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Abstract

This paper completes the project of constructing combinatorial models (called
frameworks) for the exchange graph and g-vector fan associated to any exchange
matrix B whose Cartan companion is of finite or affine type, using the combinatorics
and geometry of Coxeter-sortable elements and Cambrian lattices/fans. Specifically,
we construct a framework in the unique non-acyclic affine case, the cyclically ori-
ented n-cycle. In the acyclic affine case, a framework was constructed by combining
a copy of the Cambrian fan for B with an antipodal copy of the Cambrian fan
for −B. In this paper, we extend this “doubled Cambrian fan” construction to the
oriented n-cycle, using a more general notion of sortable elements for quivers with
cycles.

1 Introduction

The close connection between exchange matrices and Cartan matrices leads naturally to
the construction of combinatorial models for cluster algebras in terms of the root systems
and Coxeter groups. Such models have appeared, for example, in [3, 4, 13, 16]. This
paper completes a project, begun in [16, 17], to construct explicit combinatorial models
for the principal coefficients cluster algebra A•(B) for every B whose Cartan companion
Cart(B) of finite or affine type. The key ingredients throughout the project are; (1) the
notion of a framework for B; and (2) the combinatorics and geometry of sortable
elements . These two ideas are enough, in [16], to produce combinatorial models, called
Cambrian frameworks , for A•(B) when Cart(B) is of finite type. When Cart(B) is
of affine type, another idea is needed: (3) doubling the Cambrian framework. This third
idea was applied, in [17], to produce a doubled Cambrian framework that serves as a
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combinatorial model for acyclic exchange matrices B such that Cart(B) is of affine type.
There is one infinite family of non-acyclic exchange matrices B such that Cart(B) is of
affine type: the oriented n-cycles. In this paper, we use the notion of sortable elements
for quivers with cycles [15] and a variant of the doubling idea to construct a combinatorial
model for A•(B) when B is an oriented cycle.

For the remainder of this introduction, we briefly elaborate on these three ideas, with
the goal of putting the present work into context, and then state the main results of this
paper and some of their consequences for cluster algebras.

The Cartan companion of B is the matrix A = Cart(B) with entries aij = −|bij|
for i 6= j, and aii = 2. The information contained in B is equivalent to the Cartan matrix
Cart(B) and an orientation Ω of the diagram of Cart(B). The orientation Ω is obtained
by directing i← j if bij > 0. We say that B is acyclic if Ω has no directed cycles.

A framework is a labeled graph, which, under certain conditions, is isomorphic to the
exchange graph of A•(B) and from which one can read off combinatorial data such as the
c-vectors, exchange matrices, g-vector fan and exchange graph. Specifically, each vertex v
of the framework is labeled with a set of vectors that encode the c-vectors. The labels on
v define a cone Cone(v) whose rays encode the g-vectors. One of the conditions required
for a framework to model the exchange graph and g-vector fan is that it be complete. A
framework that is not complete models only part of the exchange graph and g-vector fan.

In [16], we built on work in [10, 13, 14] to construct a Cambrian framework for any
acyclic B. Given a Coxeter group W , choosing an acyclic orientation of the Coxeter
diagram of W is equivalent to choosing a Coxeter element c in W . The c-sortable elements
are certain elements of W , characterized in terms of the combinatorics of reduced words,
or in terms of inversion sets. The c-Cambrian framework Cambc, as a graph, is the Hasse
diagram of the restriction of the weak order to c-sortable elements. The labels in the
c-Cambrian framework are certain roots that can be read off from the canonical reduced
words (c-sorting words) for c-sortable elements. For each c-sortable element v, we write
Conec(v) rather than Cone(v) to emphasize the dependence on c. The fan whose maximal
cones are Conec(v) for all vertices v of the c-Cambrian framework is called the c-Cambrian
fan.

The c-Cambrian framework is complete when W is a finite Coxeter group, but other-
wise it is not complete. The obstruction to completeness is that, for a sortable element
v, the cone Conec(v) contains the cone vD (the image of the fundamental chamber D
under the element v). In particular, each cone Conec(v) meets the interior of the Tits
cone

⋃
w∈W wD. However, in infinite type, the g-vector fan has cones that don’t meet the

interior of the Tits cone. Thus we cannot expect the Cambrian construction to describe
the entire g-vector fan when Cart(B) is of infinite type.

We now describe a strategy, introduced in [17], to escape the Tits cone when Cart(B)
is of affine type. In finite type, the c-Cambrian fan and the c−1-Cambrian fan are related
by the antipodal map. (See [11, Proposition 1.3], [17, Corollary 3.25], [17, Remark 3.26],
and [12, Proposition 7.1].) In affine type, this suggests the following strategy: Take the
graphs Cambc and Cambc−1 . If v is a vertex of Cambc and v′ is a vertex of Cambc−1

such that Conec(v) = −Conec−1(v′), then glue v to v′, to form a graph DCambc. Since

the electronic journal of combinatorics 22(4) (2015), #P4.46 2



Conec(v) = −Conec−1(v′) if and only if the labels on v′ are the negatives of the labels on
v, the combined graph can be labeled consistently to form a framework and an associated
fan, the doubled c-Cambrian framework and doubled c-Cambrian fan. The doubled c-
Cambrian fan covers all the points of the Tits cone and the antipodal Tits cone. When
A is of affine type, the Tits cone is essentially a halfspace, so the doubled c-Cambrian fan
covers all of space except for part of the boundary of the Tits cone. We obtain, when B
is acyclic and Cart(B) is of affine type, a complete framework for B.

Most affine Coxeter diagrams are trees, so all of their orientations are acyclic. The
exception is the Coxeter group Ãn−1, whose Coxeter diagram is an n-cycle and can thus
be oriented cyclically. In this paper, we analyze the case of the cyclically oriented n-cycle.
In [15], we explained how to define sortable elements for any orientation of a Coxeter
diagram, with cycles or not, and the basic idea for the oriented cycle is the same as for
the acyclic affine case: glue together two antipodal combinatorial structures, each built
on sortable elements.

The lack of acyclicity complicates matters, however. In the non-acyclic case, the
combinatorics of sortable elements does not provide enough labels to define simplicial
cones Cone(v). Thus many of the cones Cone(v) are defined by fewer than n inequalities
(in an n-dimensional vector space). In particular, the cones do not combine to form a
fan, and there is no Cambrian framework covering the Tits cone. We solve this problem
by taking another view of how to double the Cambrian fan. In the affine acyclic case,
we can describe the glueing of vertices in a different manner: A c-sortable v in Cambc is
glued to a c−1-sortable v′ in Cambc−1 if and only if Conec(v)∩∂Tits(A) = −Conec−1(v′)∩
∂Tits(A). Applying the same gluing criterion for the oriented cycle, several surprising
things happen: the combined vertices all have exactly n labels (the combined label sets of
the two identified vertices); the glued graph with combined label sets forms a framework;
and the labels define a complete simplicial fan (which is therefore the g-vector fan).

There is an alternate approach to the cluster algebra defined by the oriented n-cycle.
This cluster algebra is of finite type Dn so, if one is willing to change the base seed, one
can study the cluster algebra of the cyclically oriented n-cycle using type D combinatorics.
In this paper we will not do this. Rather, we work with the combinatorics of the affine
Coxeter group Ãn−1, thus preserving the rotational symmetry and making the oriented
n-cycle our base seed.

