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Abstract

The existence of apparently coincidental equalities (also called Wilf-equivalences)
between the enumeration sequences or generating functions of various hereditary
classes of combinatorial structures has attracted significant interest. We investigate
such coincidences among non-crossing matchings and a variety of other Catalan
structures including Dyck paths, 231-avoiding permutations and plane forests. In
particular we consider principal subclasses defined by not containing an occurrence
of a single given structure. An easily computed equivalence relation among struc-
tures is described such that if two structures are equivalent then the associated
principal subclasses have the same enumeration sequence. We give an asymptotic
estimate of the number of equivalence classes of this relation among structures of
size n and show that it is exponentially smaller than the nth Catalan number. In
other words these “coincidental” equalities are in fact very common among princi-
pal subclasses. Our results also allow us to prove in a unified and bijective manner
several known Wilf-equivalences from the literature.

1 Introduction

The Catalan numbers are renowned for their ubiquity in problems of combinatorial enu-
meration. A few of the many contexts in which they arise are: plane forests (counted
by number of nodes), non-crossing matchings or arch systems (counted by number of
matched pairs or arches), Dyck paths, and 231-avoiding permutations. Many others are
considered in the book [18] based on the “Catalan Addendum” [19]. The contexts men-
tioned above share the additional property – to be detailed in Section 2 – that each admits
a natural substructure relation and that there are bijections between them which preserve
that relationship. So, one can further consider those structures of each type which do not
contain some designated substructure(s). As part of a previous work (see an extended
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abstract [4], or [5]) the present authors considered certain coincidences of enumeration
(often called Wilf-equivalences) between such classes of Catalan structures avoiding a
given substructure (in our case, permutations avoiding 231 and π). Using a non-standard
bijection we were able to explain some of those coincidences. However, when we turned
to the more general question:

How many distinct enumeration sequences are there for classes of 231-avoiding
permutations defined by a single additional restriction?

we were struck by the difference between the computed numbers and any known general
equivalences. Specifically it seemed that there were many more such coincidences (and
so fewer enumeration sequences) than one might have expected. This phenomenon will
be explained in the current paper. We will show in Section 5 that although there are
Catn =

(
2n
n

)
/(n + 1) ∼ (1/

√
π)n−3/24n distinct classes of permutations avoiding 231 and

an additional permutation of size n these classes have asymptotically at most cn−3/2γn

distinct enumeration sequences where c ≈ 1.13 and γ ≈ 2.4975 (these are approximate
values only).

A particularly wide collection of such classes share generating functions derived from
the continued fraction representation of C(t) =

∑
Catnt

n, the generating function of the
Catalan numbers. Since C = 1/(1− tC) it follows that:

C =
1

1−
t

1−
t

1−
t

1− · · ·

This fraction can be truncated after n levels producing a sequence of generating functions:

C(0) = 1

C(n) =
1

1− t C(n−1) for n > 1

The functions C(n) enumerate many specific subclasses of the Catalan classes above –
for instance the 231-avoiding permutations that also avoid a descending permutation of
size n, or the Dyck paths of height at most n. Other examples can be found in [4, 16].
Previously these enumeration coincidences were understood on an analytic (or perhaps
more properly arithmetic) level only. We can explain them and many others bijectively –
among other things we can show, combining Propositions 13, 14 and 17:

The number of 231-avoiding permutations, π, of size n for which the generating
function of the class of permutations avoiding both 231 and π is C(n)(t) is the
nth Motzkin number.
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The proof of this fact also describes (at least in principle) bijections between any two such
classes. Furthermore, we show that for any other 231-avoiding permutation θ of size n
the generating function for 231 and θ-avoiding permutations is dominated (term by term
and eventually strictly) by C(n)(t).

The main tool in producing these results is a binary relation on Catalan structures
defined purely intrinsically by four very simple rules in Section 4. This relation induces
an equivalence relation ∼ on these Catalan structures whose equivalence classes are the
connected components of the binary relation. Remarkably, if A ∼ B then the collection of
structures not containing A has the same generating function as the collection of structures
not containing B so that one generating function may be associated with each equivalence
class of∼. For convenience in the description and proofs we will work mostly in the domain
of arch systems, but of course all the results translate to the other domains directly using
the natural bijections of Section 2. We have been able to verify that through size 15
(where ∼ has only 16,709 equivalence classes on the 9,694,845 Catalan structures) that
A and B are ∼-equivalent if and only if the corresponding generating functions are the
same. So we have:

Conjecture 1. The equivalence relation ∼ coincides with Wilf-equivalence.

In the final section we discuss this conjecture and further open problems.
In the next section we introduce our basic terminology and notation and consider in

more detail a particular quartet of Catalan structures: arch systems, Dyck paths, plane
forests, and 231-avoiding permutations. This is followed by some preparatory results
before we introduce the relation ∼ and prove its main property, namely that it refines
Wilf-equivalence in Theorem 7. We can represent the collection of all ∼-equivalence
classes, which we call cohorts, as a slight modification of the family of non-plane forests
and this also permits us to determine the number of cohorts in structures of size n both
through a functional equation or recurrence and asymptotically. We then consider further
relationships between the cohorts (more precisely, between the generating functions of the
corresponding avoidance classes) and the properties of the special main cohort mentioned
above – which is maximal in terms of the associated generating function. We also discuss
cardinalities of cohorts, asking in particular whether or not the main cohort is also the
largest in terms of cardinality. Finally we consider some open problems that arise from
this work.

2 A quartet of well-behaved Catalan structures

2.1 Arch systems, Dyck paths, plane forests, and 231-avoiding permutations

Among the most well-known Catalan structures are certainly the Dyck paths. A Dyck
path of semi-length n is a path in the positive quarter-plane taking steps u = (1, 1) and
d = (1,−1), starting at (0, 0) and ending at (2n, 0). Steps u and d of a Dyck path may
be paired by associating to each u step the first d step on its right at the same ordinate.
These pairs (u, d) may also be seen as pairs of opening and closing parentheses and under
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this correspondence Dyck paths correspond to parentheses words where parentheses are
properly matched. A subpath of a Dyck path is defined by the deletion of some pairs of
steps (u, d) (or equivalently of matched parentheses). The deletion here is intended as
a contraction of the segment of each deleted step into a point so that deleting k pairs
of steps in a Dyck path of semi-length n provides a Dyck path of semi-length n − k. In
contrast to [7] we require more of a subpath than that it simply occur as a subword over
the alphabet {u, d}. We also require that the “matched pairs” of u’s and d’s should be
the same in both paths.

Another natural way of representing proper parentheses words is as non-crossing
matchings or arch systems. These form a second family of Catalan structures and will be
essential in the presentation of our results. An arch system of size n is a set of n arches
connecting 2n points arranged along a baseline such that all arches are above the baseline
and no pair of arches cross. The left end of each arch encodes an opening parenthesis and
its right end the corresponding closing parenthesis. A subsystem of an arch system can
be obtained simply by deleting some of the original system’s arches.

We can concatenate arch systems A and B in the obvious way – just draw the arch
system B strictly to the right of A on the same baseline. The resulting arch system will
be denoted AB.

Definition 2. An atom is a non empty arch system that cannot be written as the con-
catenation of two non empty arch systems, i.e., one that has a single outermost arch.
Atoms will generally be denoted by lower case letters. The contents of an atom a are the
unique arch system, A, such that a is obtained by adding a single arch outside all of A
and we write a = A .

Since every non empty arch system is a unique concatenation of atoms we see imme-
diately that the generating function, A(t), for arch systems according to the number of
arches satisfies:

A(t) = 1 + t A(t) + (t A(t))2 + (t A(t))3 + · · ·

=
1

1− t A(t)

proving that – and this should be no surprise – arch systems are enumerated by the
Catalan numbers.

