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Abstract

We study universal cycles of the set P(n, k) of k-partitions of the set [n] :=
{1, 2, . . . , n} and prove that the transition digraph associated with P(n, k) is Eule-
rian. But this does not imply that universal cycles (or ucycles) exist, since vertices
represent equivalence classes of partitions. We use this result to prove, however,
that ucycles of P(n, k) exist for all n > 3 when k = 2. We reprove that they exist
for odd n when k = n−1 and that they do not exist for even n when k = n−1. An
infinite family of (n, k) for which ucycles do not exist is shown to be those pairs for
which

{
n−2
k−2
}

is odd (3 6 k < n− 1). We also show that there exist universal cycles
of partitions of [n] into k subsets of distinct sizes when k is sufficiently smaller than
n, and therefore that there exist universal packings of the partitions in P(n, k). An
analogous result for coverings completes the investigation.

1 Introduction

A universal cycle, or ucycle, is a cyclic ordering of a set of objects C, each represented
as a string of length N . The ordering requires that object b = b0b1 . . . bN−1 follow object

∗Supported by NSF Grant 1263009
†Supported by NSF Grant 1263009
‡Supported by NSF Grant 1263009
§Supported by NSF Grant 1263009

the electronic journal of combinatorics 22(4) (2015), #P4.48 1



a = a0a1 . . . aN−1 only if a1a2 . . . aN−1 = b0b1 . . . bN−2. These were originally introduced
in 1992 by Chung, Diaconis, and Graham [2] as generalizations of de Bruijn cycles. As
an example, the cyclic string 112233 encodes each of the six multisets of size 2 from the
set {1, 2, 3}. Another well-quoted example, from [9], is the string

1356725 6823472 3578147 8245614 5712361 2467836 7134582 4681258,

where each block is obtained from the previous one by addition of 5 modulo 8. This string
is an encoding of the 56 =

(
8
3

)
3-subsets of the set [8] := {1, 2, 3, 4, 5, 6, 7, 8}. A seminal

paper in the area is that of Chung, Diaconis and Graham [2] who studied ucycles of

• subsets of size k of an n-element set (as in the above example);

• set partitions (the focus of this paper); and

• permutations (with a necessarily augmented ground set and the use of order isomor-
phism representations, e.g., the string 124324 encodes each of the six permutations
of [3] = {1, 2, 3} in an order isomorphic fashion, which is clearly not possible to do
using the ground set [3]).

In [2] it is shown that for n > 4, there does exist a ucycle of all partitions P(n) of the set
[n] into an arbitrary number of parts. For example, we have the ucycle abcbccccddcdeec
of P(4), where, for example, the substring dcde encodes the partition 13|2|4. Note that
the alphabet used was, in this case, of size 5, though an alphabet of (minimum) size 5 is
shown to suffice to encode P(5) as

DDDDDCHHHCCDDCCCHCHCSHHSDSSDSSHSDDCH

SSCHSHDHSCHSJCDC.

The above example reflects tongue-in-cheek humor, since there are 52 partitions of [5] and
the above ucycle has 13 cards of each suit – except that one spade has been replaced by a
joker! The authors of [2] also ask how many partitions of P(n) using an alphabet of size
N > n exist. This question will also be of deep relevance to us, as alluded to in the later
section on Open Problems.

As noted in [6], however, not much seems to be known about ucycles of the partitions
P(n, k)(|P(n, k)| =

{
n
k

}
) of [n] into k parts. In this paper, a k-partition of [n] is repre-

sented as a string s1, s2 . . . sn over the alphabet [k] = {1, 2, . . . , k}, where i and j are in
the same block if and only if si = sj. In general this representation is not unique and
it is used in different ways in Sections 2 and 3. In [4], it was shown that for k = n − 1,
ucycles exist if and only if n is odd. At the other end of the k-spectrum, the authors of
[7] showed that for odd n, one could find a ucycle of partitions of [n] into two parts, and
that an “asymptotically good universal packing” could be found for k = 3, i.e., that there
was a string of length T (n, 3) <

{
n
3

}
with

T (n, 3){
n
3

} → 1, n→∞,
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where each of the T (n, 3) consecutive strings of length n represented a different partition
of [n] into 3 parts of distinct sizes. The authors of [7] also proved that ucycles of partitions
of [n] into 2 parts exist if n = 4 or 6, as evidenced by the respective explicit examples

aabbaba

and
abaaaabbaababbbabbaaabbbbbababa.