We conclude this introduction with a more detailed summary of the main results and
their consequences. Let Ω be the cyclically oriented n-cycle, considered as a quiver. Let
B be the corresponding B-matrix. So Cart(B) is of affine type Ãn−1. We will also refer
to B itself as the oriented n-cycle.

We construct a regular graph DCambΩ and a labeling DCΩ such that:

Theorem 1.1. (DCambΩ,DCΩ) is a complete, descending, exact, well-connected, polyhe-
dral, simply connected framework.

The main significance of Theorem 1.1 is in its consequences for the combinatorics of
the principal-coefficients cluster algebra A•(B) associated to B. In particular, the graph
DCambΩ is isomorphic to the exchange graph of A•(B), and the exchange matrices, c-
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vectors, g-vectors, and the g-vector fan can be read off from (DCambΩ,DCΩ). We now
explain these consequences in greater detail, assuming the most basic definitions and facts
about cluster algebras as found, for example, in [5]. For an exposition in the context of
frameworks, see [16, Section 3].

We use the set I(v) of edges incident to v as an indexing set both for labels on v and for
the associated cluster variables. The labeling DCΩ associates to each vertex v of DCambΩ

a set DCΩ(v) = {DCΩ(v, e) : e ∈ I(v)} of vectors that form a basis for the root lattice.
We write ConeΩ(v) for

⋂
β∈DCΩ(v) {x ∈ V ∗ : 〈x, β〉 > 0}. We also write RΩ(v) for the basis

of the weight space that is dual to DCΩ(v) and write RΩ(v, e) for the vector in RΩ(v)
that is dual to DCΩ(v). The symbol ω stands for the bilinear form defined by B. The
following corollary of Theorem 1.1 follows from [16, Theorem 3.25], [16, Theorem 3.26],
and [16, Corollary 4.6].

Corollary 1.2. There exists a graph isomorphism v 7→ Seed(v) = (B̃v, Xv) from DCambΩ

to the principal coefficients exchange graph Ex•(B), where B is the oriented n-cycle. If v
is a vertex of DCambΩ, then:

1. The exchange matrix Bv = [bvef ]e,f∈I(v) associated to Seed(v) is given by

bvef = ω(DCΩ(v, e), DCΩ(v, f)).

2. For each e ∈ I(v), the c-vector cve is C(v, e).

3. If Xv = (xve : e ∈ I(v)) is the cluster in Seed(v), then for each e ∈ I(v), the g-vector
gve = g(xve) is R(v, e).

Furthermore, the g-vector cone of Seed(v) is ConeΩ(v), so that the map v 7→ ConeΩ(v) is
an isomorphism from DCambΩ to the dual graph of the fan defined by g-vectors of clusters
in A•(B).

Many of the standard conjectures for cluster algebras are collected in [16, Section 3.3].
These include, among others, the following assertions: the sign-coherence and basis prop-
erties hold for g-vectors; the g-vectors define a fan; each c-vector has a sign; and a seed is
determined by its c-vectors. Most of the standard conjectures are now theorems in light
of [6]. The construction of the framework (DCambΩ,DCΩ) establishes them in the case
of the oriented cycle.

Corollary 1.3. If B is the oriented n-cycle, then Conjectures 3.9–3.20 from [16] all hold
for B.

Corollary 1.3 follows from Theorem 1.1, using Theorems [16, Theorem 4.1], [16, The-
orem 4.2], [16, Corollary 4.4], and [16, Corollary 4.6]. In the case of [16, Conjecture 3.19],
we must replace B by −B in our construction; see the paragraph after the statement of
[16, Conjecture 3.19].

Sections 2 through 5 provide relevant background on Coxeter groups, frameworks and
Cambrian combinatorics. Section 6 introduces our main construction. Sections 7 and 8
provide the combinatorial lemmas which prove that our main construction is well defined.
Section 9 proves that our construction has the promised properties.
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2 Root systems and Coxeter groups

In this section, we fix our notation surrounding root systems and Coxeter groups. We
assume a basic familiarity with the topic. Standard references include [1, 2, 7, 8]. For
more background from the same point of view as this paper, see [16, 17].

Let A be an n × n symmetric generalized Cartan matrix, meaning that aii = 2, that
aij 6 0 for i 6= j, and that aij = aji. We will write I for an n-element set that indexes
the rows and columns of A. When A is of type Ãn−1, we take I to be the cyclic group
Z/nZ, so objects indexed by I have indices which are cyclic modulo n. For example, in
this case, ai(i+1) = a(i+1)i = −1 and aii = 2.

All of the objects considered in this paper (cluster algebras, root systems, Coxeter
groups and frameworks) work more generally with a symmetrizable Cartan matrix rather
than a symmetric one. Our goal in this paper is to study the case where B corresponds
to the oriented n-cycle, in which case A is symmetric. Accordingly, we will simplify
our notation by describing the case where A is symmetric and (later) where B is skew-
symmetric. Roots and co-roots are the same when A is symmetric, so our notation will
not distinguish them.

Let V be a real n-dimensional vector space with a basis Π = {αi : i ∈ I}, let V ∗ be
the dual vector space, and write 〈x, y〉 for the pairing between x ∈ V ∗ and y ∈ V . The
vectors αi are called the simple roots. The lattice spanned by the simple roots is called
the root lattice . When A is of type Ãn−1, the positive roots are the vectors of the form
αi + αi+1 + · · · + αj−1 with i 6 j and i 6≡ j mod n, indices interpreted modulo n. For
example, if n = 3, then one of the positive roots is α1 +α2 +α3 +α4 +α5 = 2α1 +2α2 +α3.

The Cartan matrix also determines a symmetric bilinear form K on V given by
K(αi, αj) = aij. As usual, we define the simple reflection si to be the reflection orthogonal
(with respect to K) to αi, so that si(αj) = αj − aijαi. We write W for the Coxeter group
generated by the set S of simple reflections. The action of W preserves the form K. There
is also a dual action of W on V ∗ as usual.

We write Φ for the (real) root system
⋃
w∈W w · {α1, . . . , αn}. Each root β defines a

reflection t by tx = x−K(β, x)β for all x ∈ V . We write βt for the positive root associated
to a reflection t.

We write D for the fundamental chamber {x ∈ V ∗ : 〈αi, x〉 > 0} and write Tits(A)
for the Tits cone

⋃
w∈W wD. In this paper, we are concerned with A of affine type Ãn−1.

In this case, Tits(A) is {x ∈ V ∗ : 〈δ, x〉 > 0} ∪ {0}, where δ is the imaginary root
α1 + α2 + · · ·+ αn. The kernel of K is Rδ, so in particular, δ is fixed by the action of W .
The set of real roots Φ is invariant under translation by δ, and the image of Φ in V/Rδ
is a root system of finite type An−1 (that is to say, the root system for the Coxeter group
Sn).

Given a Coxeter group W with simple generators S, we use the term weak order
to refer to what is often called the right weak order, with cover relations w <· ws when
`(w) < `(ws).

For each subset J ⊆ S, we write WJ of W for the standard parabolic subgroup
generated by J . For each w ∈ W and J ⊆ S, we write wJ for the projection of w to
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WJ , the unique maximal element of WJ below w in the weak order. We will often take J
to be S \ {s}, which we denote by 〈s〉.

