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Abstract

In classical geometry, a linear space is a space that is closed under linear com-
binations. In tropical geometry, it has long been a consensus that tropical varieties
defined by valuated matroids are the tropical analogue of linear spaces. It is not dif-
ficult to see that each such space is tropically convex, i.e. closed under tropical linear
combinations. However, we will also show that the converse is true: Each tropical
variety that is also tropically convex is supported on the complex of a valuated
matroid. We also prove a tropical local-to-global principle: Any closed, connected,
locally tropically convex set is tropically convex.

1 Introduction

It has long been a consensus what the tropical analogue of a linear space should be.
Sturmfels showed in [25] that the tropicalization of a complex variety defined by linear
equations depends only on a matroid M associated to these equations. One can give this
tropical variety, the matroidal fan or Bergman fan of M in various purely combinatorial
ways: E.g. through its circuits, its bases or its lattice of flats [9, 4]. One can do this for any
matroid, though only realizable matroids yield tropical varieties that are tropicalizations of
algebraic linear spaces. In the case of fields with a nontrivial valuation, the tropicalization
of a linear space is defined by a valuated matroid (M,w). This notion was originally
introduced by Dress and Wenzel [8]. It is given by a matroid M and the additional data
of a valuation w on its bases. Again, the tropical space can be defined for any such object
and it was soon established that the associated tropical varieties should be called tropical
linear spaces.
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This terminology is further justified by the fact that being a tropical linear space is
equivalent to this space having degree one: This means that it intersects the linear space of
complementary dimension associated to the uniform matroid in exactly one point (where
intersection is to be understood as stable intersection). A proof of this can be found in
[10], though the statement seems to have been known for longer (see for example [14]).

Someone familiar with tropical arithmetic might expect a different definition. In the
algebraic world, a linear space is simply a space that is closed under linear combinations.
On the tropical side, addition and multiplication are replaced by ⊕ = max and � = +.
Using these one can define tropical vector addition and tropical scalar multiplication. One
might then be tempted to define a tropical linear space as a space that is closed under
tropical linear combinations. This property is well-known under the name of tropical
convexity. At first glance, this might seem to be a misnomer, but its justification quickly
becomes clear when looking at the corresponding literature. It turns out that classical and
tropical convexity are closely related. Develin and Sturmfels first introduced the concept
into the tropical world [6] and proved — among other things — that there is a tropical
Farkas’ Lemma. Gaubert and Katz prove in [13] that tropical polytopes, i.e. the convex
hulls of finitely many points, can also be written as the intersection of finitely many
tropical halfspaces. Develin and Yu showed that tropical polytopes are tropicalizations
of actual polytopes [7]. Tropical convexity has connections to many fields, such as graph
theory, optimization, resolutions of monomial ideals or subdivisions of polytopes (see for
example [1, 2, 5, 11, 16]).

It becomes readily apparent that simply demanding tropical convexity will not in
general produce sets that are tropical linear spaces in the approved sense. However, when
adding the prerequisite that the set be supported on a tropical variety, i.e. be a balanced
polyhedral complex, the statement becomes true. In fact, it was already well-known that
any tropical linear space (meaning a space associated to a valuated matroid) is a tropical
variety supported on a tropically convex set. In this paper, we prove that the converse is
also true:

Theorem 1.1. Let X be a tropical variety in Rn/1. Then |X| is tropically convex, if and
only if |X| = B(M,w) for some valuated matroid (M,w) on [n]. In other words, X is the
quotient of a space closed under tropical linear combinations if and only if X is supported
on a tropical linear space.

In Section 2 we will review basic definitions and facts about tropical convexity, tropical
varieties, valuated matroids and their associated varieties. We also include a proof of the
fact that a tropical linear space is tropically convex. In Section 3 we collect results about
general tropically convex complexes (i.e. that do not require balancing). We show that
tropical convexity passes to recession fans and is locally preserved. We also prove that any
tropically convex fan of dimension d is contained in the d-skeleton of the normal fan of the
permutohedron. Section 4 then contains the actual proof of Theorem 1.1. We prove the
statement first for fans and trivially valuated matroids. The general result then follows
(with a bit more work) from the fact that being a tropical linear space is also equivalent
to having a recession fan that is a tropical linear space. In section 5, we prove a tropical
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local-to-global convexity theorem:

Theorem 1.2. Let X ⊆ Rn/1 be a closed, connected set. If X is locally tropically convex,
then X is tropically convex.

From this we deduce that being a tropical linear space is a local property.

2 Preliminaries

Convention. Throughout this paper we use ⊕ = max as tropical addition. Of course,
all results still hold in the min-world, one simply has to “invert” the definition of tropical
linear spaces as well. We also write � = + for tropical multiplication.

2.1 Tropical convexity

Definition 2.1. Let x, y ∈ Rn. We define the tropical sum of x and y to be the compo-
nentwise tropical sum: x ⊕ y := (x1 ⊕ y1, . . . , xn ⊕ yn). Similarly, for λ ∈ R, x ∈ Rn we
define tropical scalar multiplication to be componentwise tropical multiplication: λ�x :=
(x1 + λ, . . . , xn + λ).

A subset S of Rn is called tropically convex, if for all x, y ∈ S, λ, µ ∈ R we have

(λ� x)⊕ (µ� y) ∈ S.