It is this work that we build on. In Section 2, we generalize the above result on asymp-
totically good universal packings (upackings) to the case of all fixed k as n → ∞, as
well as to ucoverings, which are also shown to be “asymptotically good.” Finally, Section
3 is devoted to showing that the transition digraph associated with P(n, k) is Eulerian.
As noted in the work of [2], this does not necessarily imply that universal cycles exist,
since the digraph vertices represent equivalence classes of partitions. We use our result to
prove, however, that ucycles of P(n, k) exist for all n > 3 when k = 2 and for odd n when
k = n − 1, the latter recovering the result in [4]. We also (re)prove that ucycles do not
exist for n even when k = n − 1. Finally, we show that for even n, ucycles do not exist
when

{
n−2
k−2

}
is odd (3 6 k < n− 1). There are infinitely many such pairs of values (n, k)

for k 6≡ 1 (mod 4). Moreover, the technique we exhibit in Section 3 has the potential to
tease out many more results along these lines.

2 Universal Packings and Coverings of Partitions of [n] into k

parts

One of the main results in [10] was that one could create a ucycle of all surjections from
[n] to [k] iff n > k. Since there are k! surjections that yield the same set partition, we
need to be more careful, and proceed by showing in Theorem 1 that for sufficiently large
n, it is possible to ucycle partitions of [n] into k parts of distinct sizes. We represent such
partitions as surjections from f : [n] → [k]; n > k, with 1 6 |f−1({1})| < |f−1({2})| <
. . . < |f−1({k})|. The fact that asymptotically good upackings exist is proved in Corollary
4.

Theorem 1. For each fixed k, n;n > (k+4)(k−1)
2

+ 1, there exists a ucycle of all onto func-
tions f : [n]→ [k] such that the preimage cardinality function |f−1| : {{1}, {2}, . . . {k}} →
[n] is strictly increasing.

Proof. Following the usual process used to exhibit existence of deBruijn cycles (see, e.g.,
[6]), we create a digraph D in which the vertices are sequences of length n−1, of numbers
in {1, . . . , k}, for which there exists at least one number in {1, . . . , k} which, when added
as a prefix or a suffix to the vertex label creates a sequence of length n which, using
the special canonical format we have adopted, represents a partition of [n] into k parts
of distinct sizes. For example, with n = 10, k = 4, 122333444 is a legal vertex, as is
123334444. On the other hand, 112233344 is not in the underlying graph. There is
a directed edge from a vertex v = v1, . . . , vn−1 to another vertex w = w1 . . . wn−1 if
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vi = wi−1 for each i = 2, 3, . . . , n − 1 and v1, . . . , vn−1wn−1 represents a partition of [n]
into k distinct parts. The edges of the digraph, labeled by vertex label concatenation,
are thus sequences representing partitions of [n] into k distinct parts. It is important to
mention here that the definition of edges is different in Section 3. Here edge labels must
have, for each 1 6 i 6 k−1, more of the letters i+1 than the letters i, whereas in Section
3 any of the k! representations may be used to label a set partition.

The problem of finding a ucycle is reduced to the problem of finding an Eulerian
circuit in this digraph. We know that Eulerian circuits exist if the graph is both weakly
connected and balanced, i.e., for each vertex v, the in- and out-degrees of v are equal.

If a number from 1 through k can be added as a prefix to a vertex label, then it can also
be added to the end as a sequence suffix, since it is only the numbers of 1’s, 2’s, . . . and k’s
that actually matter in determining if an edge represents a partition into distinct parts.
Therefore, the digraph is balanced, though we note that the in- and out-degrees, while
equal, are quite different at different vertices. We call the common value that guarantees
balancedness the degree. For example for k = 3, the vertex 123333333 has degree 1; the
vertex 122333333 has degree 2; and the vertex 122233333 has degree 3. In general, one
may write down a formula for deg(v) depending on the differences between the number
of i+ 1s and the number of is in v.