Let w be an element of W . An inversion of w is a reflection t such that `(tw) < `(w).
We write inv(w) for the set of inversions ot w. For any J ⊆ S, we have inv(wJ) =
inv(w) ∩WJ . A cover reflection of w is t ∈ inv(w) such that tw = ws for some s ∈ S.
In this case, tw is covered by w in the weak order. We write cov(w) for the set of cover
reflections of w. When t is a cover reflection of w, we have inv(tw) = inv(w) \ {t}.

3 Frameworks for skew-symmetric exchange matrices.

In this section, we give definitions and basic results on frameworks, in the special case
where the initial exchange matrix is skew-symmetric. For a discussion of the general
skew-symmetrizable case, see [16, Section 2].

The underlying structure of a framework is a simple regular quasi-graph . This is a
structure obtained from a simple graph by placing some number of half-edges on each
vertex. Half-edges “dangle” from a vertex without connecting that vertex to any other.
Ordinary edges, i.e. edges connecting two vertices, will be called full edges. A quasi-
graph is regular of degree n if each vertex is incident to exactly n-edges. (That is, each
vertex v has k half-edges and n−k full edges for some k ∈ {0, . . . , n} that depends on v.)
A quasi-graph is connected if, when half-edges are ignored, it is connected in the usual
sense. An incident pair is a pair (v, e) where v is a vertex v and e is an edge containing
v. We write I(v) for the set of edges e containing a vertex v.

A skew-symmetric exchange matrix B = [bij] is a skew-symmetric integer matrix
with rows and columns indexed by a set I with |I| = n. The exchange matrix B has a
Cartan companion A = Cart(B) = [aij] with diagonal entries 2 and off-diagonal entries
aij = −|bij|. We define ω to be the skew-symmetric bilinear form with ω(αi, αj) = bij for
all i, j ∈ I.

A framework for an n × n exchange matrix B is a pair (G,C) such that G is a
connected, n-regular quasi-graph and C is a function called the labeling from incident
pairs (v, e) in G to the vector space V , satisfying certain conditions, called the Sign, Base,
and Transition conditions. We write C(v) for {C(v, e) : e ∈ I(v)}.

In the general setting of [16], a framework is a triple (G,C,C∨), where C and C∨ are
two labelings of G, one by vectors in the root lattice and one by vectors in the co-root
lattice. In the skew-symmetric case, the two labelings coincide [16, Remark 2.2]. Thus
for skew-symmetric B, a framework is (G,C,C), and we abbreviate this to (G,C) in this
paper.

Sign condition: For each incident pair (v, e), the label C(v, e) is a nonzero vector, and
either C(v, e) or −C(v, e) is in the nonnegative span of the simple roots.

For a nonzero vector x, we write sgn(x) = 1 if x is in the nonnegative span of the
simple roots and sgn(x) = −1 if −x is in the nonnegative span of the simple roots. A
natural way to satisfy the Sign condition is if all the C(v, e)’s are roots, but in general,
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the labels need not be roots. However, in the framework we will construct for the cycli-
cally oriented n-cycle, all labels will be roots. In [16, Section 2.2], we defined a notion of
reflection framework; the reflection condition implies that all labels are roots. However,
our framework for the cyclically oriented n-cycle will not be a reflection framework.

Base condition: There exists a vertex vb such that C(vb) is the set of simple roots.

We identify the indexing set I with I(vb) by identifying e ∈ I(vb) with the index i ∈ I
such that C(vb, e) = αi.

Transition condition: Suppose v and v′ are distinct vertices incident to the same edge
e. Then C(v, e) = −C(v′, e). Furthermore, if β = C(v, e) and γ ∈ C(v) \ {β}, then
γ + [sgn(β)ω(β, γ)]+ β is in C(v′).

One can easily check that the transition condition is symmetric in v and w.
Given an edge e connecting v to v′, there is a bijection µe : I(v)→ I(v′) with µe(e) = e,

defined to make the following condition equivalent to the Transition condition. See [16,
Section 2.1].

Transition condition, restated: Suppose v and v′ are distinct vertices incident to the
same edge e. Then C(v, e) = −C(v′, e). Furthermore, if f ∈ I(v) \ {e}, then

C(v′, µe(f)) = C(v, f) + [sgn(C(v, e))ω(C(v, e), C(v, f))]+ C(v, e).

We warn the reader that the inverse function I(v′)→ I(v) is also denoted µe.
For each vertex v in a framework (G,C), define Cone(v) to be the cone in V ∗ given by⋂

β∈C(v) {x ∈ V ∗ : 〈x, β〉 > 0}. By [16, Proposition 2.4], each Cone(v) is a simplicial cone.

In [16], several global conditions on frameworks are defined, and the consequences of
these conditions are discussed. Here, we wish to bypass precise definitions of some of these
conditions. We can do this because we will establish one global condition, the descending
condition, which implies many of the others. For a full discussion, see [16, Section 4].

The framework (G,C) is injective if the map v 7→ C(v) is injective, and it is com-
plete if G has no half-edges. The framework is polyhedral if the cones Cone(v) for
v ∈ G are the maximal cones of a fan and if the map v 7→ Cone(v) is injective. The
adjectives well-connected , simply connected , ample , and exact can also be applied
to a framework as explained in [16, Section 4].

A framework is descending if it satisfies the following three conditions.

Unique minimum condition: If a vertex v of G has {sgn(β) : β ∈ C(v)} = {1}, then v
is the base vertex vb.

Full edge condition: If (v, e) is an incident pair and sgn(C(v, e)) = −1 then e is a full
edge.
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In light of the Sign and Transition conditions, we can orient the edges of G as follows:
If e is an edge incident to a vertex v, then we direct e towards v if sgn(C(v, e)) = 1 and
away from v if sgn(C(v, e)) = −1.

Descending chain condition: There exists no infinite sequence v0 → v1 → · · · .

For us, the descending property is the key to proving most of the other key properties
of the framework (DCambΩ,DCΩ) for the oriented n-cycle. This is because [16, The-
orem 4.20] says that a descending framework is exact, polyhedral, well-connected, and
simply connected. This reduces the proof of Theorem 1.1 to the following assertion:

Theorem 3.1. (DCambΩ,DCΩ) is a complete descending framework.

The rest of the paper is devoted to constructing (DCambΩ,DCΩ) and proving Theo-
rem 3.1.

4 Cambrian frameworks

In this section, we review the construction of a Cambrian framework for any acyclic
exchange matrix B. (See [16].) The information contained in an acyclic exchange matrix
B is equivalent to (A, c), where A = Cart(B) and c is the Coxeter element obtained by
ordering S such that si precedes sj whenever bij > 0. We will use the data (A, c) to
define a framework for B. Since the exchange matrix B of interest in this paper is skew-
symmetric and thus A is symmetric, we present the Cambrian framework construction in
the special case of symmetric A.

As before, let Φ be the root system associated to A. Let W be the Coxeter group
associated to A and let s1s2 · · · sn be a reduced word for c. We write c∞ for the infinite
word (s1s2 · · · sn)(s1s2 · · · sn) · · · in the simple generators si. Let w be an element of W .
The c-sorting word for w is the lexicographically leftmost subword of c∞ which is a
reduced word for w. Let Jr ⊆ S be the letters from the r-th copy of (s1s2 · · · sn) that
occur in the c-sorting word for w. The group element w is c-sortable if and only if
J1 ⊇ J2 ⊇ J3 ⊇ · · · . (See [10, Section 2].) The subword of s1 · · · sn consisting of the
letters indexed by Jr is called the r-th block of the c-sorting word for w.