The tropical convex hull of a set T , denoted by tconv(T ), is the smallest tropically
convex set containing T . By [6] it is equal to the set of all tropical linear combinations of
elements in T .

Remark 2.2. It is easy to see that any tropically convex set is invariant under translation
by multiples of (1, . . . , 1). Hence it is customary to consider subsets S ′ of the tropical
projective torus Rn/1, where 1 := 〈(1, . . . , 1)〉. We say that such a set S ′ is tropically
convex, if its preimage under the quotient map Rn → Rn/1 is. Note, however, that
tropical arithmetic operations are not actually well-defined on Rn/1.

Lemma 2.3 ([6, Proposition 3]). Let x, y ∈ Rn/1. Then the tropical convex hull of {x, y}
is of the form (

⋃k
i=1 li), where the li are consecutive line segments connecting x and y,

whose slopes are linearly independent (0, 1)-vectors. Furthermore, the number of these
line segments is k := |{xi − yi; i = 1, . . . , n}| − 1.

Remark 2.4. Let us make this statement more concrete: Every element x ∈ Rn/1 has a
well-defined heterogeneity :

het(x) := |{xi; i = 1, . . . , n}| .

We can also define a partition associated to x, part(x) = (I1, . . . , Ihet(x)) of [n] ordering
the entries of x descendingly. More precisely:

• For any j = 1, . . . , het(x) and k, l ∈ Ij, we have xk = xl =: x(Ij).
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• If j < j′, then x(Ij) > x(Ij′).

Now fix representatives x, y of two elements in Rn/1 and set ∆ := ∆(x, y) = y − x.
Assume that part(∆) = (I1, . . . , Is). For any set F ⊆ [n] we write

eF :=
∑
i∈F

ei.

If we define Fj :=
⋃j
i=1 Ii for j = 1, . . . , s − 1, then the tropical convex hull tconv{x, y}

consists of the line segments connecting points x = p1, . . . , ps, where for j > 1 we set

pj := pj−1 + (∆(Ij−1)−∆(Ij)) eFj−1
= x+

j∑
i=2

(∆(Ii−1)−∆(Ii)) eFi−1
.

In particular ps = ∆(Is) � y ≡ y in Rn/1 and the slope of the line segment [pj, pj+1] is
eFj

.

Example 2.5. Let n = 3. We choose a representative of each element in R3/1 by setting
the first coordinate to be 0. Choose x = (0,−1,−1), y = (0, 2, 1). Then ∆ = (0, 3, 2), so
we have part(∆) = ({2}, {3}, {1}). In particular, we get

p1 = x = (0,−1,−1),

p2 = x+ (3− 2)e{2} = x+ (0, 1, 0) = (0, 0,−1),

p3 = (0, 0,−1) + (2− 0)e{2,3} = (0, 0,−1) + 2 · (0, 1, 1) = (0, 2, 1) = y.

Note that there is a nice geometric way to construct this: Draw a min-tropical line at each
vertex. This induces a subdivision of the plane and the tropical convex hull then consists
of the bounded cells of this subdivision. This also works for the tropical convex hull of an
arbitrary (finite) number of vertices and in arbitrary dimensions, see [6, Theorem 15].

p1 = x = (−1,−1)
p2 = (0,−1)

p3 = y = (2, 1)

Figure 1: Constructing the tropical convex hull of two points.
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2.2 Tropical varieties

We will only give the very basic definitions necessary for our purpose. For a general
introduction to tropical geometry, see for example [14, 18, 17].

Definition 2.6. Let X be a pure d-dimensional rational polyhedral complex in Rn/1.
We will denote the support of X by |X| :=

⋃
σ∈X σ. For a cell ρ of X we define Vρ :=

〈a− b; a, b ∈ ρ〉 to be the vector space associated to the affine space spanned by ρ and we
write Λρ := Vρ ∩ Zn/1 for its lattice.

• Let σ ∈ X(d) := {σ ∈ X; dim(σ) = d} and assume τ ⊆ σ is a face of dimension
d− 1. The primitive normal vector of τ with respect to σ is defined as follows: By
definition there is a linear form g such that its minimal locus on σ is τ . Then there
is a unique generator of Λσ/Λτ

∼= Z, denoted by uσ/τ , such that g(uσ/τ ) > 0.

• A tropical variety (X,ω) is a pure, rational polyhedral complex X together with a
weight function ω : Xmax → N>0 (where Xmax denotes the set of maximal polyhedral
cells of X) fulfilling the balancing equation at each codimension one cell τ :∑

σ>τ

ω(σ)uσ/τ = 0 mod Vτ .

Note that we will consider two tropical varieties to be equivalent if they have a
common refinement respecting the weight functions. A tropical fan is a tropical
variety whose polyhedral structure can be represented by a fan.

• For a polyhedral cell σ, we denote by

rec(σ) := {v ∈ Rn/1 : x+ R>0v ⊆ σ for all x ∈ σ}
= {v ∈ Rn/1 : ∃x ∈ σ such that x+ R>0v ⊆ σ}

its recession cone. One can choose a refinement of a polyhedral complex X such
that

rec(X) := {rec(σ);σ ∈ X}

is a fan and we will call that the recession fan of X. If (X,ω) is a tropical variety,
so is (rec(X), ωrec), where

ωrec(ρ) =
∑

σ:rec(σ)=ρ

ω(σ).