There is a bijection between arch systems with n arches and non-empty plane forests
with n nodes obtained simply by mapping each arch to a node in such a way that if one
arch lies within another then its node is a descendant of the other, and if it lies to the
left of another then its node does so too. Equivalently, describing this recursively: take
an arch system A, write it as a concatenation of atoms A = a1a2 · · · am and associate to
it a forest of m trees whose roots, ri, correspond to the outermost arches of the ai (and
are arranged from left to right for i from 1 through m) and such that the tree rooted at
ri is (up to the addition of the root ri) the forest of the contents of ai. This bijection also
preserves the “substructure” relationship provided that in the case of forests we maintain
ancestry in substructures (i.e., if a child, x, of a node, y, is deleted then all the children of x
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Figure 1: The Dyck path, arch system and plane forest corresponding to the 231-avoiding
permutation 41327658. Reading u steps (or arch beginnings) as push operations and
d steps (or arch ends) as pop operations on a stack the Dyck path (or arch system)
successfully sorts this permutation i.e., the output sequence would be 12345678.

remaining become children of y preserving their left to right order both among themselves
and with respect to their new siblings).

Finally, we can consider 231-avoiding permutations of {1, 2, . . . , n}. These are those
permutations π which, when written in one line notation, contain no subsequence bca with
a < b < c. Here the substructure relationship (known as the pattern relationship among
permutations) involves deleting some symbols and then relabeling the remaining ones to
form a permutation of {1, 2, . . . ,m} for some m < n while maintaining their relative
order (e.g., if we delete 2 from 31254 we obtain 2143). It is perhaps not immediately clear
that these are also in bijection with Dyck paths, arch systems or plane forests. However,
these permutations are precisely those that can be sorted by a single pass through a stack
[14] and we can form a Dyck path by adding a step u whenever pushing an element on
to the stack and a step d whenever popping one from the stack. Since the sequence of
push and pop operations to sort a permutation is easily seen to be unique and every
sequence of operations sorts some permutation this is clearly a bijection. Moreover, it
respects the substructure relationship since, when deleting an element, we just delete the
pair of matched steps, or equivalently the arch in the corresponding arch system which
corresponds to push and pop operations that affect that element. This bijection can also
be realized intrinsically. The n arches are labeled with the integers from 1 through n
according to the following rules: if two arches are nested then the outer arch has a greater
label than the inner one and if two arches are not nested the arch to the left has a lesser
label than the arch to the right. The permutation is then read by reading the labels of the
arches in order of their leftmost endpoints. This means that the left to right maxima of the
permutation (i.e., the elements that have no greater element to their left) correspond to
outermost arches and within them an arch system is constructed using the same principle
recursively on the following lesser elements. An example of these correspondences is given
in Figure 1.

With a slightly different view point the main idea of the above discussion can be
rephrased by stating that the four following posets are isomorphic: those of Dyck paths,
arch systems, plane forests and 231-avoiding permutations (where, in all four cases, the
order is that of (induced) substructure). In addition the bijections described above are
order-preserving.
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2.2 A note about other Catalan structures

Of course there are other classical combinatorial structures that are enumerated by the
Catalan numbers: plane binary trees, 321-avoiding permutations, or non-crossing parti-
tions, just to name a few. And of course there are also classical (although less canonical)
bijections between them and Dyck paths, plane forests or 231-avoiding permutations.
However, it is deliberate that we restrict our attention in this work to the quartet of
Catalan objects presented above. The reason is that the substructure relation on Dyck
paths, plane forests or 231-avoiding permutations does not translate naturally to the
contexts of binary trees, 321-avoiding permutations, nor non-crossing partitions. A con-
sequence of this is that the results we prove below for this particular quartet of Catalan
structures do not apply in other Catalan contexts.

In the case of binary trees, it is not even clear how to define a natural notion of
subtree induced by a subset of the vertices while preserving the binary condition. This
fact somehow explains why the link between 231-avoiding permutations and binary trees
with respect to pattern avoidance is not as natural as one might hope for – see [10, Section
6].

The situation is different for 321-avoiding permutations, or non-crossing partitions.
Indeed both have a natural notion of induced substructure but it does not mimic the
substructure order on Catalan structures in our quartet. Specifically, the corresponding
posets are not isomorphic to the Catalan poset that we are considering. This is shown
for instance on Figure 2 in the case of 321- and 231-avoiding permutations.

1

12 21

123 132 213 312 321

231-avoiding permutations

1

12 21

123 132 213 231 312

321-avoiding permutations

Figure 2: The first few levels of the posets for 231-avoiding permutations and 321-avoiding
permutations the order being that of pattern, i.e., (induced) substructure.

2.3 Excluding substructures in our quartet

Restricting our attention to our quartet of preferred Catalan structures we are interested
in considering the problem:

Given a single structure, A, what is the generating function of the collection
of structures that do not have A as a substructure?
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Going back to some examples discussed in the introduction note that Dyck paths of
height at most n corresponds to Dyck paths that do not have undn as a subpath. Under
the correspondences we have described these correspond to: arch systems that do not
have Nn = . . . . . . , the nested arch system with n arches, as a subsystem, plane
forests of depth at most n, and 231-avoiding permutations with no n(n−1) . . . 21 pattern.

Structures that do not have A as a substructure are said to avoid A and we will denote
the set (or class) of them by Av(A). If a structure does not avoid A it is said to involve
or contain A. In this paper we will only be considering the avoidance of a single structure
– but of course in general we could consider any collection of structures closed downwards
under the substructure relation.

Definition 3. The classes Av(A) and Av(B) are Wilf-equivalent, written Av(A) '
Av(B), if there is a bijection between them that preserves the size of each structure.
Equivalently, the generating functions FA of Av(A) and FB of Av(B) are equal.

When Av(A) and Av(B) are Wilf-equivalent it need not, and generally will not, be
the case that the classes Av(A) and Av(B) are isomorphic as posets. Sometimes par abus
de langage we may say that A and B are Wilf-equivalent when we mean that Av(A) and
Av(B) are. If A and B are of different sizes, then they cannot possibly be Wilf-equivalent
so effectively Wilf-equivalence is an equivalence relation on structures of size n for each
n. As such, the nth Catalan number is an upper bound for the number of its equivalence
classes there, but we shall see that this is far from the actual number of equivalence
classes.

3 Arch systems containing and avoiding subsystems

If an arch system X contains some arch system P then there is a leftmost occurrence of P
in X (which we often denote PL) by which we mean the occurrence of P whose rightmost
point (i.e. the point of X that corresponds to the final point of P in this occurrence) is as
far left as possible. If there are two such occurrences with the same rightmost point we
designate as PL the one whose second rightmost point is as far left as possible etc. There
is also a corresponding notion of rightmost occurrence.

One advantage of working with arch systems is that it is clear that when searching for
a substructure of X equal to some given arch system we may proceed in a greedy fashion.
That is:

Observation 4. Suppose that P , Q and X are arch systems and that PQ is a substructure
of X. Then, in witnessing this we may use the leftmost occurrence, PL, of P in X.

We will use this observation (and some obvious generalizations) repeatedly without
further comment. Note however that we do not suggest that X must factor into a part
containing P and a part containing Q. For example the system P has P as a
substructure but no such factorization.

For any arch system, A, let FA denote the generating function of Av(A). It is a result
of [15] (expressed in somewhat different terms of course) that FA is necessarily a rational
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function. In fact, given a factorization of A into atoms we can write down a system
of equations that allow for the recursive computation of FA (again, this is already done
in [15] and, in somewhat more general terms, in [2]). The following proposition simply
translates that result into the current context.

Proposition 5. Let A be an arch system, with A = a1a2 · · · am its factorization into
atoms, and a1 = A1 . Then the generating function of Av(A) is

FA = 1 + tFA1FA + t(Fa1 − FA1)Fa2...am + t

m∑
k=2

(Fa1...ak − Fa1...ak−1
)Fak...am .

In particular, FA is rational.

Fundamentally the first part of the proposition is proved simply by partitioning A-
avoiding arch systems according to “how much of A” can be found within the first arch
and the conclusion of the second part follows by an easy inductive argument.

4 A refinement of Wilf-equivalence

In this section we introduce an equivalence relation, ∼, on the collection of arch systems.
We will then establish that this relation refines Wilf-equivalence, i.e., that A ∼ B implies
Av(A) ' Av(B). So, without further ado:

Definition 6. The binary relation, ∼, on arch systems is the finest equivalence relation
that satisfies:

A ∼ B =⇒ A ∼ B (1)

a ∼ b =⇒ PaQ ∼ PbQ (2)

PabQ ∼ PbaQ (3)

a bc ∼ ab c. (4)

where A, B, P and Q denote arbitrary arch systems; and a, b and c denote arbitrary
atoms or empty arch systems. The equivalence classes of ∼ will be called cohorts.