Given w ∈ W , there is a unique maximum element, denoted πc↓(w), among all c-
sortable elements below w in the weak order [14, Corollary 6.2]. The restriction of the weak
order to c-sortable elements is a meet semilattice called the c-Cambrian semilattice ,
and πc↓ is an order preserving map from the weak order to the c-Cambrian semilattice [14,
Theorem 6.1].

We will define a set of labels Cr(v), indexed by the simple reflections, for each c-sortable
element v. See [14, Section 5] for more information, including an alternate recursive
definition.

Let si1si2 · · · siN be the c-sorting word for v. Viewing this as a subword of c∞, there
is some first occurrence of r in c∞ which is not in si1si2 · · · siN . Suppose this occurrence
falls between sit and sit+1 . Then we say that si1si2 · · · siN skips r between sit and sit+1 .
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(If t = 0, we mean that the skip is before s1 and if t = N , we mean that the skip is after
sN .) We define Cr

c (v) = si1si2 · · · sitαr and Cc(v) = {Cr
c (v) : r ∈ S}.

To realize Cc as a labeling on incident pairs, we use the following lemma, which is part
of [16, Lemma 5.11].

Lemma 4.1. If v′ <· v in the c-Cambrian semilattice, then there exists a unique root β
such that β ∈ Cc(v′) and −β ∈ Cc(v). The root β is positive.

For each edge e corresponding to a cover relation v′ <· v in Cambc, we define Cc(v, e) =
−β and Cc(v

′, e) = β. The degree of each vertex of Cambc is at most n. If the degree is
less than n, then we attach half-edges to v to make the degree n. These half-edges are
labeled with the labels in Cc that were not already associated to full edges. We overload
the notation Cambc to also denote the quasi-graph with these added half-edges, and also
re-use the symbol Cc for the labeling of incident pairs in Cambc. The following is [16,
Theorem 5.12].

Theorem 4.2. (Cambc, Cc) is a descending framework for the exchange matrix B.

We call (Cambc, Cc) the Cambrian framework for B. In fact, [16, Theorem 5.12]
stated that “(Cambc, Cc) is a descending reflection framework, ” but [16, Proposition 2.13]
allows us to restate the theorem as above. For more on reflection frameworks and how
they relate to frameworks, see [16, Section 2.2].

For any vertex v of a framework, we defined the corresponding cone Cone(v), dual to
the vectors C(v). In the context of a Cambrian framework, we write Conec(v) for clarity.
The cones Conec(v) and their faces form a fan [16, Corollary 5.15]. This fan is denoted
Fc and called the c-Cambrian fan . The polyhedral geometry of the cones Cone(v) is
related to the combinatorial operation πc↓. The following theorem is [14, Theorem 6.3].
(The second assertion of the theorem doesn’t appear in [14, Theorem 6.3], but is an
immediate consequence of the first, since πc↓(v) = v.)

Theorem 4.3. Let v be c-sortable. Then πc↓(w) = v if and only if wD ⊆ Conec(v). In
particular, vD is contained in Cone(v).

The following proposition is a special case of [17, Corollary 3.25], as explained in
[17, Remark 3.26]. Alternately, the proposition is stated in terms of Cambrian (lattice)
congruences as [11, Proposition 1.3].

Proposition 4.4. When W is finite, the fans Fc and −Fc−1 are identical. Specifically,
for any c-sortable element v, we have Conec(v) = −Conec−1(v′) where v′ = πc

−1

↓ (vw0).

Finally, we gather some properties of the labeling Cc. Recall that 〈r〉 is S \ {r}.

Lemma 4.5. If v is in the parabolic subgroup W〈r〉, then Cr
c (v) ∈ Φ+.

Proof. Suppose the c-sorting word si1si2 · · · siN for v skips r between sit and sit+1 . That
is, the first occurrence of r in c∞ that is not in si1si2 · · · siN occurs between sit and sit+1 .
Then the root Cr

c (v) is positive if and only if si1si2 · · · sitr is reduced. If v is in W〈r〉,
then each simple reflection occurs at most once in the word si1si2 · · · sitr, so this word is
reduced.
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Given a Coxeter element c and J ⊆ S, the restriction of c to WJ is the Coxeter
element of WJ obtained by deleting the letters in S \ J from a reduced word for c.
Typically the restriction of c to WJ does not equal the projection cJ . The first two of
the following propositions are [14, Proposition 5.2] and [14, Proposition 2.30]. Recall that
cov(v) denoted the set of cover reflections of v, as defined in Section 2.

Proposition 4.6. Let v be a c-sortable element. The set of negative roots in Cc(v) is
{−βt : t ∈ cov(v)}.

Proposition 4.7. Let J ⊂ S and let c′ be the restriction of c to WJ . Then an element
v ∈ WJ is c-sortable if and only if it is c′-sortable.

Proposition 4.8. Let J ⊂ S and let c′ be the restriction of c to WJ . If v ∈ WJ is
c-sortable, then Cr

c′(v) = Cr
c (v) for all r ∈ J . Thus Cc′(v) = {Cr

c (v) : r ∈ J} ⊆ Cc(v).

Proof. Proposition 4.7 implies that the notation Cc′(v) makes sense. The c′-sorting word
for v coincides with the c-sorting word for v, and thus skips each r ∈ J in the same
place.

We conclude this section with a lemma about c-sortable elements in type A.

Lemma 4.9. Suppose W is of type Ak, with vertices numbered in order along the Coxeter
diagram, and let c be the Coxeter element s1 · · · sk. If v ∈ W is c-sortable and has full
support, then v = cu where u is a c′-sortable element in W〈sk〉 for c′ = s1 · · · sk−1.

Proof. By definition of c-sortability, v = cu for some c-sortable element u of W with
`(v) = `(c) + `(u). So u 6 c−1w0. One computes that c−1w0 is the longest element in
W〈sk〉, so u ∈ W〈sk〉. The result follows by Proposition 4.7.

5 Cambrian combinatorics with cycles

The construction of the Cambrian framework (and the “doubled” Cambrian framework
described in the introduction) relied crucially on the hypothesis that B is acyclic. How-
ever, the object of study in this paper is a non-acyclic exchange matrix: the oriented
cycle. In [15], the notion of sortable elements was generalized to allow for non-acyclic
orientations of the Coxeter diagram of W . In this section, we review the main results
of [15].

Let B be an n × n skew-symmetrizable integer matrix, W the corresponding Weyl
group and S the simple generators. Let Ω be the directed graph with vertex set S and
edges si ← sj whenever bij > 0. For a subset J of S, we say that J is Ω-acyclic if the
subgraph of Ω induced by J is acyclic. If J is Ω-acyclic, we write c(Ω, J) for the product
of the elements {si}i∈J , ordered with si before sj if there is an edge si ← sj. This is a
Coxeter element of WJ .

For w ∈ W , define J(w) to be the unique minimal subset J of S so that w is in
the parabolic subgroup WJ . We define w to be Ω-sortable if J(w) is Ω-acyclic and w
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is c(Ω, J)-sortable. In [15], we define an idempotent map πΩ
↓ from W to the Ω-sortable

elements, mapping w ∈ W to the unique maximal Ω-sortable element below w. We restate
the defining property of πΩ

↓ as a lemma:

Lemma 5.1. If x is Ω-sortable and y ∈ W , then x 6 y if and only if x 6 πΩ
↓ (y).