(see [22, p. 61] for a proof of this. It also follows implicitly from [3, Theorem 5.4].)

• A d-dimensional tropical variety (X,ωX) is called irreducible, if every d-dimensional
variety (Y, ωY ) with |Y | ⊆ |X| is an integer multiple of X, i.e. |Y | = |X| and
(assuming we have chosen a common refinement) ωY = k · ωX for some k ∈ N. We
also write this as Y = k ·X.
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• Let X be a tropical variety and p ∈ |X|. By refining, we can assume without loss
of generality that p is a vertex of X. We define the Star of X at p to be the fan

StarX(p) := {R>0 · (σ − p); p ∈ σ},

with weight function ωStar(R>0(σ − p)) = ωX(σ). It is easy to see that this is a
tropical fan and that its support is equal to

{v ∈ Rn/1; There is rv > 0 such that p+ αv ∈ |X| for all α ∈ [0, rv]}.

p

X

rec(X)
2

2

2

StarX(p)

Figure 2: Forming the recession fan and the Star of X at a point. Note that, while rec(X)
is supported on a tropical linear space, it has nontrivial weights, so Theorem 2.11 does
not apply.

2.3 Tropical linear spaces

We will assume that the reader is familiar with the basic notions of matroid theory (see
[21] for a comprehensive study of the topic). For a study of tropical linear spaces see for
example [11, 23, 17, 24]. To quickly recap the matroid terminology we will mostly use:
A circuit is a minimal dependent set and a flat is a closed set, i.e. adding any element
increases the rank. Note that we will assume all matroids to be loopfree.

Dress and Wenzel [8] generalized the notion of a matroid to that of a valuated matroid :

Definition 2.7. A valuated matroid (M,w) is a matroid M on a set E = {1, . . . , n}
together with a valuation w : B → R on its set of bases B fulfilling the tropical Plcker
relations :

For all B1, B2 ∈ B and every u ∈ B1, there exists a v ∈ B2, such that both B1− u+ v
and B2 − v + u are bases and

(w(B1)� w(B2))⊕ (w(B1 − u+ v)� w(B2 − v + u)) = w(B1 − u+ v)� w(B2 − v + u).

Remark 2.8. As in classical matroid theory, there are various equivalent ways of defining
a valuated matroid. Another way, discovered by Murota and Tamura [19] is via valuated
circuits. A circuit valuation is obtained by choosing a vector vC ∈ (R ∪ (−∞)/1)n for
each circuit C of M such that the following are fulfilled:

• C = {i ∈ [n]; (vC)i 6= −∞} for all circuits C.
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• Let C,C ′ be circuits and assume i ∈ C ∩ C ′, j ∈ C \ C ′. Choose representatives of
vC , vC′ such that (vC)i = (vC′)i. Then there exists a circuit D and a representative
of vD such that i /∈ D, (vD)j = (vC)j and vD ⊕ vC ⊕ vC′ = vC ⊕ vC′ .

The paper [19] shows that both axiom sets are cryptomorphic. More precisely, given a
valuation w : B → R on the bases, a circuit valuation can be defined in the following way:
Let C be a circuit. Then C is the fundamental circuit with respect to some basis B and
an element i /∈ B. We set

(vwC)j := w(B − j + i)− w(B),

where w(B′) = −∞, if B′ is not a basis. We will consider any valuated matroid (M,w)
to be equipped with this circuit valuation.

Definition 2.9. One can define a polyhedral structure on the set

B(M,w) :=

{
x ∈ Rn/1; max

i∈C
{xi + (vwC)i} is assumed at least twice ∀ circuits C

}
.

and assigning weight 1 to each maximal cell we obtain a tropical variety (a proof can be
found in [17, Theorem 4.4.5]), which we also denote by B(M,w). A tropical linear space
is a tropical variety of this form.

Remark 2.10. It turns out that we essentially only need to consider trivial valuations
(i.e. w ≡ 0) to prove our theorem, in which case we obtain a polyhedral fan, the matroidal
fan or Bergman fan of a matroid M :

B(M) := {x ∈ Rn/1; max
i∈C

xi is assumed at least twice for all circuits C of M}.

Note that for any valuation w on a matroid M , B(M) = rec(B(M,w)). The key fact that
will allow us to reduce the problem to matroidal fans will be the following:

Theorem 2.11. Let X be a tropical variety. Then the following are equivalent:

• X = B(M,w) for a valuated matroid (M,w).

• rec(X) = B(M).

This follows from the two facts that being a tropical linear space is equivalent to having
degree one [10, Theorem 6.5] and that a tropical variety and its recession fan have the
same degree (see for example the argument in the proof of [17, Theorem 4.4.5]).

It has been shown that B(M) has several possible representations as a polyhedral fan.
We will be working with the structure induced by the flats of M - this is the finest fan
structure of B(M) that usually occurs in the literature:
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Definition 2.12. For a set F ⊆ [n] we write vF := −eF = −
∑

i∈F ei.
Let F be the set of flats of M . For any chain C = (F1, . . . , Fd = E), where ∅ ( F1 (

· · · ( Fd = E and Fi ∈ F for all i, we define a polyhedral cone:

cone(C) := {
d−1∑
i=1

λivFi
; λ1, . . . , λd−1 > 0}.

