) =
n∑
k=1

N(n, k)xk.

Then Nn(1) = #M2n = (2n− 1)!!. The first few terms of Nn(x) are

N1(x) = x, N2(x) = 2x+ x2, N3(x) = 4x+ 10x2 + x3, N4(x) = 8x+ 60x2 + 36x3 + x4.

The main purpose of the paper is to prove constructively that the following three
statistics are equidistributed:

(m1) ap (σ), the number of ascent plateaus of σ ∈ Qn;

(m2) a weighted variant of exc (π), where the variant is n − exc (π) and the weight is
2n−cyc (π);

(m3) mark(M), the number of marked blocks of M ∈M2n.

The paper is organized as follows. In Section 2, we first derive the recurrence relation
of the numbers N(n, k) and then we give the connection between the three combinatorial
objects studied in this paper on the level of generating functions. In Section 3, we give
constructive proofs of the main results by using the SPM-sequences.

2 Recurrence formula for N(n, k)

Proposition 1. The numbers N(n, k) satisfy the recurrence relation

N(n+ 1, k) = 2kN(n, k) + (2n− 2k + 3)N(n, k − 1), (4)

for n, k > 1, where N(1, 1) = 1 and N(1, k) = 0 for k 6 0 or k > 2.

Proof. For each M ∈ M2n and for each block (a, b) of M, let ϕ1(M, (a, b)) ∈ M2n+2 be
obtained from M by replacing the block (a, b) with two blocks (a, 2n + 1), (b, 2n + 2),
and let ϕ2(M, (a, b)) ∈ M2n+2 be obtained from M by replacing the block (a, b) with
two blocks (a, 2n + 2), (b, 2n + 1). Moreover, let ϕ(M) ∈ M2n+2 be obtained from M
by adding the block (2n + 1, 2n + 2). It is obvious that for any M′ ∈ M2n+2, there
is an M ∈ M2n such that either M′ = ϕ(M) or there is a block (a, b) of M such that
M′ = ϕ1(M, (a, b)) or M′ = ϕ2(M, (a, b)). Moreover, it follows from the definition that
mark(ϕ(M)) = mark(M) + 1 and
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(i) if (a, b) is a marked block, then mark(ϕi(M, (a, b))) = mark(M) for i ∈ {1, 2};

(ii) if (a, b) is an unmarked block, then mark(ϕi(M, (a, b))) = mark(M)+1 for i ∈ {1, 2}.

Assume M′ = ϕ(M) or ϕi(M, (a, b)) (i = 1, 2). If mark(M′) = k, then mark(M) = k
or mark(M) = k − 1. Each matching M ∈ M2n with mark(M) = k corresponds to
2k matchings M′ ∈ M2n+2 with mark(M′) = k, and each matching M ∈ M2n with
mark(M) = k−1 corresponds to 2(n−(k−1))+1 matchings M′ ∈M2n+2 with mark(M′) =
k. So

N(n+ 1, k) = 2kN(n, k) + (2(n− (k − 1)) + 1)N(n, k − 1).

This completes the proof of (4).

Comparing (1) with (4), we see that the numbers P (n, k) satisfy the same recurrence
relation and initial conditions as N(n, k). Hence they agree. The bijection (a, b)→ (b′, a′)
onM2n defined by a′ = 2n+ 1− a, b′ = 2n+ 1− b shows that N(n, k) is also the number
of perfect matchings of [2n] in which exactly k blocks with odd minimal elements. Now it
is well known that the exponential generating function for Nn(x) is given by (see [9, 11]):

N(x, z) =
∑
n>0

Nn(x)
zn

n!
=

√
1− x

1− xe2z(1−x)
. (5)

By (2) and (5),

A(2)
n (x) = xnNn

(
1

x

)
. (6)

Therefore, it follows from (3) and (6) that

Nn(x) =
∑
π∈Sn

2n−cyc (π)xn−exc (π).

3 The SPM-sequences

Let Yn = (y1, y2, . . . , yn) be a sequence of integers of length n. For 1 6 k 6 n, let
POS (Yk) (resp. NPOS (Yk)) denote the set of positive (resp. non-positive) entries of
Yk = (y1, y2, . . . , yk). We define

pos (Yk) = #POS (Yk), npos (Yk) = #NPOS (Yk).

Let Pk be the set {1, 2, 3, . . . , 2k} and letNk be the set {0,−1,−2, . . . ,−2k}. In particular,
P0 = ∅, P1 = {1, 2}, N0 = {0} and N1 = {0,−1,−2}.