We also show that the Ω-sortable elements and the map πΩ
↓ have the same lattice-

theoretic properties as in the acyclic case. The Ω-Cambrian semilattice is the subposet
of the weak order on W induced on the Ω-sortable elements. We define the graph CambΩ

to be the Hasse diagram of the Ω-Cambrian semilattice.
Let v ∈ W be Ω-sortable and let r be a simple reflection of W . If J(v) ∪ {r} is

Ω-acyclic, we define Cr
Ω(v) to be Cr

c(Ω,J(v)∪{r})(v). If J(v) ∪ {r} is not Ω-acyclic, we leave

Cr
Ω(v) undefined. Define CΩ(v) = {Cr

Ω(v) : J(v)∪ {r} is Ω-acyclic}. In particular, CΩ(v)
can have fewer than n elements. When Ω is acyclic, the set CΩ(v) = {Cr

Ω(v) : r ∈ S} has
n elements for every v, and furthermore, setting c = c(Ω, S), we have CΩ(v) = Cc(v). We
will repeatedly use the following lemma:

Lemma 5.2. If v is an Ω-sortable element of W , and v ∈ WJ for some Ω-acycilc J ⊆ S,
then Cc(Ω,J)(v) ⊂ CΩ(v).

Proof. For any r ∈ J , we have J(v) ∪ {r} ⊆ J , so Proposition 4.8 says that Cr
c(Ω,J)(v) =

Cr
c(Ω,J(v)∪{r})(v) ∈ CΩ(v).

If e = (v′, v) is an edge of the Hasse diagram CambΩ, corresponding to a cover v′ <· v,
then we can apply Lemma 4.1 within standard parabolic subgroups to conclude that there
exists a unique root β such that β ∈ CΩ(v′) and −β ∈ CΩ(v), and that β is positive. We
thus label the incident pairs (v, e) and (v′, e) by ±β as in the acyclic case. We can add
half-edges to CambΩ to make an n-regular quasi-graph as in the acyclic case, but some
vertices do not have enough labels to put on the added half-edges. Thus we cannot define
a framework when Ω is acyclic without some additional information.

Each Ω-sortable element v defines a cone

ConeΩ(v) := {x ∈ V ∗ : 〈x, β〉 > 0, β ∈ CΩ(v)}.

When Ω is not acyclic, these cones are not the maximal cones of a fan; they do not even
have the same lineality space. However, it is still true [15, Theorem 4.1] that, for any
Ω-sortable v and any w ∈ W , we have πΩ

↓ (w) = v if and only if wD ⊆ ConeΩ(v).

6 Constructing a framework for the oriented cycle

In this section, we give the construction of (DCambΩ,DCΩ). The proof that it is a
framework is given in Section 9. We begin by illustrating our construction for n = 3.

Example 6.1. Consider the Coxeter group of type Ã2. The diagram of this Coxeter
group is a triangle. Let Ω be the orientation s1 ← s2 ← s3 ← s1. There are ten Ω-
sortable elements. The intersection of the cones ConeΩ(v) with V ∗1 := {x : 〈x, δ〉 = 1}
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Figure 1: Ω-sortable elements, (−Ω)-sortable elements, and their cones

are drawn with dark edges on the left side of Figure 1. The gray dotted lines indicate
the decomposition of the Tits cone into cones wD. The boundary of Tits(A) is not
represented in Figure 1, but corresponds to the “circle at infinity” in each picture. There
are six Ω-sortable elements for which ConeΩ(v) ∩ ∂Tits(A) is (n − 1)-dimensional (i.e.
2-dimensional).

The right picture of Figure 1 is the analogous, but antipodal, picture for the opposite
orientation −Ω. Once again, there are six (−Ω)-sortable elements for which −Cone−Ω(v)∩
∂Tits(A) is (n− 1)-dimensional. Moreover, these two sets of six three-dimensional cones
intersect ∂Tits(A) in the same six two-dimensional cones. Both pictures are drawn from
the point of view of a point in Tits(A) lying on the other side of V ∗1 from the origin.

We glue the graphs CambΩ and Camb−Ω together by identifying the Ω-sortable element
v1 with the (−Ω)-sortable element v2 if ConeΩ(v1)∩∂Tits(A) = −Cone−Ω(v2) ∩ ∂Tits(A).
Writing v for the resulting vertex, we set DCΩ(v) := CΩ(v1)∪−C−Ω(v2). The correspond-
ing operation in the dual space is to assign the cone ConeΩ(v1)∩−Cone−Ω(v2) to v. These
cones form the maximal cones of a fan DFΩ, pictured in Figure 2. We draw codimension-1
faces in the closure of Tits(A) in black, codimension-1 faces contained in the closure of
−Tits(A) in blue, and codimension-1 faces that cross ∂Tits(A) in dotted blue and black.
The red circle indicates ∂Tits. This will be the fan of our framework for the cyclically
oriented triangle.

Remark 6.2. If all walls in Figure 1 are extended to lines, the result is a drawing of the Shi
arrangement of type A2, first studied in [18]. Indeed, one easily deduces from the results
of this paper that the roots appearing as c-vectors for the oriented n-cycle are exactly the
roots of Ãn−1 that define the Shi arrangement of type An−1.

We now show how the above example generalizes to the cyclicly oriented n-cycle for
n > 3. From now on, Ω is the oriented graph s1 ← s2 ← · · · ← sn ← s1 and −Ω is the
reverse orientation. Indices should always be treated as cyclic modulo n.

In Section 7, we will prove the following proposition.
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Figure 2: The fan DFΩ

Proposition 6.3. For every Ω-sortable v, the set of roots CΩ(v) contains either n or
n− 1 elements. There is a bijection

η : {v ∈ CambΩ : |CΩ(v)| = n− 1} → {v′ ∈ Camb−Ω : |C−Ω(v′)| = n− 1}

such that CΩ(v) ∪ −C−Ω(η(v)) contains n roots.

There is a geometric description of this pairing: |CΩ(v)| = n−1 if and only if ConeΩ(v)
has n−1 dimensional intersection with ∂Tits(A) and, in this case, ConeΩ(v)∩∂Tits(A) =
−Cone−Ω(η(v)) ∩ ∂Tits(A).

Let DCambΩ be obtained from the disjoint union CambΩ ∪(−Camb−Ω) by identifying
each v ∈ CambΩ having |CΩ(v)| = n − 1 with −η(v) ∈ −Camb−Ω. We define a labeling
DCΩ of DCambΩ as follows: If v is Ω-sortable with |CΩ(v)| = n then DCΩ(v) = CΩ(v). If
v′ is −Ω-sortable with |C−Ω(v′)| = n, then DCΩ(v′) = −C−Ω(v′). If v is Ω-sortable with
|CΩ(v)| = n− 1, then DCΩ(v) = CΩ(v)∪ (−C−Ω(η(v))). We have described DCΩ in terms
of the label sets DCΩ(v). It is straightforward now to work out labels on incident pairs.

In Sections 7 and 8, we elaborate on and prove Proposition 6.3. Then we continue on
to the proof of Theorem 3.1.
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7 The bijection η

In this section, we define the map η of Proposition 6.3. We begin by giving a much more
precise description of when CΩ(v) has n−1 or n roots. Recall the notation 〈s〉 for S \{s}.