Note that if A ∼ B then A and B have the same number of arches. Note also that
A ∼ B ⇔ A ∼ B since (non trivial) equivalences between atoms may only be produced
by rule (1).

The main result is:

Theorem 7. If A and B are arch systems and A ∼ B then Av(A) ' Av(B).

This will be proved by a series of arguments in the following subsections.
Interestingly, another equivalence relation (say, ≡) on Catalan structures has been

defined in a similar fashion by Rudolph [17]. She proves in this paper that two ≡-
equivalent 132-avoiding permutations π and τ are equipopular, that is: for any n, the total
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number of occurrences of π and τ in 132-avoiding permutations of size n are equal. In
other words, ≡ refines equipopularity, and the analogy with ∼ refining Wilf-equivalence is
clear. What is further interesting in the case of ≡, is that it coincides with equipopularity
as shown in [9]. As a consequence the number of equivalence classes for equipopularity
among permutations of size n is given by the number of partitions of n.

We give bijective proofs for all parts of Theorem 7 including some for cases where it is
also possible (and sometimes easier) to obtain the corresponding result by manipulation
of generating functions. We call proofs of the latter type analytic since they form a
large part of the field of analytic combinatorics, though we will not in general be making
use of any analytic properties of the corresponding generating functions. One reason to
provide bijective proofs is that they can frequently be refined to allow for term by term
comparisons between the generating functions for inequivalent cohorts while this is not
so easily accomplished when only analytic proofs are available. A second reason is that
these bijective proofs are needed for proving our claim of the introduction: that we are
able (at least in principle) to provide bijections between any two classes of permutations
Av(231, π) and Av(231, τ) for π and τ of size n whose generating function is C(n).

To prove Theorem 7 it is sufficient to show that its conclusion holds for each of the
four cases arising in Definition 6. The proof is therefore subdivided into such cases. For
compactness of notation we have found it convenient to denote functional application in
exponential form, i.e., the image of an arch system X under a map τ will be denoted Xτ .

4.1 Proof of Theorem 7

Proof of case (1): Av(A) ' Av(B) =⇒ Av( A ) ' Av( B ). Let A and B be given and
suppose that Av(A) ' Av(B). We may further assume that A and B are not empty or
the result holds trivially. Take σ to be any size-preserving bijection between Av(A) and
Av(B). Define a map τ on atoms x = X belonging to Av( A ) by xτ = Xσ . This is
possible since x ∈ Av( A ) if and only if X ∈ Av(A). Now extend τ to concatenations of
atoms in the obvious way, i.e., (x1x2 . . . xm)τ = xτ1x

τ
2 . . . x

τ
m. Since Av( A ) consists exactly

of arch systems which are concatenations of atoms whose contents belong to Av(A) (and
correspondingly Av( B ) consists exactly of arch systems which are concatenations of
atoms whose contents belong to Av(B)) τ : Av( A ) → Av( B ) is a size preserving
bijection.

Proof of case (2): Av(a) ' Av(b) =⇒ Av(PaQ) ' Av(PbQ). Let P and Q be arbitrary
arch systems and a and b be atoms such that a ∼ b. Assume that a and b are not empty
(or the result holds trivially) and let σ : Av(a) → Av(b) be a size preserving bijection.
We will define a size preserving bijection τ : Av(PaQ)→ Av(PbQ).

Suppose that X ∈ Av(PaQ). If X ∈ Av(PQ) we define Xτ = X. Otherwise take the
leftmost copy, PL, of P in X and the rightmost copy, QR, of Q. The arches that begin
before the end of PL but end after it, and those that end after the beginning of QR but
begin before it divide the segment between the end of PL and the beginning of QR into
intervals. This is illustrated in Figure 3. Since a is an atom, any occurrence of a between
the end of PL and the beginning of QR would have to be entirely contained in one of the
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PL QR

I1 I2 I3 I4

Figure 3: The situation arising in the proof of case (2). In an arch system X involving
PQ but avoiding PaQ the leftmost copy of P , denoted PL, and the rightmost copy of Q,
denoted QR are designated. Arches with one endpoint inside and one endpoint outside
the interval between PL and QR create a sequence of subintervals (I1 through I4 here) that
must avoid a. To produce a PbQ avoiding arch system, a bijection mapping a-avoiding
systems to b-avoiding systems is applied to the Ii and the remainder of the system is left
unchanged.

intervals. So, each of these intervals contains an arch system that avoids a and conversely,
if we are given an arch system with this property, it avoids PaQ. Define Xτ by applying
σ to each of the intervals while retaining the structure of X up to the end of PL and from
the beginning of QR (including the arches that define the intervals). It is immediate to
check that this defines a bijection from Av(PaQ) to Av(PbQ).

Proof of case (3): Av(PabQ) ' Av(PbaQ). The claim is trivial when a or b is empty. For
the non-trivial case let a and b be non empty arbitrary atoms and P and Q arbitrary arch
systems. We wish to construct a bijection τ : Av(PabQ)→ Av(PbaQ). It will be helpful
in what follows for the reader to refer to Figure 4. As in the previous case consider an
arch system X. If X avoids PaQ then define Xτ = X. Otherwise take PL to be the
leftmost P , aL the leftmost atom involving a following PL and QR the rightmost Q in
X. Furthermore, denote by C the contents of aL. As in the previous proof the interval
between PL and QR is subdivided by those arches that have only one endpoint in this
interval, say there are i (resp. j) such arches with only their right (resp. left) endpoint
between PL and QR. But now also one of those intervals (the one containing aL) is further
subdivided before and after aL by aL itself and any arches nested over aL. Denote by
k the number of such arches (including the outermost arch of aL). All the designated
subintervals to the left of aL must avoid a (since aL was leftmost) while those to the right
of it must avoid b (since X avoids PabQ). To define Xτ simply reverse the order of these
subintervals (keeping the arch systems within them fixed i.e., the contents of a subinterval
are not changed only its position between PL and QR). The structure of the arch system
outside these intervals is unchanged, that is: the arch system before PL and after QR is
not modified and there are still k arches on top of C and i (resp. j) arches with only
their right (resp. left) endpoint between PL and QR. In the resulting arch system Xτ , PL
and QR are still the leftmost copies of P and the rightmost copies of Q respectively (since
nothing before the end of PL or after the start of QR has been changed). Between these,
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PL aL QR

A1 A2A3A4A5 C B1B2 B3 B4 B5 B6

X

≡

i = 2 j = 3k = 3
unclosed arches unopened archesarches over C

PL QRA1 A2A3A4A5 C B1B2 B3 B4 B5 B6

Reverse order of subintervals

i = 2 j = 3k = 3
unclosed arches unopened archesarches over C

PL QRB6 B5B4B3B2B1 C A5A4 A3 A2 A1

≡
PL aL QR

B6 B5B4B3B2B1 C A5A4 A3 A2 A1

Xτ

Figure 4: A typical situation arising in the proof of case (3). In the top diagram the
original PabQ avoiding arch system is shown. Each interval Ai must avoid a and each
interval Bj must avoid b. In the bottom diagram its image is shown – the atom aL and
the nest of arches around it are moved to the right to allow copies of the Bj to be placed
on the left and copies of Ai on the right as seen in the middle two diagrams.

the atom aL has become the rightmost atom involving a. Since all of the intervals before
it but following PL avoid b, Xτ avoids PbaQ. Moreover it is clear that we can reverse this
construction, so τ : Av(PabQ)→ Av(PbaQ) is a size preserving bijection as claimed.

In the proof of case (3) we have chosen to reverse A1 . . . Ai+kCB1 . . . Bj+k in Xτ . But
many variants of τ could have been defined by choosing any other permutation of the A`,
Bm and C that respects that all the Bm are to the left of C and all the A` to its right.

Turning now to case (4) we will give an analytic proof below but here give a bijective
proof – albeit one that it is not nearly as concrete as the previous cases. This proof, with
minor variations, is due to Jonathan Bloom (the present authors had previously only been
able to prove the result bijectively for the case where one of a, b or c was empty.)