To show that the digraph is weakly connected, we will show that it is possible to
reach the designated target vertex 22333 . . . (k − 1) . . . (k − 1)k . . . k (with j j’s for each

2 6 j 6 k − 1, and n − k(k−1)
2

k’s) from any other starting vertex. In fact, we will show
something stronger, namely that one can traverse from any edge to the edge 122333 . . . (k−
1) . . . (k − 1)k . . . k from whence we may reach the target vertex in a single step. Notice
that edges represent legal partitions in P(n, k) only if n > n0 := k(k + 1)/2, and that
this is satisfied for the target vertex. In what follows, when we say that we “switch” a
number j in a given position to another number j′, we mean that after possibly rotating
the word that represents the edge so as to maintain cyclic order, we replace an edge that
begins with j to one that ends in j′.

Claim 2. We are able to “switch” any j ∈ {2, 3, . . . , k − 1} into a k and vice versa

(possibly through several steps) provided that n > n1 := (k+4)(k−1)
2

+ 1 = n0 + (k − 1),
where the “extra” (k− 1) digits allow us to make the switches as needed without violating
monotonicity.

Proof. Let a partition size vector (PSV) be a numerical partition of the integer n into k
distinct parts. Each PSV can be used to express the number of 1’s, 2’s, etc., in order, of an
edge. If n is too low, the values of the PSVs might not allow the above-mentioned switch
from an integer j to or from k to happen; for example, if n = 18; k = 5, then the only
possible PSV’s are (1, 2, 3, 4, 8); (1, 2, 3, 5, 7); and (1, 2, 4, 5, 6). A 2 cannot be changed to a
5 directly. If we attempt to increase the number of 2’s to three (by decreasing the number
of 5’s) to facilitate this change, this too causes problems with monotonicity. However, if we
have n = 19 and k = 5, the PSV’s are (1, 2, 3, 4, 9), (1, 2, 3, 5, 8), (1, 2, 3, 6, 7), (1, 2, 4, 5, 7),
and (1, 3, 4, 5, 6), which will be seen to imply that no matter what our starting position,
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we have enough “spaces” so that we can switch a 2, 3, or a 4 into a 5 (possibly in multiple
steps) and back again eventually. Notice that for k = 5, n1 = 19.

Given an edge of weight n1 := (k+4)(k−1)
2

+ 1, the sums of the gaps between the
components of the PSV may be as low as k, corresponding to the PSV (1, 3, 4, . . . , k+ 1),
or as high as 2k − 2, corresponding to the PSV (1, 2, . . . , k − 1, 2k − 1). To change a j
into a k we cannot have the number of js be one more than the number of j − 1s or one
less than the number of j + 1s. Notice first that, by the above discussion, there must be
a gap of two somewhere in the PSV, which we represent by (ρ1, ρ2, . . . , ρk). Suppose first
that i is the largest integer for which ρi + 2 6 ρi+1 and that j > i + 1, where j is the
integer that we wish to change into a k. Then we move the gap sequentially closer to j
by successively replacing integers between i + 1 and j − 1 by k. This creates a gap of
two between ρj−1 and ρj, allowing us to switch a j with a k as desired. The process is a
little different if j 6 i, where the leftmost gap of two in the PSV is between ρi and ρi+1;
in this case we first change the PSV to (1, 2, . . . , k − 1, `) where ` > 2k − 1, and then
to (1, 2, . . . , j − 1, j + 1, j + 2, . . . , k, `′), where `′ > k + 1. We can now replace j by k.
Replacing a k by a j follows a similar and inverted process. This proves the claim.

To continue with the proof of Theorem 1, our algorithm to reach the target sequence
will be to first, if we have more than one 1, change all extra 1’s into k’s. We will then
“underline” the single remaining 1 as something we won’t touch again. Next, we will
switch the number to the right of the 1 into a k, possibly in multiple steps, and then
the k back into a 2, again possibly through multiple steps. We will now underline the 1
and the 2 together, as something we won’t touch again. Next we will consider the next
number to the right of this 2 and switch it to a k, and then switch back from the k into
a 2 again, then underline the sequence 122, and switch all remaining 2’s in the sequence
into k’s. Next, we consider the number to right of the second 2, switch it into a k, and
then switch from the k back into a 3, then underline 1223, etc., until we reach the target
sequence.