Proposition 7.1. Let v be Ω-sortable. Then either:

(1a) |J(v)| 6 n− 2 and

(2a) |CΩ(v)| = n and

(3a) ConeΩ(v) does not cross ∂Tits(A) and

(4a) The dimension of ConeΩ(v) ∩ ∂Tits(A) is less than n− 1

or else

(1b) J(v) = 〈si〉 for some i ∈ [n] and

(2b) |CΩ(v)| = n− 1, with Csi
Ω (v) undefined for the same i as in (1b), and

(3b) ConeΩ(v) crosses ∂Tits(A) and

(4b) The dimension of ConeΩ(v) ∩ ∂Tits(A) is n− 1.

Proof. The equivalence of (1•) and (2•) is immediate in each case, as is that of (3•)
and (4•). Also, in each case, exactly one of the paired conditions holds. Thus it is enough
to establish the implications (1a) =⇒ (3a) and (1b) =⇒ (3b).

(1a) =⇒ (3a): For each si ∈ S \ J(v), if si−1 ∈ J(v), then let λ(i) be such that
{sλ(i), sλ(i)+1, . . . , si−1} ⊆ J(v) and sλ(i)−1 6∈ J(v). Otherwise, let λ(i) = i. Either way,
condition (1a) says that λ(i) 6= i + 1, and one computes Csi

Ω (v) = sλ(i)sλ(i)+1 · · · si−1αi =
αλ(i) + αλ(i)+1 + · · ·+ αi. Then one has

∑
si∈S\J(v)

Csi
Ω (v) =

∑
si∈S\J(v)

(
αλ(i) + αλ(i)+1 + · · ·+ αi

)
=

n∑
j=1

αj = δ.

Thus 〈δ, · 〉 is nonnegative on ConeΩ(v), so ConeΩ(v) does not cross ∂Tits(A).
(1b) =⇒ (3b): The n − 1 roots of CΩ(v) all lie in the sub root-system associated

to the parabolic subgroup W〈si〉. Thus ConeΩ(v) contains the entire line
⋂
j 6=i α

⊥
j . In

particular, ConeΩ(v) lies on both sides of ∂Tits(A).

We introduce the following notations: Let w 7→ w+ be the automorphism of W with
s+
i = si+1. We also use the superscript + for the corresponding permutation of Φ and,

when C is a set of roots, write C+ for {β+ : β ∈ C}. The inverse of + is written −.
For integers i and j, let c[i, j] denote the product sisi+1 · · · sj−1sj if i 6 j and

sisi−1 · · · sj+1sj if i > j, with indices taken modulo n.
Write UΩ(si) for the set of Ω-sortable elements v described in case (b) of Proposi-

tion 7.1, and similarly U−Ω(si). The union
⋃
i∈[n] UΩ(si) contains exactly the vertices
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of CambΩ which will glue to vertices in Camb−Ω. We will now define the bijection
η : UΩ(si) → U−Ω(si+1). Taking the union of these bijections for all i gives the bijec-
tion η from Proposition 6.3.

Let v be in UΩ(si). Since v is c[i+ 1, i+ n− 1]-sortable, and J(v) = 〈si〉, Lemma 4.9
says that v = c[i+ 1, i+ n− 1]u for some c[i+ 1, i+ n− 2]-sortable element u. Let u′ be
the unique c[i + n − 2, i + 1]-sortable so that Conec[i+1,i+n−2](u) = −Conec[i+n−2,i+1](u

′).
(This exists by Proposition 4.4). We define

η (c[i+ 1, i+ n− 1] · u) := c[i+ n, i+ 2] · (u′)++.

Note that (u′)++ is c[i+ n, i+ 3]-sortable, so η(v) is c[i+ n, i+ 2]-sortable.

Proposition 7.2. The map η is a bijection from UΩ(si) to U−Ω(si+1).

Proof. The map v 7→ u = c[i+ 1, i+n− 1]−1v is a bijection between UΩ(si) and the set of
c[i+1, i+n−2]-sortable elements; the map u 7→ u′ is a bijection between c[i+1, i+n−2]-
sortable elements and c[i+n−2, i+1]-sortable elements; the map u′ 7→ (u′)++ is a bijection
between c[i+ n− 2, i+ 1]-sortable elements and c[i+ n, i+ 3]-sortable elements; the map
w 7→ c[i+ n, i+ 2]w is a bijection between c[i+ n, i+ 3]-sortable elements and U−Ω(si+1).

The map η composes these four bijections, and is thus a bijection.

The bijection η is constructed in order to make the following result hold:

Proposition 7.3. For i ∈ [n] and v ∈ UΩ(si), we have |CΩ(v) ∪ (−C−Ω(η(v)))| = n and
ConeΩ(v) ∩ ∂Tits(A) = −ConeΩ(η(v)) ∩ ∂Tits(A).

The proof uses several lemmas.

Lemma 7.4. For i ∈ [n] and v ∈ UΩ(si), the sets {Csj
Ω (v) : i+ 1 6 j 6 i+ n− 2} and

{−Csj
−Ω(η(v)) : i+ 3 6 j 6 i+ n} coincide.

Proof. If i+ 1 6 j 6 i+ n− 2, then c[i+ 1, i+ n− 1]αj = αj+1 = α+
j . Thus,

{Csj
c[i+1,i+n−1](v) : i+ 1 6 j 6 i+ n− 2} = c[i+ 1, i+ n− 1]Cc[i+1,i+n−2](u)

= Cc[i+1,i+n−2](u)+ = Cc[i+2,i+n−1](u
+).

Similarly,

{−Csj
c[i+n,i+2](η(v)) : i+ 3 6 j 6 i+ n} = −c[i+ n, i+ 2]Cc[i+n,i+3]((u

′)++)

= −[Cc[i+n,i+3]((u
′)++)]− = −Cc[i+n−1,i+2]((u

′)+).

Because Conec[i+1,i+n−2](u) = −Conec[i+n−2,i+1](u
′), also Cc[i+1,i+n−2](u) is equal to

−Cc[i+n−2,i+1](u
′), so Cc[i+2,i+n−1](u

+) = −Cc[i+n−1,i+2]((u
′)+) as desired.

Lemma 7.5. If i ∈ [n] and v ∈ UΩ(si), then the root −Csi+2

c[i+n,i+2](η(v)) is positive, the

root C
si−1

c[i+1,i+n−1](v) is negative, and −Csi+2

c[i+n,i+2](η(v))− Csi−1

c[i+1,i+n−1](v) = δ.
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Proof. Write the first block of the c[i + 1, i + n − 2]-sorting word for u in the form
si1si2 · · · sipsgsg+1 · · · si+n−2 where ip 6 g − 2. (If si+n−2 does not occur in u, then g =
i+ n− 1.) Here i+ 1 6 g 6 i+ n− 2. We calculate

C
si−1

c[i+1,i+n−1](v) = c[i+ 1, i+ n− 1]si1si2 · · · sipsgsg+1 · · · si+n−2αi+n−1 =

c[i+ 1, i+ n− 1] (αg + αg+1 + · · ·+ αi+n−1) = −αi+1 − αi+2 − · · · − αg.

Similarly, write the first block of the c[i + n − 2, i + 1]-sorting word for u′ in the form
sj1sj2 · · · sjqsg′sg′−1 · · · si+1 with jq > g′ + 2. We have

C
si+2

c[i+n,i+2](η(v)) = c[i+ n, i+ 2]sj1+2sj2+2 · · · sjq+2sg′+2sg′+1 · · · si+3αi+2 =

c[i+ n, i+ 2] (αg′+2 + αg′+1 + · · ·+ αi+2) = −αi+n − αi+n−1 − · · · − αg′+2.