We first need a preparatory lemma which is a very simple combinatorial fact in general
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(basically: from a bijection from X to Y and a second one from a subset of X to a subset
of Y we can construct one that agrees with the second one on the designated subset.)

Lemma 8. Let a, b and c be atoms (or empty). There is a bijection τ : Av(abc)→ Av(bac)
which has the property that for all A ∈ Av(abc) \ Av(ab), Aτ ∈ Av(bac) \ Av(ba). That
is, if X avoids abc but involves ab, then Xτ avoids bac but involves ba.

Proof. Let σ : Av(abc) → Av(bac) be any bijection (such as the one constructed in the
proof of the preceding case) and let ν : Av(ba) → Av(ab) be any bijection. Note that
Av(ab) ⊆ Av(abc) and Av(ba) ⊆ Av(bac). For X ∈ Av(ab) define Xτ = Xν−1

. For
X ∈ Av(abc) \ Av(ab) define a sequence Y1 = Xσ. Now if Yi is defined and belongs to
Av(ba) define Yi+1 = Y νσ

i . Since σ and ν were bijections, it must be the case that for
some i, Yi ∈ Av(bac) \ Av(ba) and we define Xτ = Yi.

Proof of case (4): Av(a bc ) ' Av(b ac ). Let X ∈ Av(a bc ) be given. We wish to define
its image Xτ , and will assume that Y τ has already been defined for all Y of smaller size
with the property that if Y contains the pattern ab, then Y τ contains the pattern ba. We
consider two cases depending on whether X is in Av(abc) or in Av(a bc ) \ Av(abc).

If X ∈ Av(abc), then we can bijectively map X to Xτ ∈ Av(bac) using the preceding
lemma.

Now assume X ∈ Av(a bc ) \ Av(abc) and let CR be the rightmost occurrence of c
in X (in particular, the arch on the outside of CR matches the arch on the outside of
the atom c). Consider the intervals defined by the nest of arches (if any) over CR . The
only condition on the intervals to the right of CR is that they avoid c. We label these
Ci. Now assume there are n + m + 1 intervals to the left of CR . These intervals come
in three flavors. The n leftmost intervals Ai avoid a, the (n+ 1)st interval Z contains a,
and the remaining m intervals Bi must avoid b. So we have

X = A1 . . . Am Z B1 . . . Bn CR Cm+n+1 . . . Cm+2 Cm+1 Cm . . . C1.

As X is assumed to contain the pattern abc, it is now clear from the above decompo-
sition that Z must actually contain the pattern ab. By our induction hypothesis we know
that Zτ contains the pattern ba. Lastly, we define

Xτ = B1 . . . Bn Z
τ A1 . . . Am CR Cm+n+1 . . . Cn+2 Cn+1 Cn . . . C1.

Observe that Xτ contains the pattern bac, so that Xτ ∈ Av(b ac ) \ Av(bac) as needed.
In particular, as X contains the pattern ab we also have that Xτ contains ba. That τ is
a bijection in this case follows by induction and the fact that CR is still the rightmost
occurrence of c in Xτ .

As in the proof of case (3) we can again define many variants of the bijection τ :
Av(a bc ) → Av(b ac ) by replacing in Xτ the sequence y1, y2 . . . by any permutation of
the yi, where y = A,B or C.
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4.2 An analytic proof

The bijection provided in case (4) above is a little unsatisfactory since it is in part implicit,
based on bijections from Av(abc) to Av(bac) and Av(ab) to Av(ba). In the case where
one of a, b or c is empty, it can be made explicit. Here, however, we consider an analytic
proof of the same result.

Proof of case (4). Let a = A , b = B and c = C . For an arch system X let FX be
the generating function of Av(X). Using the general technique described in Proposition
5 we can compute the generating function Fa bc in terms of FA, FB and FC .

Fa bc = 1 + tFAFa bc + t(Fa bc − FA)F bc

F bc = 1 + tFbcF bc

Fbc = 1 + tFBFbc + t(Fbc − FB)Fc

Fc = 1 + tFCFc

Solving the system1 for Fa bc in terms of FA, FB and FC gives a terrible mess which
is nevertheless symmetric in FA, FB and FC . In fact the solution is tidier if written in
terms of Fa, Fb and Fc (recall that Fa = 1/(1− tFA), i.e., FA = (Fa − 1)/(tFa) etc.):

Fa bc =
1− t(FaFb + FbFc + FcFa − FaFbFc)

1− t(Fa + Fb + Fc − FaFbFc)

Accordingly, Fa bc is symmetric in Fa, Fb and Fc. This proves that Av(a bc ) '
Av(c ab ). Now use case (3) to reach the desired conclusion.

We have seen in the above proof that, for any atom a = A , Fa completely determines
FA and conversely via the relations Fa = 1/(1 − tFA) and FA = (Fa − 1)/(tFa). This
simple fact also provides an analytic proof that:

Observation 9. For any atoms a = A and b = B , Av(A) ' Av(B) if and only if
Av(a) ' Av(b).

5 The combinatorial class of cohorts

From Theorem 7 it follows that the number of different generating functions of classes
of arch systems avoiding an arch system with n arches (or equivalently the number of
Wilf-equivalence classes of permutation classes Av(231, π) for π of size n avoiding 231) is
at most the number of cohorts (i.e., equivalence classes of ∼) for n element structures.
In Conjecture 1 we suggest that these numbers may actually be equal explaining our
interest in the enumeration of cohorts. In any case the number of cohorts certainly
provides an upper bound for the number of such Wilf-equivalence classes. Towards the
goal of enumerating cohorts we first associate with each cohort a single structure and

1Or rather, having Mathematica solve it for you.
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then enumerate such structures. These structures that represent cohorts may be seen as
choosing one representative in the set of all structures (e.g., all arch systems) that form
a cohort. Alternatively – and it is rather this point of view we choose – we can think of
the structure representing a cohort as an abstract structure from which all structures in
the cohort may be recovered.

5.1 The structure of a cohort

It is easiest to describe the single (abstract) structure associated with a cohort in the
context of plane forests. In fact our first result shows that we could just as easily drop
the qualifier ‘plane’:

Proposition 10. If two plane forests A and B are isomorphic as non-plane forests, then
A ∼ B.

Proof. This follows directly by induction from rules (1), (2) and (3). Specifically, suppose
that plane forests A and B which are isomorphic as non-plane forests are given and that
the result holds for all plane forests of lesser size. If A and B are trees (corresponding to
atoms in the context of arch systems), then the result applies to the forests obtained by
deleting their roots (i.e., the contents of these atoms) and hence by rule (1) to A and B.
Otherwise, each of A and B is the concatenation of the same number of trees (i.e. atoms),
say m. First, using rule (3) we can find A′ ∼ A so that A′ = a1a2 . . . am, B = b1b2 . . . bm,
and each tree ai is isomorphic to bi. Then using rule (2) we are done.

We note that this proposition already establishes that there are no more cohorts for
n element structures than there are rooted non-plane forest with n nodes, or equivalently
rooted non-plane trees with n + 1 nodes. As the asymptotic enumeration of these (see
for example [11, Proposition VII.5 and note VII.21]) has exponential growth rate approx-
imately 2.956 we already see exponentially fewer Wilf-equivalence classes than there are
structures of size n. However, the final rule provides a further reduction.

Let us focus our attention on ∼-equivalences between atoms (or trees) only that may

be derived from rule (4). In this context an equivalent form of this rule is a bc ∼ ab c .
So in terms of trees rule (4) allows us to rotate subtrees at binary branches. Furthermore,
it also allows unary nodes to be lifted through binary ones (from the case when c is

empty) via a b ∼ ab . Finally, in the case where b and c are empty, rule (4) rewrites
as a ∼ a , allowing to transform a leaf hanging below a binary node x into a unary
node between x and its other child. These operations on trees are shown in Figure 5.