If we go through all chains of flats in M , the corresponding cones obviously form a fan
and by [4] the support of this fan is B(M).

Remark 2.13. One can also retrieve the matroid from its Bergman fan. It is a well-known
fact that its set F of flats is {F ⊆ [n]; vF ∈ B(M)}. To see this, assume vF ∈ B(M). By
[9] this is the same as saying that the set of bases B of M such that |B ∩ F | is maximal
covers all of E, as these are the bases of minimal weight with respect to vF . But that
implies that F is a flat: If i /∈ F , there is a basis B containing i and having maximal
intersection with F , so rank(F + i) = |B ∩ (F + i)| = |B ∩ F |+ 1 = rank(F ) + 1.

The following has been known for long, but we include the proof here for completeness:

Proposition 2.14. Let (M,w) be a valuated matroid of rank r on n elements. Then
B(M,w) is tropically convex.

Proof. Let x, y ∈ B((M,w)) and λ, µ ∈ R. Let

z := λ� x⊕ µ� y = (max{xi + λ, yi + µ})i=1,...,n.

Let C ⊆ [n] be a circuit of M . We will denote the corresponding valuation by vC . In
that case maxi∈C{xi + (vC)i},maxi∈C{yi + (vC)i} are both assumed twice, i.e. there exist
i1 6= i2, j1 6= j2 such that

xC := max
i∈C
{xi + (vC)i} = xi1 + (vC)i1 = xi2 + (vC)i2

yC := max
i∈C
{yi + (vC)i} = yj1 + (vC)j1 = yj2 + (vC)j2

We will assume without restriction that yC+µ > xC+λ. Thus, zj1+(vC)j1 = zj2+(vC)j2 =
yC + µ. Let k ∈ C be arbitrary. Then

zk + (vC)k = max{xk + (vC)k + λ, yk + (vC)k + µ}
6 max{xC + λ, yC + µ}
= yC + µ = zj1 + (vC)j1 .

In particular, the maximum maxi∈C{zi + (vC)i} is assumed twice (at j1 and j2).
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3 Tropically convex complexes

Proposition 3.1. Let X be a polyhedral complex and assume |X| is tropically convex.
Then |rec(X)| is tropically convex as well.

Proof. Assume v, v′ ∈ |rec(X)|. We can reformulate this as the fact that there exist
p, p′ ∈ |X| such that p + R>0v, p

′ + R>0v
′ ⊆ |X|. For α > 0 we write qα := p + αv, q′α :=

p′ + αv′ and ∆α := q′α − qα, ν := v′ − v. It is easy to see that we can choose α large
enough such that part(∆α) remains constant and is a refinement of part(ν), by which we
mean that if νi < νj, this implies (∆α)i < (∆α)j. Assume we have fixed such an α and
that part(∆α) = (I1, . . . , Is). Now as in Remark 2.4 we see that the tropical convex hull
tconv{qα, q′α} consists of line segments connecting points

pαj := qα +

j∑
i=2

(∆α(Ii−1)−∆α(Ii))eFi−1
,

where Fi =
⋃
k6i Ik. Now let β > α. We calculate that for all j = 1, . . . , s we have

pβj − pαj = (qβ − qα) +

j∑
i=2

((∆β(Ii−1)−∆β(Ii))− (∆α(Ii−1)−∆α(Ii))) eFi−1

= (β − α)

(
v +

j∑
i=2

(ν(Ii−1)− ν(Ii)) eFi−1

)
︸ ︷︷ ︸

=:rj

.

Note that r1, . . . , rs are exactly the vertices of the line segments forming tconv{v, v′} (some
of them may be the same, as part(∆α) can be strictly finer than part(ν)). In particular,
since pβj = pαj + (β − α)rj ∈ |X| for any β > α, we see that rj lies in |rec(X)|. It is now
easy to see that in fact the line segments in between must also lie in |rec(X)|.

Lemma 3.2. Let X be a d-dimensional polyhedral complex such that |X| is tropically
convex. Assume that rec(X) = {rec(σ);σ ∈ X} is a fan. Then for each maximal cone ρ
of rec(X), there is exactly one maximal cell σ of X such that ρ = rec(σ).

Proof. Assume there are two maximal cells σ, σ′ of X such that ρ = rec(σ) = rec(σ′).
Pick any two points p ∈ σ, p′ ∈ σ′. For r ∈ ρ we write qr = p + r, q′r = p′ + r. As taking
the tropical convex hull commutes with translations, we see that

tconv{qr, q′r} = tconv{p, p′}+ r.

This implies that tconv{p, p′} + ρ ⊆ |X| . But as p − p′ /∈ Vσ = Vρ, there must be a line
segment l ⊆ tconv{p, p′}, whose slope does not lie in Vσ. Hence l+ρ is a (d+1)-dimensional
set contained in |X|, which is a contradiction to our assumption.

Proposition 3.3. Let X be a tropically convex polyhedral complex and p ∈ |X|. Then
StarX(p) is tropically convex as well.
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Proof. As tropical convexity is preserved under translation, we can assume p = 0. Let
v, v′ ∈ StarX(0). It is clear that for any α > 0, part(α(v′ − v)) does not change. Hence
tconv{αv, αv′} = αtconv{v, v′}. As v, v′ ∈ StarX(p), the left hand side is contained in
|X| for all α 6 1. This implies tconv{v, v′} ⊆ |StarX(p)|.