In Section 8, we will prove that g′ = g − 1 (Proposition 8.4). This computation is
elementary but lengthy, which is why we have given it its own section. Accepting this
result for now, −Csi+2

c[i+n,i+2](η(v))− Csi−1

c[i+1,i+n−1](v) equals

(αi+n + αi+n−1 + · · ·+ αg+1) + (αi+1 + αi+2 + · · ·+ αg) = δ.

Proof of Proposition 7.3. The label Csi
Ω (v) is undefined and the other n − 1 labels on v

are defined. Similarly, C
si+1

−Ω (η(v)) is undefined and n − 1 labels on η(v) are defined.
Thus |CΩ(v) ∪ (−C−Ω(η(v)))| = n is equivalent to |CΩ(v) ∩ (−C−Ω(η(v)))| = n − 2.
Lemma 7.4 implies that |CΩ(v) ∩ (−C−Ω(η(v)))| > n − 2. Lemma 7.5 says in par-
ticular that C

si−1

c[i+1,i+n−1](v) and −Csi+2

c[i+n,i+2](η(v)) are distinct, and we conclude that

|CΩ(v) ∪ (−C−Ω(η(v)))| = n.
These two lemmas also show that the roots normal to the walls of ConeΩ(v), and the

roots normal to the walls of −ConeΩ(η(v)), differ only by adding δ to one root. Therefore,
both sets of roots define the same cone in δ⊥. Since ∂(Tits(A)) = δ⊥, we deduce that
ConeΩ(v) ∩ ∂Tits(A) = −ConeΩ(η(v)) ∩ ∂Tits(A).

8 Proof that g′ = g − 1

We now verify the equation g′ = g − 1 needed in the proof of Lemma 7.5. We begin by
stripping down the notation. Let t1, t2, . . . , tk−1 be the simple generators of the symmetric
group Sk, numbered in order along the Dynkin diagram. Let S[1,k−1] be the subgroup of
Sk generated by t1, t2, . . . , tk−2 and let S[2,k] be the subgroup generated by t2, t3, . . . ,
tk−1. Let ~c denote the Coxeter element t1t2 · · · tk−1. When we apply the results of this
section to prove Lemma 7.5, we will have k = n− 2 and tj = si+j.

Lemma 8.1. For any w ∈ Sk, the ~c-sortable element π~c↓(w) is in the coset wS[1,k−1].

Proof. The left cosets of S[1,k−1] are intervals in the weak order on Sk. The minimal
elements of these intervals are products of the form tgtg+1 · · · tk−1, for 1 6 g 6 k. These
minimal elements are ~c-sortable.
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Choose g so that w is in the coset tgtg+1 · · · tk−1S[1,k−1]. Then w > tgtg+1 · · · tk−1 so
w > π~c↓(w) > π~c↓(tgtg+1 · · · tk−1) = tgtg+1 · · · tk−1. Since w and tgtg+1 · · · tk−1 are in the

same S[1,k−1] coset, we deduce that π~c↓(w) also lies in that coset.

Lemma 8.2. Suppose u is ~c-sortable and lies in tgtg+1 · · · tk−1S[1,k−1]. The first block of
the ~c-sorting word for u is of the form ti1ti2 · · · tirtgtg+1 · · · tk−1 where ir 6 g − 2.

Proof. Since u ∈ tgtg+1 · · · tk−1S[1,k−1], we know that u has a reduced word which begins
tgtg+1 · · · tk−1. In particular, the generators tg, tg+1, . . . , tk−1 are contained in any reduced
word for u, so the first block of the ~c-sorting word for u contains these generators. We now
need to show that tg−1 is not in this leading block. Suppose, for the sake of contradiction,
that the leading block of the ~c-sorting word contains tf tf+1 · · · tk−1 and not tf−1, for some
f < g. Then u > tf tf+1 · · · tk−1. But the upper order ideal of elements above tf tf+1 · · · tk−1

is disjoint from the interval tgtg+1 · · · tk−1S[1,k−1].

Recall that D is the fundamental domain {x ∈ V ∗ : 〈αi, x〉 > 0}.

Lemma 8.3. Let x ∈ Sk lie in the coset tgtg+1 · · · tk−1S[1,k−1]. Let x′ be the unique element
of Sk so that xD = −x′D. Then x′ lies in the coset tg−1 · · · t2t1S[2,k].

Proof. We have x′ = xw0. We compute

tgtg+1 · · · tk−1S[1,k−1]w0 = tgtg+1 · · · tk−1w0S[2,k] = tg−1 · · · t2t1S[2,k]

where the second equality is a straightforward computation.

We combine the above lemmas to prove:

Proposition 8.4. Suppose u is ~c-sortable, suppose u′ is ~c −1-sortable, and suppose that
Cone~c(u) = −Cone~c−1(u′). If ti1ti2 · · · tirtgtg+1 · · · tk−1 is the first block of the ~c-sorting
word for u (with ir 6 g − 2), and tj1tj2 · · · tjstg′tg′−1 · · · t1 is the first block of the ~c −1-
sorting word for u′ (with js > g′ + 2), then g′ = g − 1.

Proof. By Lemma 8.2 and its image under the automorphism ti 7→ tk−i, the permutations
u and u′ lie in the cosets tgtg+1 · · · tk−1S[1,k−1] and tg′ · · · t2t1S[2,k]. Write x′ for the permu-
tation so that −uD = x′D, so Lemma 8.3 shows that x′ is in the coset tg−1 · · · t2t1S[2,k].
We have x′D = −uD ⊆ −Cone~c(u) = Cone~c−1(u′) so, by Lemma 8.1, the permutation u′

also lies in the coset tg−1 · · · t2t1S[2,k]. We see that g′ = g − 1, as desired.

Remark 8.5. The results of this section can be given alternate proofs using the combina-
torial descriptions of type-A Cambrian combinatorics from [9]. The reader who wishes to
attempt this should note that, if we write w in one line notation as a1a2 · · · ak, then u lies
in the cosets taktak+1 · · · tk−1S[1,k−1] and ta1−1 · · · t2t1S[2,k].
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9 Proof of Theorem 3.1

In this section, we complete the proof of Theorem 3.1, which asserts that the pair
(DCambΩ,DCΩ) is a complete descending framework. As discussed in Section 3, this
also completes the proof of Theorem 1.1.

Proof of Theorem 3.1. The Co-label and Base conditions are obviously satisfied, and the
Sign condition holds because the labels are roots, so we need to check the Transition
Condition to establish that (DCambΩ,DCΩ) is a framework. That check is the hardest
part of the proof and we leave it to the end.

Once the Transition condition is checked, the framework is complete by construction.
We now show that it is a descending framework. To see that the Unique minimum
condition holds, we need to show that every v in DCambΩ has a negative label, except
for the identity in CambΩ. First, suppose v is a vertex of CambΩ. If v is not the identity,
then it has at least one cover reflection, and thus Proposition 4.6 says that v has at least
one negative label. Now, suppose that v is a vertex of −Camb−Ω. By Proposition 7.1, v
lies in some parabolic W〈r〉 and thus Lemma 4.5 implies that v has a negative label.