Definition 2. Let Yn = (y1, y2, . . . , yn) be a sequence of integers of length n. We call the
sequence Yn an SPM-sequence of length n if y1 = 0, and yk+1 ∈ Pnpos (Yk) ∪ Npos (Yk) for
k = 1, 2, 3, . . . , n− 1.
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For example, (0, 1,−1, 2, 0) is a SPM-sequence, while (0, 1,−1,−4, 2) is not since
y4 = −4 6∈ P2 ∪ N1. Let SPMn denote the set of SPM-sequences of length n. Note
that npos (Yn−1) + pos (Yn−1) = n − 1. This implies that the set Pnpos (Yn−1) ∪ Npos (Yn−1)

contains 2n− 1 elements. So there are 2n− 1 choices for yn and hence

#SPMn = (2n− 1)#SPMn−1 = (2n− 1)!!.

We now present the first main result of this paper.

Theorem 3. For any n > 1,∑
M∈M2n

xmark(M) =
∑

Yn∈SPMn

xnpos (Yn) =
∑
σ∈Qn

xap (σ). (7)

Let neg (Yn) and zero (Yn) be the number of negative entries and 0’s in Yn, respectively.
Then npos (Yn) = neg (Yn) + zero (Yn). The second main result is the following.

Theorem 4. For any n > 1,∑
Yn∈SPMn

xneg (Yn)yzero (Yn) =
∑
π∈Sn

2n−cyc (π)xn−cyc (π)−exc (π)ycyc (π). (8)

In particular, ∑
Yn∈SPMn

xnpos (Yn) =
∑
π∈Sn

2n−cyc (π)xn−exc (π).

In the following subsections, we will give constructive proofs for the main results.

3.1 A bijection between SPM-sequences and Perfect matchings

We define

SPMn,k = {Yn ∈ SPMn | npos (Yn) = k},
M2n,k = {M ∈M2n | mark(M) = k}.

Now we start to construct a bijection, denoted by Φ1, between SPMn,k andM2n,k. When
n = 1, we have y1 = 0. Set Φ1(Y1) = (1, 2). This gives a bijection between SPM1,1 and
M2,1. Let n = m. Suppose Φ1 is a bijection between SPMm,k and M2m,k for all k.
Consider the case n = m + 1. Let Ym+1 = (y1, y2, . . . , ym, ym+1) ∈ SPMm+1. Then
Ym = (y1, y2, . . . , ym) ∈ SPMm,k for some k. Assume Φ1(Ym) ∈ M2m,k. Consider the
following five cases:

(i) If ym+1 = 2i− 1 > 0, then let Φ1(Ym+1) be obtained from Φ1(Ym) by replacing the
ith marked block (c, d) by two blocks (c, 2m+1), (d, 2m+2). In this case, (c, 2m+1)
is an unmarked block and (d, 2m+ 2) is a marked block. Hence, mark(Φ1(Ym+1)) =
mark(Φ1(Ym)) = k;
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(ii) If ym+1 = 2i > 0, then let Φ1(Ym+1) be obtained from Φ1(Ym) by replacing the ith
marked block (c, d) by two blocks (c, 2m+2), (d, 2m+1). Hence, mark(Φ1(Ym+1)) =
mark(Φ1(Ym)) = k;

(iii) If ym+1 = −(2i − 1) < 0, then let Φ1(Ym+1) be obtained from Φ1(Ym) by replacing
the ith unmarked block (e, f) by two blocks (e, 2m + 1), (f, 2m + 2). In this case,
mark(Φ1(Ym+1)) = mark(Φ1(Ym)) + 1 = k + 1;

(iv) If ym+1 = −2i < 0, then let Φ1(Ym+1) be obtained from Φ1(Ym) by replacing the
ith unmarked block (e, f) by two blocks (e, 2m + 2), (f, 2m + 1). In this case,
mark(Φ1(Ym+1)) = mark(Φ1(Ym)) + 1 = k + 1;

(v) If ym+1 = 0, then let Φ1(Ym+1) be obtained from Φ1(Ym) by appending the marked
block (2m+ 1, 2m+ 2) right after Φ1(Ym). In this case,

mark(Φ1(Ym+1)) = mark(Φ1(Ym)) + 1 = k + 1.