The next theorem shows that there exists a ucovering of all partitions of [n] into k parts
if n is large enough; for simplicity we let the threshold n be the same as in Theorem 1.
This is because any partition may be represented by a surjection satisfying the conditions
of Theorem 3, though there may be multiple such representations when two or more of
the part sizes are equal.

Theorem 3. For each fixed k, n;n > (k+4)(k−1)
2

+ 1, there exists a ucycle of all onto func-
tions f : [n]→ [k] such that the preimage cardinality function |f−1| : {{1}, {2}, . . . {k}} →
[n] is non-decreasing.

Proof. Similar to that of Theorem 1; the digraph is a little different, and to show connec-
tivity we first go from an edge to another with strictly increasing PSV – and then proceed
to the same target vertex as in Theorem 1.

Corollary 4. For any fixed k > 3, the upacking and ucovering given in Theorems 1 and
2 respectively are both asymptotically of size

{
n
k

}
, the number of partitions of [n] into k

parts.
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Proof. This result is a special case of asymptotic results found in [5], where a threshold
of k = n1/5 is seen to hold for the property “partitions of size k with distinct parts form
a “high” fraction of all partitions of [n] into k parts.”

3 Universal Cycles of Partitions P(n, k) of [n] into k parts

As in the previous section, we encode a k-partition of [n] as a string of length n containing
k symbols where i and j are in the same subset of the partition if and only if the ith
character in the string is the same symbol as the jth character. Since the cases for k = 1
and k = n are trivial, we always assume that 2 6 k < n. For convenience, we use
{1, 2, . . . , k} as our alphabet. We refer to an encoding of a partition as a representation
of that partition. Note that each k-partition of [n] has k! different representations, and
we will refer to the representation in which symbols from [k] first appear, from left to
right, in their natural order as being a restricted growth function or RGF representation,
where the value of the RGF at any index is at most one more than its maximum over all
previous indices.

Following methods outlined in [2], we construct a transition digraph Gn,k for P(n, k)
as follows. Let the set of vertices of Gn,k be the set of all k and (k−1)-partitions of [n−1].
There is an edge between two vertices v and w of Gn,k if and only if w can immediately
follow v in a ustring of k-partitions of [n]. That is, there is an edge from v to w if and
only if the last n − 2 symbols of a representation for v match the first n − 2 symbols of
a representation for w and the string formed by overlaying these two representations at
their shared n − 2 length substring is a representation of a k-partition of [n]. Observe
that each vertex that is a k-partition of [n− 1] will have indegree = outdegree = k, and
each vertex that is a (k−1)-partition of [n−1] will have indegree = outdegree = 1. As an
example, G5,3 is shown in Figure 1, with all vertices labeled with the RGF representation.

Now, the edges of Gn,k are precisely the k-partitions of [n]. Furthermore, a partition
p1 can follow another partition p2 in a ustring for P(n, k) if and only if the vertex at the
tail of p1 is also at the head of p2. Thus, there is a bijection between the Eulerian cycles
of Gn,k and the ustrings of P(n, k).

Theorem 5. Let n, k ∈ Z+ with 2 6 k < n, and let Gn,k be the transition digraph for
P(n, k). Then Gn,k has an Eulerian cycle.