Consider any subtree of a plane forest that has a binary root. In this tree replace
any subtree whose root has three or more children by a symbol representing that atom
(and temporarily call such atoms, large). As a result we obtain a tree, T , all of whose
internal nodes have one or two children and where the leaves are either large atoms or
bare nodes. As shown in Figure 5(ii) and (iii) we can lift the unary nodes and bare nodes
through the binary ones to obtain a ∼-equivalent tree T ′ with a chain of unary nodes
running from the root connected to a full binary tree all of whose leaves are labeled with
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Ta

Tb Tc

∼

Ta Tb

Tc
;

Ta

Tb
∼

Ta Tb

∼
Ta

Tb

;
Ta

∼

Ta

∼
Ta

(i) (ii) (iii)

Figure 5: ∼-equivalences on trees that are derived from rule (4).

large atoms. Finally, we can rotate the large atoms (see Figure 5(i)), permute them (from
PabQ ∼ PbaQ), and replace them by equivalent large atoms (from a ∼ b⇒ PaQ ∼ PbQ).
So we see that two such full binary trees (with leaves that are large atoms) are∼-equivalent
if and only if they have the same number of nodes (and hence leaves) and there is a
bijection between their sets of leaves such that items in correspondence in these sets are
∼-equivalent large atoms. More properly, note that these “sets” of leaves are actually
multisets since repetitions are allowed.

For ease of explanation, in the rest of this section we will focus on atomic cohorts,
i.e., cohorts that contain at least one atom (or tree). Note that this is not an actual
restriction: atomic cohorts for (n+ 1) element structures are in bijective correspondence
with cohorts for n element structures, since A ∼ B ⇔ A ∼ B .

The above discussion leads to a recursive description of (representatives for) atomic
cohorts. Consider the recursive specification of a variety, A, of non-plane tree-like struc-
tures:

A = •+ • × A+ B +
∑
k>2

4k−1 ×MSetk(B)

B = • ×MSet>3(A),

(5)

where • refers to a class with a single object of size 1, × denotes ordered pairs,4m denotes
a class with a single object of size m, + denotes disjoint union, and MSet denotes the
multiset construction, with the subscript denoting the number of elements in the multiset.
Equivalently, as non-plane trees:

A = •+
A

+ B +
∑
k>2

4k−1

B . . . B
k children

and B =
A . . . A

> 3 children

Proposition 11. There is a size-preserving bijection between atomic cohorts and A.

Proof. This is basically simply a direct translation of the preceding discussion, where
we have unraveled all possible equivalences following from rules (1) to (4). The class B
represents “large atoms”. Then the elements of A are described in order as: a single node,
a root with one child, a large atom, or an atom corresponding to a full binary tree with
k leaves labeled by large atoms.

We shall use this description to refine the asymptotic enumeration of the number of
cohorts.
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5.2 The number of cohorts

The first 15 values of the number of cohorts of arch systems of size n > 1 are given by:

1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1 478, 3 290, 7 390, 16 709, . . .

Furthermore, for each cohort of size up to 15, we can produce a representative arch
system X for that cohort and check that the generating functions of the classes Av(X)
are all distinct. With Theorem 7 this ensures that the above also shows the first few
terms of the sequence enumerating Wilf-equivalence classes of classes Av(A) for A of size
n. Notice that more terms of the enumeration sequence of cohorts may be obtained from
Equation (6) below – the next few terms are 38 027, 86 993, 200 018, 461 847, 1 070 675.
From Theorem 7 these are upper bounds on the number of Wilf-equivalence classes of
Av(A) but we cannot ensure that they are equal (although we suspect they are). In the
following, we therefore study the asymptotic behavior of the number of cohorts of arch
systems of size n.

As already noted, the number of cohorts of arch systems of size n equals the number
of atomic cohorts of arch systems of size n+ 1. Here we can make profitable use of (5) to
provide a functional equation for the generating function A(t) =

∑
ant

n counting atomic
cohorts which is susceptible to asymptotic analysis using the techniques of Section VII.5
of [11], or with minor variations of the twenty steps of [12]. Specifically we obtain:

A = t+ tA+
1

t
M>2(tB) +B

B = tM>3(A)
(6)

where

M(Z) = exp

(
Z(t)

1
+
Z(t2)

2
+
Z(t3)

3
+
Z(t4)

4
+ . . .

)
M>2(Z) = M(Z)− 1− Z(t)

M>3(Z) = M(Z)− 1− Z(t)− 1

2

(
Z(t)2 + Z(t2)

)
are operators representing the generating functions that enumerate multisets of objects
(and respectively such multisets of size at least 2 or 3) counted by the generating function
Z.

Clearly the power series A dominates t+ tM>3(A) term by term and so an is at least
the number of non-plane trees with n nodes in which each internal node has at least 3
children. This trivial estimate suffices to show that the radius of convergence, ρA, of A is
less than 1 (and hence so is that of B). Now observe that in general

M(Z) = exp(Z) exp(W ) (7)

where

W =
Z(t2)

2
+
Z(t3)

3
+
Z(t4)

4
+ . . .
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If the radius of convergence of Z is r < 1, then the radius of convergence of W is easily
seen to be at least

√
r > r. This suggests that when analyzing the radius of convergence

of generating functions defined by functional equations involving the M operator we treat
these as implicit definitions of the desired function in terms of “known” analytic functions
which, while related to the function we are analyzing, are analytic in a disc around the
origin strictly containing the radius of convergence of the function we seek. Effectively
these are the first five steps of [12]. So to proceed we view (6) as an implicit definition of
A in terms of these “known” functions after having eliminated B entirely and noting also
that the terms corresponding to Z(t2) in any occurrences of M>3 should also be treated
as “known”. Thus we aim to find the radius of convergence of the solution to F (t, y) = 0
where:

F (t, y) = −y + t+ ty + tM>3(y) +M>2(t
2M>3(y))/t

In this expression we replace the subscripted M operators by their definitions above and
then on the remaining occurrences of M use the form given by (7) to replace the definition
of F by one involving y, t and some functions of t known to be analytic on the domain
of interest. Continuing with the steps of [12] as we know already that the solution y is a
generating function we can find its radius of convergence ρA by determining the smallest
positive root of the equation Fy(t, y) = 0 (where Fy is the derivative of F with respect to
y).

Of course in finding this root we first take the derivative formally and then replace
y and all the related “known” functions by polynomial approximations of some degree,
denoted n, obtained by using equation (6) as a recurrence for generating terms of A. The
results of these approximations for various values of n are as follows:

n ρA 1/ρA
50 0.4069 2.4575
100 0.4083 2.4763
200 0.4022 2.4863
400 0.4014 2.4916
800 0.4009 2.4943

These values agree well with the numerical estimates obtained by simply looking at com-
puted coefficients of A and fitting an asymptotic expression of the form an ∼ αn−3/2γn.
Note however that the apparent accuracy is significantly less than that given in examples
VII.21 and VII.22 of [11]. We suspect that this arises due to the iterated application of
M and the correction terms that are part of the definitions of M>2 and M>3. Another
possible reason is that we also truncate the “known” parts at degree n. Approximate
values of α and γ are α ≈ 0.454 and γ ≈ 2.4975.

To justify the asymptotic form used above thereby reaching step 14 of the 20 steps
of [12] (which is where we intend to stop) requires checking that Fyy(ρA, A(ρA)) 6= 0.
Fortunately, we can compute Fyy modulo some “known” functions (in the usual sense) as:

Fyy = ep(y)t
(
t2(1 + y − eyc1(t))2 + eyc1(t)− 1

)
, where

p(y) = (−1/2)t2(2 + 2y + y2 + c2(t)− 2eyc3(t)) + c4(t),
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with c2, c3 and c4 analytic and real at ρA. Further c1(t) = expw(t) where w(t) is a series
with positive coefficients. So eyc1 − 1 > 0 at t = ρA and thus Fyy(ρA, A(ρA)) 6= 0.

Recall that atomic cohorts of arch systems with n + 1 arches are in bijection with
cohorts of arch systems with n arches so to obtain the general asymptotics we multiply
the constant term from the atomic asymptotics by γ yielding:

Theorem 12. The number of cohorts of arch systems with n arches behaves asymptotically
as cn−3/2γn for some positive constants c and γ.

As noted previously, we estimate that c ≈ 1.13 and γ ≈ 2.4975 and could certainly
establish rigorously based on the previous arguments that 2.49 < γ < 2.5.