The previous paragraph establishes the Unique minimum condition. The Full edge
condition holds because the framework is complete. The Descending chain condition
holds because neither CambΩ nor −Camb−Ω has any infinite chains. Thus, to show that
(DCambΩ,DCΩ) is a descending framework, we must check the Transition condition. To
check this, we make use of the symmetry of the Transition condition and the antipodal
symmetry of switching Ω with −Ω while applying the antipodal map.

Let e be an edge connecting vertices v and w, with DCΩ(v, e) = β. We first check
that −β = DCΩ(w, e). Either v and w are both in CambΩ, or both in −CambΩ. By
the antipodal symmetry, we assume the former. By the symmetry of the Transition
condition, we may assume that v > w, so β is a negative root. Since β is a negative
root, it is not the extra root added to CΩ(v) to make DCΩ(v) (see Lemma 7.5). So
β = C

sp
c(Ω,J(v)∪{sp})(v) for some sp. Moreover, since β is a negative root, we have sp ∈ J(v)

(see Lemma 4.5). Since v ∈ WJ(v) and w 6 v, we have w ∈ WJ(v). Writing c for c(Ω, J(v)),
the Cambrian framework (Cambc, Cc) is a framework, so −β ∈ Cc(w) and, by Lemma 5.2,
−β ∈ DCΩ(w). This trick of reducing to an acyclic parabolic will be used repeatedly.

Let γ ∈ DCΩ(v), with γ 6= β. For brevity, when J ( S, we will refer to “the Transition
condition in the Cambrian framework (Cambc(Ω,J), Cc(Ω,J))” as “the Transition condition
in WJ .”

We must check that γ + [sgn(β)ω(β, γ)]+ β is in DCΩ(w).
Case 1. |J(v)|, |J(w)| 6 n− 2. Either v and w are both in CambΩ or both in Camb−Ω,
and by the antipodal symmetry we may assume the former. By the symmetry of the
Transition condition, we may assume v > w. Then w and v are in the acyclic parabolic
WJ(v) and γ = Csr

c(J(v)∪{sr}) for some r. The claim follows from Lemma 5.2 and the
Transition condition in WJ(v)∪{sr}.
Case 2. |J(v)| = |J(w)| = n−1. We have J(v) = J(w) since, if v 6 w, then J(v) ⊆ J(w)
and similarly if v > w. Set J = J(v) = J(w). By the antipodal symmetry, we may
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assume that γ = Csr
c(J)(v) for some sr ∈ J . Then the claim follows from Lemma 5.2 and

the Transition condition in WJ .
Case 3. One of |J(v)|, |J(w)| is n− 1 and the other is not. By the antipodal symmetry,
we may assume that v, w ∈ CambΩ. By the symmetry of the Transition condition, we
may assume |J(v)| = n− 1, so that v > w and β is a negative root. Thus v and w are in
WJ(v).
Case 3a. γ is of the form Csr

c(Ω,J(v)) for some sr in J(v). Then the claim follows from the
Transition condition in WJ(v) as before.
Case 3b. We are left with the only hard case: We have w 6 v in CambΩ with |J(v)| =
n−1 and with |J(w)| 6 n−2, and furthermore γ is the lone element of DCΩ(v)\CJ(v)(v).
Choose si so that J(v) = 〈si〉 and thus γ = −Csi+2

c[i+n,i+2](η(v)). So v and w are c[i+ 1, i+

n− 1]-sortable elements.
In this paragraph, we will show that β = C

si−1

c[i+1,i+n−1](v). By Proposition 7.1, the

cone ConeΩ(v) intersects both Tits(A) and −Tits(A) but ConeΩ(w) lies in the closure of
Tits(A). Thus, the facet ConeΩ(w) ∩ ConeΩ(v) = β⊥ ∩ ConeΩ(v) lies in the closure of
Tits(A). By Lemma 7.5, ∂Tits(A) = δ⊥ contains the codimension-2 face F of ConeΩ(v) ly-
ing in C

si−1

c[i+1,i+n−1](v)⊥ and −Csi+2

c[i+n,i+2](η(v))⊥. The n−2 rays of ConeΩ(v) contained in F

are in ∂Tits(A), but since ConeΩ(v) intersects both Tits(A) and−Tits(A), one of the other
two rays is in Tits(A) while the other is in −Tits(A). Therefore, all facets of ConeΩ(v)
cross ∂Tits(A) except the facets defined by C

si−1

c[i+1,i+n−1](v) and −Csi+2

c[i+n,i+2](η(v)), so
that β is one of these two roots. But β is negative, so by Proposition 7.5 it must be
C
si−1

c[i+1,i+n−1](v).

Write v as c[i+1, i+n−1]u and suppose the first block of the c[i+ 1, i+ n− 2]-sorting
word for u is si1si2 · · · sipsgsg+1 · · · si+n−2 as in the proof of Lemma 7.5. As in that proof,
β = −αi+1−αi+2− · · · −αg and γ = αg+1 + · · ·+αi+n. We compute that ω(β, γ) = 0, so
our goal is to show that γ ∈ DCΩ(w). Specifically, we will show that γ = Csi

J(w)∪{si}(w).

Our first task is to check that sg 6∈ J(w). Set tr = si+1si+2 · · · sr · · · si+2si+1 for each
r = i+ 1, . . . , i+ n− 2. In particular, β is the negative root associated to tg. The tr, for
i+1 6 r 6 i+n−2, are inversions of v. Proposition 4.6 says tr is a cover reflection of v, so
ti+1, ti+2, . . . , tg−1 are inversions of tgv and tg is not. We deduce that tgv > c[i+ 1, g− 1]
and tgv 6> c[i + 1, g]. Since ConeΩ(v) and ConeΩ(w) share a facet contained in β⊥ and
since vD is in ConeΩ(v), we see that tgvD is in ConeΩ(w). Thus Theorem 4.3 says that
w = πΩ

↓ (tgv). Since c[i+1, g−1] and c[i+1, g] are both c[i+1, i+n−1]-sortable, Lemma 5.1
and the relations tgv > c[i+1, g−1] and tgv 6> c[i+1, g] now imply that w > c[i+1, g−1]
and w 6> c[i + 1, g]. Therefore, the first block of the c[i + 1, i + n − 1]-sorting word of w
does not contain sg, and thus sg 6∈ J(w) because w is c[i+ 1, i+ n− 1]-sortable.

We have shown that J(w) ∪ {si} ⊆ 〈sg〉, so Csi
J(w)∪{si}(w) = C

si+n

c[g+1,g+n−1](w). (We

changed si to si+n for clarity, as g + 2 6 i + n 6 g + n − 1.) We define ur =
sg+1sg+2 · · · sr · · · sg+2sg+1 for each r = g + 1, . . . , i+ n− 1 and note that

ur = (c[i+ 1, i+ n− 1]sgsg+1 · · · sr−2) sr−1 (c[i+ 1, i+ n− 1]sgsg+1 · · · sr−2)−1 .

Then ur is an inversion of v for g+ 1 6 r 6 i+ n− 1. Thus, ur is also an inversion of tgv
for r in this range, and we deduce that tgv > c[g+1, i+n−1]. Using once again that πΩ

↓ is
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order preserving, this implies that w = πΩ
↓ (tgv) > c[g+1, . . . , i+n−1]. On the other hand,

si 6∈ J(w). So the c[g + 1, g + n− 1]-sorting word for w begins sg+1sg+2 · · · si+n−1, before
skipping si+n. This shows that C

si+n

c[g+1,g+n−1](w) = αg+1 + · · ·+ αi+n = γ as promised.
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