Definition 3.4. Let X be a polyhedral fan in Rn/1. We write

FX := {F ⊆ [n] : vF ∈ |X|}.

For any chain C = (F1, . . . , Fd = E) in FX , we will define cone(C) as in Definition 2.12.
Note that each such cone is unimodular and has dimension d− 1.

We then obtain a polyhedral fan, the chain fan of X:

ChX := {cone(C); C a chain in FX}.

In general this fan obviously need not be pure and can be empty.

Remark 3.5. A special case is X = Rn/1. Then ChX =: Chn is a subdivision of Rn/1
according to partitions, i.e. two elements lie in the interior of the same cone, if and only
if they have the same partition. In particular, if x ∈ Rn/1, then the minimal cone of Chn
containing x is d-dimensional if and only if het(x) = d + 1. Note that Chn can also be
defined as the quotient of the normal fan of the permutohedron or as the chains-of-flats
subdivision corresponding to the uniform matroid Un,n.

Lemma 3.6. Let X be a tropically convex polyhedral fan in Rn/1. Then the following
hold:

1. Assume dim(X) = d and x ∈ |X|. Then het(x) 6 d + 1. In particular, X is
contained in the d-dimensional skeleton of Chn.

2. FX is closed under intersections, i.e. if F, F ′ ∈ FX , then F ∩ F ′ ∈ FX .

3. If C is any chain in FX , then cone(C) ⊆ |X|.

Proof. 1. Fix a representative of x and assume that s := het(x) > d+1. Let part(x) =
I1∪· · ·∪Is as in Remark 2.4 and Fj :=

⋃
i6j Ii. The tropical line segment tconv{0, x}

consists of segments connecting the points 0 = p1, . . . , ps = x, where

pj =

j∑
i=2

(x(Ii−1)− x(Ii))eFi−1
.

We will show inductively that for k = 2, . . . , s − 1 there are continuous, concave,
piecewise affine linear functions εk : Rk−1 → R, such that εk is strictly positive on
(R>0)

k−1 and such that for k > 1 we have

Pk =

{
k∑
i=1

λieIi ;λi ∈ [0, εi(λ1, . . . , λi−1)] for all i > 1, λ1 > 0

}
⊆ |X| .
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Then Ps−1 is a polyhedron of dimension s− 1 > d in the fan X, which is a contra-
diction to our assumption that dimX = d.

For k = 1 we get P1 = {λ1eI1 ;λ1 > 0}. As p2 = (x(I1) − x(I2))eI1 ∈ X and X is
a fan, this is always contained in X. Now assume k > 1 and that we have found
ε2, . . . , εk−1. Let q =

∑k−1
i=1 λieIi ∈ Pk−1 and assume 0 < λi for all i. In particular,

q(Ii) > 0 for all i < k and q(Ii) = 0 for i > k. We now consider the tropical line
segment tconv{αq, pk+1}, where α > 0. By induction q ∈ |X| and since X is a fan,
so is αq. We conclude that tconv{αq, pk+1} ⊆ |X|. Let ∆ = pk+1 − αq. Note that
∆ has constant entries on each Ij (as both q and pk+1 do). More precisely, we have

∆(Ij) =


0, if j > k

x(Ik)− x(Ik+1), if j = k

x(Ij)− x(Ik+1)− αλj, if j < k.

Now, if we pick α sufficiently large, ∆ is maximal on entries in Ik: For j 6= k we
have

∆(Ik)−∆(Ij) =


x(Ik)− x(Ik+1) > 0, if j > k

x(Ik)− x(Ij)︸ ︷︷ ︸
<0

+α λj︸︷︷︸
>0

, if j < k

and the latter is always greater than zero if we pick

α > max
j<k

{
x(I1)− x(Ik+1)

λj

}
=: mk,λ.

In this case the first line segment of tconv{αq, pk+1}, going from αq to pk+1, has
slope eIk . Its length is dk := x(Ik)−x(Ik+1): Our choice of α implies that ∆(Ij) < 0
for all j < k.

In particular, {αq + λeIk ;λ ∈ [0, dk]} ⊆ |X|. But that implies that q + λeIk ∈ |X|,
whenever

0 6 λ 6 dk ·
1

mk,λ

= dk ·min
j<k

{
λj ·

1

x(I1)− x(Ik+1)

}
=: εk(λ1, . . . , λk−1).

As εk clearly fulfills all desired properties, the claim follows.

2. Follows directly from the fact that vF ⊕ vF ′ = vF∩F ′ .

3. Let C = (F1, . . . , Fl = E) be a chain in FX . An element of cone(C) is of the form
w =

∑l−1
i=1 λivFi

for some λi > 0. We define µj =
∑l−1

i=j+1 λj for j = 0, . . . , l − 1 and
claim that

w =
l−1⊕
j=1

(−µj)� (µ0 · vFj
),
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which by assumption is an element of |X|. Indeed, let k ∈ {1, . . . , n} and note that
µ0 > µ1 > . . . > µl−1 = 0. Then(

l−1⊕
j=1

(−µj)� (µ0 · vFj
)

)
k

= max
j=1,...,l−1

(
µ0 · (vFj

)k − µj
)

=

{
−µ0, if k ∈ F1

−µj(k),where j(k) := max{j : k /∈ Fj}, otherwise

= −
∑
i:k∈Fi

λi

= wk.