After the above step, we write the obtained perfect matching Φ1(Ym+1) in standard form.
It is easy to verify that if ym+1 ∈ Pnpos (Ym) (resp. ym+1 ∈ Npos (Ym)), then Φ1(Ym+1) ∈
M2m+2,k (resp. Φ1(Ym+1) ∈ M2m+2,k+1). By induction, we see that Φ1 is the desired
bijection between SPMn,k and M2n,k, which also gives a constructive proof of the left
equality of (7).

In the following example, if (a, b) is a marked block, then we put the entries a and b
into a square bracket, i.e., replace (a, b) by [a, b]. Otherwise, the parenthesis that contains
a and b unchanged.

Example 5. Let Y4 = (0, 1,−2, 4). The correspondence between Y4 and Φ1(Y4) is built
up as follows:

0⇔ {[1, 2]};
1→ {[1, 2]} ⇔ {(1, 3), [2, 4]};
−2→ {(1, 3), [2, 4]} ⇔ {[1, 6], (3, 5), [2, 4]} = {[1, 6], [2, 4], (3, 5)};

4→ {[1, 6], [2, 4], (3, 5)} ⇔ {[1, 6], [2, 8], (4, 7), (3, 5)} = {[1, 6], [2, 8], (3, 5), (4, 7)}.

3.2 A bijection between SPM-sequences and Stirling permutations

LetQ
(
Pnpos (Yk) ∪Npos (Yk)

)
be the set of Stirling permutations of order k with exactly

npos (Yk) ascent plateaus. In particular, Q (P1 ∪N0) = {11}, Q (P1 ∪N1) = {2211, 1221}
andQ (P2 ∪N0) = {1122}. We now introduce a definition of labeled Stirling permutations.

Definition 6. Let σ ∈ Q
(
Pnpos (Yk) ∪Npos (Yk)

)
. If i1 < i2 < . . . < inpos (Yk) are the

ascent plateaus of σ, then we put the superscript labels 2` − 1 before i` and 2` after
it, where 1 6 ` 6 npos (Yk). In the remaining positions, we put the superscript labels
−1,−2, . . . ,−2pos (Yk) and 0 from left to right.

the electronic journal of combinatorics 22(4) (2015), #P4.42 6



As an example, the labeled version of 13324421 is given by −111323−223444−32−410.
We define

Qn,k = {σ ∈ Qn | ap (σ) = k}.

Now we start to construct a bijection, denoted by Φ2, between SPMn,k and Qn,k.
When n = 1, we have y1 = 0. Set Φ2(Y1) = 11. This gives a bijection between SPM1,1

and Q1,1. Let n = m. Suppose Φ2 is a bijection between SPMm,k and Qm,k for all
k. Consider the case n = m + 1. Let Ym+1 = (y1, y2, . . . , ym, ym+1) ∈ SPMm+1. Then
Ym = (y1, y2, . . . , ym) ∈ SPMm,k for some k. Assume Φ2(Ym) ∈ Qm,k. Consider the
following three cases:

(i) If ym+1 = i > 0, then let Φ2(Ym+1) be obtained from Φ2(Ym) by inserting the pair
(m + 1)(m + 1) to the position of Φ2(Ym) with label i. Hence Ym+1 ∈ SPMm+1,k

and Φ2(Ym+1) ∈ Qm+1,k.

(ii) If ym+1 = −i < 0, then let Φ2(Ym+1) be obtained from Φ2(Ym) by inserting the pair
(m+1)(m+1) to the position of Φ2(Ym) with label −i. Hence Ym+1 ∈ SPMm+1,k+1

and Φ2(Ym+1) ∈ Qm+1,k+1.

(iii) If ym+1 = 0, then let Φ2(Ym+1) be obtained from Φ2(Ym) by appending the pair
(m + 1)(m + 1) right after Φ2(Ym). Hence Ym+1 ∈ SPMm+1,k+1 and Φ2(Ym+1) ∈
Qm+1,k+1.

By induction, we see that Φ2 is the desired bijection between SPMn,k and Qn,k for all k,
which also gives a constructive proof of the right equality of (7).

Example 7. Let Y4 = (0, 2,−1, 3). The correspondence between Y4 and Φ2(Y4) is built
up as follows:

0⇔ 11;

2→1 1210 ⇔ 1221;

−1→−1 11222−210 ⇔ 331221;

3→1 323−113242−210 ⇔ 33144221.

3.3 A map from SPM-sequences to permutations

In the following discussion, we always write π ∈ Sn by its standard cycle decomposi-
tion, in which each cycle is written with its smallest entry first and the cycles are written
in ascending order of their smallest entry. We now introduce a definition of labeled per-
mutations.