6 The main cohort, and comparing generating functions associ-
ated with cohorts

We start this section by defining a special cohort of arch systems of any size n and studying
its properties. We specifically deal with the generating function of any avoidance class
Av(X) for an arch system X in this cohort and with the number of arch systems contained
in this cohort. This will complete the proofs of our claims of the introduction. This special
cohort is called the main cohort.

We shall see that the main cohort is the largest in terms of generating function asso-
ciated to an avoidance class. This follows from the results reported in this section about
the comparison between cohorts (of structures of the same size) with respect to the (com-
mon) generating functions of the classes Av(X) they represent. Specifically, we provide
some rules on arch systems that allow the comparison between the generating functions
of their cohorts and consequently show that the main cohort is largest in the sense that
its generating function dominates that of any other cohort.

6.1 The main cohort

Following the discussion of Subsection 5.1, for each n there is a unique cohort of structures
of size n that arises from all unary-binary plane forests (i.e., no large atoms are involved) –
by definition such forests consist of at most two trees which are themselves unary-binary
trees. We call this the main cohort for structures of size n and denote it by Mn. A
representative of this cohort is the system Nn of n nested arches whose corresponding
forest is a chain of n nodes. But from its description in terms of forests it is clear that
the main cohort also includes all the arch systems of size n that can be built using the
following operations, and only these: concatenate two atoms that belong toMj andMk

for j + k = n, or place an arch over an arch system of Mn−1. For the same reason, if we
let Mn denote the number of atoms (i.e., trees) of size n in the cohortMn, it is immediate
that the generating function M(t) =

∑
Mnt

n satisfies:

M = t+ tM + tM2.
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This identifies (Mn) as the sequence of Motzkin numbers (offset by 1):

Mn+1 = Motzn =

bn/2c∑
k=0

(
n

2k

)
Catk.

Recalling that the number of atoms in the main cohort for structures of size n + 1 is
equal to the total number of arch systems in the main cohort for structures of size n, we
obtain:

Proposition 13. The size of the main cohort for structures of size n is the n-th Motzkin
number: |Mn| = Motzn.

Furthermore, to Mn corresponds one generating function: that of any Av(X) for
X ∈ Mn. Taking X = Nn, where Nn is the nest of n arches, these generating functions
C(n) are easily seen to satisfy

C(n) =
1

1− tC(n−1) (with initial condition C(0) = 1),

giving that:

Proposition 14. For any structure X in Mn, the generating function of Av(X) is C(n).

This justifies the remarks concerning the sequence of generating functions (C(n)) made
in the introduction.

Note that Proposition 14 provides an alternative proof of the enumeration of classes
Av(231, π) (by C(n) for n = |π|) for several families of patterns π that appear in the
literature: namely decreasing patterns and patterns of the form 1n(n−1) . . . 32 [8], reverse
of 2-layered permutations and 132-avoiding wedge-patterns of [15,16], and patterns λk ⊕
λn−k of [4]. Indeed, all such patterns belong to the main cohort of the corresponding size.

For any pair of structures A and B in Mn we can find a chain of ∼-equivalences
between them. Therefore, the bijective proofs of Subsection 4.1 provide a bijection be-
tween Av(A) and Av(B). A special case of this statement answers a question raised
in [16] about the description of a bijection between Av(132, π) and Av(132, τ), for π any
2-layered pattern and τ any 132-avoiding wedge-pattern.

The name main cohort has been chosen because, as already announced, this cohort is
the largest for the generating function associated to its avoidance classes. We prove below
that C(n) dominates (term by term) the generating function FX of Av(X) for any arch
system X of size n. Moreover, unless X ∈Mn, eventually C(n) dominates FX strictly.

We suspect that the main cohort might also be the largest in an other sense, namely
in terms of how many elements a cohort of structures of a given size can contain. We shall
discuss the question of maximality of the main cohort in terms of cardinality in Section 7
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6.2 Comparing avoidance classes between cohorts

One (maybe the most important) purpose of this subsection is to prove that the main
cohort is the largest in terms of the generating function associated with Av(X), for X in
this cohort. This claim is proved as a consequence of more general statements, that allow
the comparison of such generating functions associated with various cohorts.

Let us start by introducing some notation. For any cohort C, and any A and B in C,
we know from Theorem 7 that Av(A) and Av(B) have the same generating function. We
may therefore associate this generating function with C and, when doing so, we denote it
FC. For two cohorts C and D, with generating functions FC =

∑
cnt

n and FD =
∑
dnt

n,
we write C 6 D when for all n, cn 6 dn. We also write C < D when C 6 D and there
exists n0 such that for all n > n0 cn < dn. Finally, for any arch system A, we denote by
CA the cohort containing A, that is to say the equivalence class of A for ∼.

Variations on the bijective proofs of cases (1), (2) and case (4) of Theorem 7 allow
us to provide some recursive rules for the comparison of cohorts CA for this order 6 of
comparison of their generating functions.

Proposition 15. For any arch systems A and B, if CA 6 CB then C A 6 C B , and if
CA < CB then C A < C B .

Proof. To prove that C A 6 C B (resp. C A < C B ) we should compare (term by term)
the enumeration sequences of Av( A ) and Av( B ) proving that the latter is weakly
(resp. eventually strictly) larger. To do that it is enough to give a size-preserving injection
(resp. size-preserving injection which fails to be surjective in any size from some n0) from
Av( A ) to Av( B ) given one from Av(A) to Av(B). This follows immediately from
the same arguments used in the proof of case (1) of Theorem 7, essentially by replacing
“bijection” wherever it occurs by “injection” (resp. “injection which is not surjective in
any size from some n′0” – observe that n0 = n′0 + 1).

Proposition 16. For any arch system A and any atom b, if CA 6 Cb then CPAQ 6 CPbQ,
and unless A = a is an atom such that a ∼ b, CPAQ < CPbQ. Moreover, if CA < Cb then
CPAQ < CPbQ.

Proof. To prove CPAQ 6 CPbQ we describe a size-preserving injection from Av(PAQ) to
Av(PbQ) based on one from Av(A) to Av(b).

With the same decomposition used in the proof of case (2) of Theorem 7 we see that,
given an injection from Av(A) to Av(b), an injection from Av(PAQ) to Av(PbQ) can be
constructed. This uses the fact that if a concatenation I1I2 . . . Ik of arch systems avoids
A, then each arch system Ii must avoid A.

If CA < Cb, this injection cannot possibly be a bijection (except for the first few sizes
n 6 some n0). Indeed, it is easy to construct elements of any size n+|P |+|Q| of Av(PbQ)
that do not lie in its image from elements of Av(b) of size n that do not lie in the image of
the original injection. In fact, for this injection to be a bijection, we need two conditions.
The first one is that a concatenation of arch systems should avoid A if and only if each
arch system in this sequence avoids A: this happens exactly when A is an atom. The

the electronic journal of combinatorics 22(4) (2015), #P4.45 20



second condition is that the injection from Av(A) to Av(b) needs to be a bijection, i.e.,
that A ∼ b.

Propositions 15 and 16 are enough to prove that the main cohorts Mn = CNn are
the largest in the sense that their generating functions FMn eventually dominate the
generating functions of any other cohort of arch systems of size n. Recall that Nn is the
arch system consisting of n nested arches.

Proposition 17. For every arch system A of size n, either A is in the cohort of Nn or
CA < CNn.

Proof. The proof is by induction. The base case (n = 1) is clear. So assume that n > 2
and that the statement holds for all n′ < n. Consider an arch system A of size n. Either
A = X or A = Xa where a is an atom and X a non empty arch system.

In the first case, by induction, we know that exactly one of the following holds:

• X is in the cohort of Nn−1; and then A is in the cohort of Nn by rule (1).

• CX < CNn−1 ; but then Proposition 15 ensures that CA < CNn .

In the second case, denoting the size of X by j, we know that either X is in the cohort
of Nj or CX < CNj

.
Assume first that X ∼ Nj. If X is an atom, then Xa ∼ Nja by rule (2). Now either

a ∼ Nn−j, in which case Nja ∼ NjNn−j ∼ Nn so that A = Xa is in the cohort of Nn;
or Ca < CNn−j

, and Proposition 16 ensures that CA = CXa < CXNn−j
6 CNjNn−j

(using
Proposition 16 again, since CX 6 CNj

by induction). We conclude using CNjNn−j
= CNn .