4 Tropical convexity and valuated matroids

By Proposition 2.14 we only need to prove that any tropically convex tropical variety is
supported on a tropical linear space. In fact, it will suffice to reduce to the case of fans:

Proposition 4.1. Let X be a tropical variety whose support is a tropically convex fan.
Then |X| = B(M) for a matroid M .

Our main theorem now follows from this:

Proof. (of Theorem 1.1) The “if” direction follows from Proposition 2.14. For the “only
if” direction, let X be a tropical variety with tropically convex support. By Propositions
3.3 and 4.1, StarX(p) is supported on a matroidal fan B(M(p)) at each p ∈ |X|. Since
any matroidal fan is irreducible [12, Lemma 2.4], we must have StarX(p) = kp ·B(M(p))
for some kp ∈ N. As |X| is tropically convex, it is also path-connected. This implies that
kp = kp′ =: k for all p, p′ ∈ |X|. We conclude that X has constant weight function ωX ≡ k
for some k ∈ N, so we can write it as X = k · Y , where |X| = |Y | and Y has constant
weight 1.

By Propositions 3.1 and 4.1, rec(X) is also supported on a matroidal fan and hence
of the form l ·B(M) for some l ∈ N and some matroid M . Using Lemma 3.2, we see that
rec(Y ) = B(M) (and in fact: k = l). By Theorem 2.11 we must have Y = B(M,w) for
some valuation w on M , so |X| = |Y | = |B(M,w)|, as claimed.

The general idea for proving Proposition 4.1 is to revert the procedure described in
Remark 2.13: We define M via its flats, which is the set FX of all sets whose incidence
vectors lie in |X|. We show that X is supported on the fan of chains of FX . Then it only
remains to show that FX actually fulfills the axioms required for a set of flats. Naturally,
the balancing condition plays a crucial role in the proofs of both statements.

Proposition 4.2. Let X be a tropical fan and assume |X| is tropically convex. Then

|X| = |ChX | .
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Proof. Let d := dimX and let X be a polyhedral structure of X. By Lemma 3.6,(1), |X|
is contained in the d-dimensional skeleton of Chn. By intersecting X with Chn, we can
now assume that each cone of X is contained in some d-dimensional cone(C), where C is
a chain of arbitrary subsets of [n].

The balancing condition of X now dictates that if ρ = cone(C) ∈ Chn contains a
maximal cone of X in its interior, all of ρ must be in |X|: Otherwise, it would contain a
codimension one face τ of X in its interior, such that there is one maximal cone σ > τ
with σ ⊆ ρ but no other maximal cone σ′ > τ is contained in ρ. Balancing implies that
at least one other maximal cone σ′ is adjacent to τ . By our previous argument, σ and σ′

both lie in d-dimensional cones of Chn. But these cones intersect only in their boundary.
This proves |X| ⊆ |ChX | and the converse follows from Lemma 3.6,(3).

Proof. (of Proposition 4.1)
Proposition 4.2 tells us that we can equip X with the polyhedral structure of ChX :

Balancing implies that all cones contained in a cone of ChX must have the same weight.
Hence it is sufficient to show that FX defines indeed a set of flats of a matroid. More
precisely, we have to show the following:

1. E ∈ FX .

2. If F, F ′ ∈ FX , then F ∩ F ′ ∈ FX .

3. Let F ∈ FX and assume F1, . . . , Fk are the minimal elements of FX \ {F} that
contain F . Then E \ F is the disjoint union of F1 \ F, . . . , Fk \ F .

The first statement is trivial and the second follows from Lemma 3.6, (2).
To prove the third axiom, let F ∈ FX and denote by F1, . . . , Fk the minimal elements

of FX containing it. Then (Fi \ F ) ∩ (Fj \ F ) = ∅ by minimality and the second axiom.

Hence we only have to prove that
⋃k
i=1 Fi = E. By Proposition 4.2 and the fact that

X is pure of some dimension d, every maximal chain in FX has the same length d + 1.
Let G ∈ FX and C = (F1, . . . , Fd+1 = E) a maximal chain in FX . We define the rank
of G to be rank(G) := i, if Fi = G. This is independent of the actual chain: Otherwise
we could combine two chains with G occurring at different positions to form a chain of
length greater than d+ 1.

We will now prove the last axiom by induction on c(F ) := d+1−rank(F ). If c(F ) = 1,
then k = 1 and F1 = E, so the statement is true. Now let c(F ) > 1 and j ∈ E \ F .
By induction, there exists an F ′ ∈ FX of rank rank(F ) + 2 and with F ⊆ F ′, such that
j ∈ F ′. We can now pick a chain

D = (G1, . . . , Gc(F ) = F,Gc(F )+2 = F ′, . . . , Gd+1 = E),

where rank(Gi) = i for all i (such a chain exists, as X is pure). Then cone(D) is a
codimension one cone. Using the fact that all chain cones are unimodular, the balancing
equation at cone(D) reads:

v :=
∑

G∈G(D)

wGvG ∈ Vcone(D),
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where G(D) := {G ∈ FX ;F ( G ( F ′} ⊆ {F1, . . . , Fk} and wG ∈ Z \ {0} denotes the
weight of the corresponding maximal cone.