Definition 8. Let π ∈ Sn with p excedances. If i1 < i2 < · · · < ip are the excedances,
then we put superscript labels −k between ik and π(ik), where 1 6 k 6 p. In the remaining
positions except the first position of each cycle, we put the superscript labels 1, 2, . . . , n−p
from left to right.
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The number of anti-excedances of π ∈ Sn is defined by aexc (π) = n− exc (π). Let

Sn,k = {π ∈ Sn | aexc (π) = k}.

Now we start to construct a map, denoted by Φ3, from SPMn,k to Sn,k. When n = 1,
we have y1 = 0. Set Φ3(Y1) = (1). This gives a map from SPM1,1 to S1,1. Let n = m.
Suppose Φ3 is a map from SPMm,k to Sm,k for all k and there are 2m−t sequences in
SPMm,k are mapped to one permutation π ∈ Sm,k with cyc (π) = t. Consider the case
n = m + 1. Let Ym+1 = (y1, y2, . . . , ym, ym+1) ∈ SPMm+1. Then Ym = (y1, y2, . . . , ym) ∈
SPMm,k for some k. Assume Φ3(Ym) ∈ Sm,k. Consider the following three cases:

(i) If ym+1 = 2i − 1 > 0 or ym+1 = 2i > 0, then let Φ3(Ym+1) be obtained from
Φ3(Ym) by inserting the entry m + 1 to the position of Φ3(Ym) with label i. Since
exc (Φ3(Ym+1) = exc (Φ3(Ym) + 1 = m − k + 1, we have aexc (Φ3(Ym+1)) = k.
Moreover, cyc (Φ3(Ym+1)) = cyc (Φ3(Ym)). Therefore, we have 2 · 2m−t = 2m+1−t

sequences in SPMm+1,k that are mapped to one permutation π ∈ Sm+1,k with
cyc (π) = t.

(ii) If ym+1 = −(2i − 1) < 0 or ym+1 = −2i < 0, then let Φ3(Ym+1) be obtained from
Φ3(Ym) by inserting the entry m+ 1 to the position of Φ3(Ym) with label −i. Since
exc (Φ3(Ym+1) = exc (Φ3(Ym) = m− k, we have aexc (Φ3(Ym+1)) = k+ 1. Moreover,
cyc (Φ3(Ym+1)) = cyc (Φ3(Ym)). Therefore, we have 2 · 2m−t = 2m+1−t sequences in
SPMm+1,k+1 that are mapped to one permutation π ∈ Sm+1,k+1 with cyc (π) = t.

(iii) If ym+1 = 0, then let Φ3(Ym+1) be obtained from Φ3(Ym) by appending a new
cycle (m + 1) right after Φ3(Ym). Since exc (Φ3(Ym+1) = exc (Φ3(Ym) = m − k,
we have aexc (Φ3(Ym+1)) = k + 1. Moreover, cyc (Φ3(Ym+1)) = cyc (Φ3(Ym)) + 1.
Therefore, we have 1 · 2m−t = 2m−t sequences in SPMm+1,k+1 that are mapped to
one permutation π ∈ Sm+1,k+1 with cyc (π) = t+ 1.

After the above step, we first write the obtained Φ3(Ym+1) in standard cycle decomposi-
tion, and then label it. By induction, we see that Φ3 is the desired map from SPMn,k to
Sn,k, which also gives a constructive proof of (8).

Example 9. Given π = (1 3 5 2)(4). The map Φ3 can be done if you proceed as follows:

y1 = 0 → (11);

y2 = 1 or y2 = 2 → (1 −1 2 1);

y3 = −1 or y3 = −2 → (1 −1 3 1 2 2);

y4 = 0 → (1 −1 3 1 2 2)(4 3);

y5 = 1 or y5 = 2 → (1−13−25122)(43).

Hence, by Φ3, there are eight SPM-sequences that are mapped to π:

(0, 1,−1, 0, 1); (0, 1,−1, 0, 2); (0, 1,−2, 0, 1); (0, 1,−2, 0, 2);

(0, 2,−1, 0, 1); (0, 2,−1, 0, 2); (0, 2,−2, 0, 1); (0, 2,−2, 0, 2).
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4 Concluding remarks

The key observation of the paper is the recurrence relation (4), from which we discover
the relationship among Stirling permutations, the cycle structure of permutations and
perfect matchings. We believe that the techniques developed in the paper can be used
to deal with various combinatorial structures. Moreover, it would be interesting to study
pattern avoidance properties of the SPM-sequences.
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