If X is not an atom, we deduce from X ∼ Nj that CX 6 CNj
and Proposition 16

(applied twice) and induction ensure that CXa < CNja 6 CNjNn−j
= CNn .

The last case is CX < CNj
, in which case Proposition 16 gives CXa < CNja 6 CNn (as

before).

Finally, the bijective proof of the specialization of case (4) of Theorem 7 (where one
of a, b or c is empty) can also be adapted to the comparison of cohorts.

Proposition 18. For any arch system A, and any arch system b which is an atom or
empty, CA b 6 C bA . Moreover, unless A is an atom, CA b < C bA .

The arguments are very similar to the above, and we do not give them here as we
have not been explicit about the nature of the bijection for that specialized case (and the
result does not apply to the full case.)

7 Cardinalities of cohorts: some hints about extremal cases

Many questions may be asked about cohorts. In Section 5 we have described them as a
combinatorial class and obtained results on their enumeration most importantly asymptot-
ically. Section 6 has addressed the comparison between cohorts in terms of the generating
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function of their corresponding avoidance classes. But cohorts may be compared with
respect to other criteria, the most natural one being their cardinalities. In the following,
we give preliminary results (and open questions) regarding the cardinalities of cohorts.
We focus on extremal cases, namely on candidates to being the cohort with maximal
cardinality (among cohorts of structures of a given size) and on singleton cohorts.

7.1 Is the main cohort the largest?

We have seen in Subsection 6.1 that the main cohort Mn for arch systems of size n (of
which a representative is the system Nn of n nested arches) contains Motzn arch systems.
Recall that Motzkin numbers grow exponentially like 3n.

As far as we can observe on the data we have, the main cohort is always (and by far)
the one with largest cardinality among all cohorts of structures of a given size. And it is
tempting to formulate the conjecture that this generalizes to any size, i.e., that for every
positive integer n > 3 the size of Mn is greater than the size of any other cohort of arch
systems of size n. If this would hold, the main cohort would then be the largest according
to two criteria: cardinality, and generating function of the corresponding avoidance class.

In favor of this conjecture, notice that the main cohort is constructed using the smallest
building blocks, i.e., any other cohort must involve somehow one or more atoms consisting
of at least four arches (such as ). Our attempts to formalize this idea into a proof
that the main cohort is the one with largest cardinality have however been unsuccessful.

We are now inclined to believe that cohorts that are larger than the main cohort may
exist even if this does not happen before a very large value of n. We have tried the route
that consists in building such a cohort for very large n using our asymptotic estimate
of the number of cohorts. Even if we were not successful in this direction as well the
method we have tried seems worthy of being described. The idea is to try and build an
arch system A = a1a2 . . . ak of size n whose cohort contains αn elements, for some α > 3.
To maximize the cardinality of the cohort of A, the ai would be atoms taken in distinct
cohorts of the same size s, these cohorts being the k largest cohorts of size-s structures,
in terms of their cardinality. Assuming that there exist constants b and c such that there
are at least bs cohorts of cardinality at least cs among structures of size s, with bc > 3,
we would be able to prove that the main cohort of structures of size n is not the largest,
at least for sufficiently large n.

Several factors contribute to making the cardinality of a cohort large. One is minimiz-
ing the size of the atoms used in building a representative of this cohort and in this regard
the main cohort seems a good candidate to being a large cohort. Another is permuting
atoms that belong to different cohorts a feature that does not arise in the main cohort. It
is hard to foresee how these two factors interplay so we will not state any bold conjecture
but simply ask the question: is the main cohort Mn the one with largest cardinality
among all cohorts of structures of size n?
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7.2 Singleton cohorts

At the other end of the chain we consider the cohorts that contain one single arch system.
Modulo Conjecture 1 these correspond to the only arch systems A that can be recognized
directly from the generating function of Av(A).

Proposition 19. The cohort of a (non empty) arch system A is a singleton if and only
if:

• A = bk where k > 3 and b is an atom which is the only atom in its cohort2 or

• A = a2 where a is an atom whose contents are some bk as in the first condition or

• A is an atom whose contents are either empty or some bk as in the first condition.

Moreover the atoms which are the only atoms in their cohort are: and the atoms whose
(non empty) contents belong to a singleton cohort.

Proof. Suppose first that an arch system A is a concatenation of two or more atoms. For
such arch systems rule (3) would yield more than one element in A’s cohort unless these
atoms were all identical. Further rule (2) would do likewise if that atom were not the only
atom in its cohort.

On the other hand if these conditions are met and A is a concatenation of at least
three atoms then rules (1) and (4) cannot be applied so such A are indeed arch systems
whose cohort is a singleton.

If the cohort of A = a2 is a singleton and a = X then clearly the cohort of X must
be a singleton (else rule (1) would apply). Furthermore, X must be the concatenation
of at least three atoms, or else rule (4) could be applied in A. Conversely, if X satisfies
these conditions then none of the rules can be applied to yield any other element of A’s
cohort.

If A = X is an atom that forms a singleton cohort, then its contents X (if not
empty) must belong to a singleton cohort (else rule (1) would apply). X cannot be an

atom since Y ∼ Y (from rule (4) with c = Y and a and b empty). Similarly, X
cannot be the concatenation of two atoms, since ab = a b (from rule (4) with c empty).
So X must satisfy the first condition. Conversely if the contents X of A do satisfy this
condition then the cohort of A will be a singleton: indeed, the only rules allowing one to
find a ∼-equivalent of an atom are rule (1) and the special cases of rule (4) – which do
not apply here since X is the concatenation of at least three atoms.

If an atom is the only atom in its cohort, then obviously its contents are either empty
or belong to a singleton cohort. Conversely, consider an atom that is either or X
where the cohort of X is a singleton. Certainly, is the only atom in its cohort (which is
indeed a singleton here). We claim that for any arch system X whose cohort is a singleton,
X is the only atom in its cohort. Such X satisfies one of the conditions of Proposition 19.
If X = bk as in the first condition, then none of the rules (1) to (4) apply to X – note

2 Note that this condition is less restrictive than the cohort of b being a singleton.
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that here the cohort of X is actually a singleton from the third condition. If X = a2 as
in the second condition, then only special cases of rule (4) apply to X = aa , producing
two ∼-equivalent to X , namely a a and a a . If X = Y is an atom as in the third

condition, then only special cases of rule (4) apply to X = Y producing two (one if
Y is empty) ∼-equivalent to X , namely Y and Y . In all cases, we observe that
X is indeed the only atom in its cohort.

We may wonder how many singleton cohorts there are. In order to translate the condi-
tions of Proposition 19 into recurrences allowing to count singleton cohorts we introduce
several auxiliary functions: S1(n) counts the atomic singleton cohorts, S2(n) counts the
singleton cohorts of the form a2, and S>3(n) counts the singleton cohorts of the form bk

for k > 3. Also A(n) counts the number of cohorts that contain a single atom. Then we
obtain as recursive conditions:

S1(n) = S>3(n− 1),

S2(n) =

{
0 n odd
S>3(n/2− 1) n even

,

S>3(n) =
∑

k>3,k|n

A(n/k),

A(n) = S1(n− 1) + S2(n− 1) + S>3(n− 1).

These together with appropriate boundary conditions determine all the functions and
hence the total number S(n) of singleton cohorts, S(n) = S1(n) + S2(n) + S>3(n). Note
that the actual recurrences really just involve S>3 and A as follows:

S>3(n) =
∑

k>3,k|n

A(n/k),

A(n) =

{
S>3(n− 1) + S>3(n− 2) + S>3((n− 3)/2) n odd
S>3(n− 1) + S>3(n− 2) n even

.

It might be possible to derive from the above some information on the “average”
behavior of S(n), the number of singleton cohorts of n-arch systems. But this would
likely involve tricky computations with number theoretic arguments, that we leave aside
for the moment.

8 Conclusions and open problems

8.1 Conjectures and questions left open

Several questions are left open in this work. An important one is certainly to provide a
completely explicit bijective proof of our main result (Theorem 7), that is: providing an
explicit bijection for case 4 of this theorem. Even a sensible combinatorial explanation of
the rather tidy expression for Fa bc in terms of Fa, Fb and Fc would represent progress in
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this direction. Another problem is to prove or disprove that the main cohort is the largest
in terms of number of elements it contains.