As v ∈ Vcone(D), all entries {vi, i ∈ F ′ \ F} agree (this notion is obviously well-defined
in Rn/1). If we pick the obvious representative −

∑
i∈G ei ∈ Rn for each vG and use the

fact that for any Fs, Ft ∈ G(D) we have (Fs \ F ) ∩ (Ft \ F ) = ∅, then for i ∈ F ′ \ F we
have

vi =

{
−wG, if there is a G ∈ G(D) with i ∈ G
0, otherwise.

As X is pure, G(D) is not empty. But this implies that there must be an Fs ∈ G(D)
with j ∈ Fs.

5 Local-to-global tropical convexity

In classical convexity theory, there are various local-to-global principles. In this section,
we prove Theorem 1.2, a tropical analogue of a result proven by Tietze and Nakajima
[26, 20]. It states that any closed connected subset of Rn, which is locally convex, is
already convex. The main strategy of the proof follows a standard argument for classical
convexity - though there is some extra work involved due to the fact that Rn/1 is not
uniquely geodesic with its canonical metric (see Remark 5.3).

Definition 5.1. Let x ∈ Rn/1. We define the tropical norm of x to be

‖x‖trop := max{xi} −min{xi}.

We also fix the following notations:

Btrop
r (x) := {y ∈ Rn/1; ‖y − x‖trop 6 r},

∂Btrop
r (x) := {y ∈ Rn/1; ‖y − x‖trop = r},
Imin(x) := {i ∈ [n];xi minimal},
Imax(x) := {i ∈ [n];xi maximal}.

For a compact set S and a point x, we will also write

‖x− S‖trop := min{‖x− s‖trop; s ∈ S}.

The following all have easy and elementary proofs:

Lemma 5.2. 1. ‖·‖trop is twice the quotient norm of the maximum norm on Rn. In
particular, it defines a norm on the R-vector space Rn/1.

2. Let r > 0 and Pr,n be the cube in Rn with vertices reF , ∅ ⊆ F ⊆ [n]. Then Btrop
r (0)

in Rn/1 is the image of Pr,n under the quotient map.

3. Btrop
r (x) is a polytrope, i.e. convex and tropically convex.
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4. If x ∈ Rn/1 and tconv{0, x} consists of actual line segments connecting points
0 = p1, . . . , ps = x, then

‖x‖trop =
s−1∑
i=1

‖pi+1 − pi‖trop.

(1, 0, 1)

(0, 0, 1) (0, 1, 1)

(0, 1, 0)

(1, 1, 0)(1, 0, 0)

Figure 3: The unit sphere Btrop
1 (0) in R3/1. The picture is drawn in two dimensions by

setting the first coordinate to 0.

Remark 5.3. The tropical norm was already introduced in [6] to study tree metrics.
Joswig shows that Rn/1 is a geodesic space [15]: The tropical line segment between
two points is a geodesic with respect to the metric induced by ‖·‖trop. However, it is
not uniquely geodesic. There are generally various paths from x to y whose length is
‖x− y‖trop (see also Figure 4).

x

y

Figure 4: The set of points z with ‖x− z‖trop = ‖z−y‖trop = ‖x−y‖trop/2 is a polytrope.

Lemma 5.4. Let x, y, z ∈ Rn/1. Then for any point p ∈ tconv{x, y}, we have

Imax(p− z) ⊆ Imax(x− z) ∪ Imax(y − z).

Proof. Let j ∈ Imax(p − z) and assume j /∈ Imax(x − z). We know that we can write
y = x+

∑s
i=1 αieFi

, where αi > 0 and Fi ( Fi+1 for all i and each summand corresponds

to a vertex on the tropical line segment tconv{x, y}. Hence p = x+
∑k−1

i=1 αieFi
+βeFk

for
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some k 6 s and β 6 αk. Since pj − zj = (xj − zj) +
∑k−1

i=1 αi(eFi
)j + β(eFk

)j is maximal
and xj − zj is not maximal, we must have that j ∈ Fm for some m 6 k. In particular,
j ∈ Fl for all l > k, so yj − zj is still maximal.

Definition 5.5. Let X ⊆ Rn/1 and x, y ∈ X.

• We call X locally tropically convex, if for every x ∈ X there exists an ε > 0, such
that Btrop

ε (x) ∩X is tropically convex.

• A tropical path in X from x to y is an injective continuous map γ : [0, 1] → X,
whose image is a concatenation of tropical line segments leading from x to y. The
length l(γ) of γ is the length with respect to ‖·‖trop, i.e. if γ consists of tropical line
segments connecting x = x0, . . . , xk = y, then

l(γ) =
k∑
i=1

‖xi − xi−1‖trop.

• We define the distance of x and y in X to be

dX(x, y) := inf{l(γ); γ a tropical path from x to y.}.

Lemma 5.6. Let X ⊆ Rn/1 be locally tropically convex and x, y ∈ X. Assume there is a
point z ∈ X such that the following hold:

• dX(x, z) = dX(z, y) = dX(x, y)/2.

• ‖z − tconv{x, y}‖trop is minimal among all points fulfilling the first property.