But the most intriguing problem is certainly to prove a converse statement to our main
theorem: that not only does ∼ refine Wilf-equivalence but also coincides with it. This is
stated as Conjecture 1 at the beginning of our paper, and we offer a stronger version of
this conjecture, by way of conclusion.

Conjecture 20. For any two arch systems A and B, both with n arches, either A and B
are in the same cohort (i.e. A ∼ B), or the enumeration sequences of Av(A) and Av(B)
differ at the latest at size 2n− 2.

We have been able to check that this stronger conjecture holds up to arch systems A
and B of size 15. We further know that the size 2n− 2 is the smallest one for which such
a conjecture could be true. Indeed, we have identified families of arch systems An and Bn

of any size n > 4 such that the enumeration sequences of Av(An) and Av(Bn) coincide
up to size 2n− 3 but differ at 2n− 2. These are described below.

Let k denote the concatenation of k empty arches. Now, for any n > 4, set Cn =
n−4 , An = Cn , and Bn = Cn . We claim that there is a size preserving

bijection between Av(An) and Av(Bn) restricted to arch systems with at most 2n − 3
arches, but that there are more arch systems of size 2n− 2 avoiding An than Bn.

Observe that An = bA and Bn = A b for b = Cn and A = . So the proof of
Proposition 18 provides an injection ϕ from Av(Bn) to Av(An). It is relatively easy to
see that ϕ is actually a bijection when restricted to arch systems with at most 2n − 3
arches. This essentially amounts to examining where these at most 2n− 3 arches can be
in arch systems containing Cn but avoiding An. It is also not hard to see that the arch
system Cn Cn of size 2n− 2 avoids An but is not in the image of ϕ.

8.2 Extensions of our work in the Catalan world(s)

So far, we have studied Wilf-equivalences among classes of the form Av(231, π). Equiv-
alently, these classes are described as subposets (also called order ideals) defined by the
avoidance of one substructure in the Catalan poset of 231-avoiding permutations (or
Dyck paths, or plane forests, or arch systems). A natural continuation is then to consider
such subposets defined by the avoidance of several substructures, starting with classes
Av(231, π, τ).

Because of symmetries, we don’t expect to find as many different enumeration se-
quences for classes of the form Av(231, π, τ) as Catn ×Catm, where n = |π| and m = |τ |.
The naive upper bound on the number of Wilf-equivalence classes in this case is rather the
number of symmetry classes of avoidance classes Av(231, π, τ). For small sizes of π and
τ , Table 1 shows some experimental data comparing these upper bounds with what we
suspect is the actual number of Wilf-equivalence classes. These estimations are actually
lower bounds, based on experimental data only: fixing n and m, they count the number
of different sequences (|Avk(231, π, τ)|)16k6N for some fixed value of N (at least 15 in our
experiments). In support of our guess that these lower bounds are actually tight, let us
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mention that we have chosen N great enough so that a stabilization of the number of
different sequences occur. Namely, for any choice of n and m in Table 1, the number of
different sequences (|Avk(231, π, τ)|)16k6K is the same for K = N − 2, N − 1 and N .

n m Number of symmetry classes Estimated number of Wilf-classes
3 3 7 3
3 4 25 7
3 5 43 10
3 6 82 16
4 4 55 16
4 5 257 65
5 5 461 166

Table 1: Number of Wilf-equivalence classes of avoidance classes of the form Av(231, π, τ)
where n = |π| and m = |τ |: the naive upper bound, and an estimation of the actual value,
obtained from data up to permutations of size 15 or more.

There is of course also the question of whether our binary relation ∼ could be used to
explain Wilf-equivalences between classes of the form Av(231, π, τ). It should be noticed
that π ∼ π′ and τ ∼ τ ′ is not a sufficient condition for Av(231, π, τ) and Av(231, π′, τ ′) to
be Wilf-equivalent. For instance, although 4321 ∼ 4312, the classes Av(231, 4123, 4321)
and Av(231, 4123, 4312) are not enumerated by the same sequence. However, we sus-
pect that a stronger condition on π, π′, τ and τ ′ could guarantee that Av(231, π, τ) and
Av(231, π′, τ ′) are Wilf-equivalent. Informally, this condition would state that π ∼ π′,
τ ∼ τ ′ and that the sequence of ∼-equivalence to go from π to π′ also allows to go from
τ to τ ′. This condition is still to be expressed properly, but we can illustrate it by a
(very simple) example: taking π = 41235, π′ = 15234, τ = 43215 and τ ′ = 15432, the
equivalences π ∼ π′ and τ ∼ τ ′ both follow by rule (3), permuting atoms of size 4 and 1,
and the enumerations of Av(231, π, τ) and Av(231, π′, τ ′) agree up to size 17.

While staying in the Catalan world, examining enumeration of non-principal subclasses
of Av(231) as explained above is not the only question to investigate. Indeed, as explained
in Subsection 2.2, other families of Catalan objects have a natural substructure order,
which give rise to posets that are different from the one of Av(231). In these posets,
the problem of classifying Wilf-equivalences between principal (resp. general) subposets
– defined by the avoidance of one (resp. several) substructures – is as natural as in the
case of Av(231).

In particular consider the poset associated with Av(321). Preliminary experiments
on classes Av(321, π) have shown that it seems possible to define some rules in the same
flavor as those defining ∼ in such a way that if π and τ are equivalent for those new rules
then Av(321, π) and Av(321, τ) are Wilf-equivalent. Our investigations on this topic are
just at the beginning and should be continued in future work. As in the case of Av(231),
we can hope for a set of rules that captures Wilf-equivalence completely (parallel to
Conjecture 1), and for an asymptotic enumeration of equivalence classes for the analogue
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of ∼ in this context (parallel to Theorem 12). Again we expect a collapse in comparison
with the Catalan numbers but which we believe will be less dramatic than in the Av(231)
case.

8.3 Further extensions

To the best of our knowledge, this work is the first global approach to the study of
Wilf-equivalences, a popular topic of research in the field of permutation patterns from
its early days until now – and arguably so in the wider context of hereditary classes
of combinatorial structures. It is performed in the context of Catalan structures, and
more precisely in that of permutations avoiding 231 and another pattern π – which we
could call principal subclasses of Av(231). We believe that similar investigations aiming
at classifying all Wilf-equivalences between principal subclasses of (well-behaved) permu-
tation classes should be carried out. One promising example being considered by the
first author, Cheyne Homberger and Jay Pantone is the class of separable permutations,
Av(2413, 3142). This comment is motivated in part by the results of [3] which provide
a partial parallel of Proposition 5 and those of [6] extending the work of [9, 17] to this
context, but more generally because the separable permutations permit several other
“well-structured” representations.

We can even hope to extend our ideas further, to a partial classification of Wilf-
equivalences between principal permutation classes, i.e., classes of permutations defined
by the avoidance of a single pattern. The framework of matchings with excluded sub-
matchings, as defined in [13], could provide a good tool for that. Matchings are similar to
arch systems, but arches are allowed to cross. Namely, a matching of size n is a set of n
arches connecting 2n points arranged along a baseline, with all arches above the baseline.
Obviously, our families Av(A) of arch systems avoiding a given arch system A can be
seen as matchings with excluded sub-matchings: namely, those avoiding and A. But
(principal) permutation classes Av(π) can also be represented as matchings with excluded
sub-matchings. Indeed, permutations are in immediate correspondence with matchings
having all their arches opened before any arch is closed, or equivalently with matchings
avoiding . Under this correspondence, a permutation class Av(π) is simply the class
of matchings avoiding and the matching encoding π. If it were possible to adapt
our work to such cases, and in particular to provide an upper bound on the asymptotic
number of Wilf-equivalence classes of principal permutation classes, this would be a major
achievement in the field.

More directly, the first author and Jonathan Bloom have recently considered further
Wilf-equivalences that arise from arch systems with the addition of a new singleton object
(which could be thought of as an arch whose endpoints coincide), or where the notion
of avoidance is with respect to the analogous concept to factor order in words (where
the present paper concerns the concept analogous to subword order). These results will
appear in a future paper.
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