• tconv{x, z}, tconv{y, z} ⊆ X.

Then z ∈ tconv{x, y}, so tconv{x, y} ⊆ X.

Proof. Assume z /∈ tconv{x, y}. We define F := Imax(x − z), F ′ := Imax(y − z). Then
eF , eF ′ are the outgoing slopes of the tropical line segments from z to x and y, respectively
(see also Figure 5 for an illustration).

Now choose ε > 0 small and let

z′ := (z + εeF )⊕ (z + εeF ′) = z + εeF∪F ′ .

By local tropical convexity, this lies in X for sufficiently small ε.
First of all, we see that z′ still fulfills the first property: Note that the concatenation

of tconv{x, z+ εeF} and tconv{z+ εeF , z
′} forms a tropical path in X from x to z′. Again

assuming ε to be sufficiently small and using that x 6= z, we get

dX(x, z′) 6 ‖x− (z + εeF )‖trop + ‖z′ − (z + εeF )‖trop
6 (‖x− z‖trop − ε) + ε

= ‖x− z‖trop = dX(x, z).
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Similarly, dX(y, z′) 6 dX(y, z). But as z was already a midpoint, this implies equality.
We now claim that ‖z′ − tconv{x, y}‖trop < ‖z − tconv{x, y}‖trop =: l, which is a

contradiction to our assumption. To see this, let

M := {p ∈ tconv{x, y}; ‖z − p‖trop = l}.

As M = tconv{x, y} ∩Btrop
l (z), it is tropically convex. We know by Lemma 5.4, that for

any point p in M , we have Imin(z − p) ⊆ F ∪ F ′. Also note that by assumption z /∈ M .
We will now prove that Imax(z − p) ∩ (F ∪ F ′) = ∅.

Assume M = {p} is only a point. Then moving from p along the tropical line segment
tconv{x, y} strictly increases the distance to z. Let G := Imax(x − p), G′ := Imax(y − p).
Then for small ε′ we must have

‖z − (p+ ε′eG)‖trop = ‖(z − p)− ε′eG‖trop > ‖z − p‖trop.

So if ∅ 6= Imax(z−p)∩F = Imax(z−p)∩Imax(x−z), then we must have G = Imax(z−p)∩F .
But then

‖z − (p+ ε′eG)‖trop 6 ‖z − p‖trop,
which is a contradiction. The same argument works for F ′ and G′, so we see that Imax(z−
p) ∩ (F ∪ F ′) = ∅.

If M is a tropical line segment, we can choose p such that tconv{x, y} is locally at p
a line with slope vG, G := Imax(x− p) and

‖z − (p± ε′eG)‖trop = ‖z − p‖trop.

But this is only possible if either Imin(z − p) ∪ Imax(z − p) ⊆ G or (Imin(z − p) ∪ Imax(z −
p))∩G = ∅. So if ∅ 6= Imax(z−p)∩F , we must again have G = Imax(z−p)∩F , so neither
of the above two possibilities would hold. Again, the same argument works for F ′.

In either case, we see that Imax(z− p)∩ (F ∪F ′) = ∅ and Imin(z− p) ⊆ (F ∪F ′). But
then

‖z′ − p‖trop = ‖(z − p) + εeF∪F ′‖trop < ‖z − p‖trop.
This contradicts our assumption. Hence we must have z ∈ tconv{x, y}.

Btrop
l (z)

x

y
z

eF

eF ′

z′ p

eG

eG′

Figure 5: Constructing a point closer to the tropical line segment using local tropical
convexity.
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Proof. (of Theorem 1.2) Let x, y ∈ X and set r := dX(x, y).
Since X is closed and locally tropically convex, there exists a midpoint, i.e. a point

z ∈ X such that

dX(x, z) = dX(y, z) =
1

2
r.

Note that the set of midpoints of x and y is a compact set. It is obviously closed and
must be a subset of Btrop

r/2 (x)∪Btrop
r/2 (y). Hence we can choose z to have minimal distance

to tconv{x, y}.
In this manner, we recursively construct points zi,n ∈ X with 1 6 n, 0 6 i 6 2n, such

that

• z0,n = x, zn,n = y and zi,n = z2i,n+1.

• z2i+1,n+1 is a midpoint of zi,n and zi+1,n and it has minimal distance to the tropical
line segment tconv{zi,n, zi+1,n}.

In particular, we have dX(zi,n, zi+1,n) = r/2n. Now we have

‖zi,n − x‖trop 6 dX(zi,n, x) 6 (i/2m)r 6 r

for all i and n, so zi,n ∈ Btrop
r (x)∩X =: B, which is a compact set. Hence we can choose

a global δ > 0 such that for all x ∈ B, the set Btrop
δ (x) ∩X is tropically convex.

By choosing n large enough, we can now assume that r/2n+1 < δ. Then for each i,
Btrop
δ (z2i+1,n+1) contains both zi,n and zi+1,n, so their tropical convex hull is contained in

X. Applying Lemma 5.6 inductively, we see that tconv{x, y} ⊆ X.

Corollary 5.7. Let X be a connected tropical variety in Rn/1, which is locally a multiple
of a matroidal fan, i.e. StarX(p) = kp · B(M(p)) for each p ∈ X, some kp ∈ Z and some
matroid M(p). Then X is supported on a tropical linear space.
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