Proof. Gn,k is balanced as remarked above, so we must show thatGn,k is weakly connected.
To do so, we show that there exists a path from any vertex of Gn,k to the vertex w with
representation (1, 2, . . . , k − 1, k, k, . . . , k). Accordingly, let u be a vertex of Gn,k. We
describe an algorithm for obtaining a path from u to w. We first find a path from u to
a vertex v which ends in k distinct symbols. We may arrive at such a vertex in k − 1
steps by a path u = v1, v2, . . . vk where, for i = 1, 2, . . . , k − 1, we choose vi+1 to be a
vertex connected to vi such that the representations of vi+1 end in i+ 1 distinct symbols.
Note that choosing vi+1 this way is always possible - vi will have representations ending
in i distinct symbols and if outdegree(vi) = 1 then the only possible choice for vi+1 has
representations formed by adding the missing symbol of each representation of vi to its
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Figure 1: G5,3

last n− 2 symbols (the case where outdegree(vi)=k is clear). Now, vk has representations
ending in k distinct symbols, so for any path of length (n−1)−k starting at vk, each vertex
on the path will have outdegree = k. Thus, there exists a path vk, vk+1, . . . , vn−1, where
vk+j has representations whose last j+1 symbols are all the same (j = 0, 1, . . . , (n−1)−k).
Then, by construction, vn−1 = w. Hence, Gn,k is weakly connected and so it follows that
Gn,k contains an Eulerian cycle.

Hence, we know that Eulerian cycles exist in Gn,k, and therefore ustrings of P(n, k)
exist as well. However, there may be ustrings which cannot be turned into ucycles, which
occurs when the representations of the first and last partitions do not overlap correctly,
i.e., they have their symbols permuted. This idea is illustrated in the Eulerian cycle in
Figure 2:

If we start with the RGF representation 123 of the first vertex, then this Eulerian cycle
represents the ustring 123312321, which cannot be turned into a ucycle. This example
shows another important concept - once we choose the first representation to use, all
other representations used are uniquely determined by the given Eulerian cycle. These
observations motivate the following definitions.

Definition 6. Suppose v is a vertex in Gn,k and r is a representation for v. Form a new
string r0 from r by deleting all but the first occurence of each symbol from r and appending
the missing symbol to the end if v is a (k − 1)-partition. Then r0 is a permutation of [k];

the electronic journal of combinatorics 22(4) (2015), #P4.48 7



Figure 2: Eulerian cycle in G4,3

we call r0 the relative order of r.

Definition 7. Consider an edge vw for some vertices v and w of Gn,k. Fix a representa-
tion rv of v and suppose it has relative order πv. Suppose the corresponding representation
of w is rw with relative order πw. Then πwπ

−1
v is called the associated permutation of the

edge vw.

Remark 8. We have defined the associated permutation as the π ∈ Sk such that ππv =
πw, so that this definition is independent of the choice of representation of v.

The graph G5,3 is shown again in Figure 3 with edges labeled with their associated
permutations (expressed in cycle notation with fixed points supressed).

Definition 9. Let E = e1, e2, . . . , eS(n,k) be an Eulerian cycle in Gn,k and let πi be the asso-
ciated permutation of ei, i = 1, 2, . . . , S(n, k). We call the product πS(n,k)πS(n,k)−1 · · · π2π1
the permutation product of E.

From this definition, we get the following characterization.

Theorem 10. An Eulerian cycle E = e1, e2, . . . , eS(n,k) in Gn,k can be lifted to a ucycle
of P(n, k) if and only if its permutation product is the identity.

Proof. Fix a representation r of the vertex at the tail of e1 and suppose r has relative
order τ . E can be lifted to a ucycle if and only if we arrive back at r at the end of the
cycle, and going through E is equivalent to applying the permutation product to τ .

Now, we show that the associated permutation of an edge is completely determined
by the vertex at its “tail”, and that only certain permutations can be associated permu-
tations.
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Figure 3: G5,3 with associated permutations

Lemma 11. Let vw1 be an edge in Gn,k, suppose vw1 has associated permutation π. Then
π has the form (1 j j−1 · · · 2) for some 1 6 j 6 k, and if vw2 is another edge from v,
then vw2 has associated permutation π as well.

Proof. Let r = v1v2 · · · vn−1 be the representation of v with relative order 12 · · · k. Then
there are representations r1 = v2 · · · vn−1u1 and r2 = v2 · · · vn−1u2 of w1 and w2 corre-
sponding to r under vw1 and vw2, respectively. Suppose that j − 1 distinct symbols
appear in r after v1 (= 1) and before a second appearance of 1 (1 may only occur once
in r). Since the first n − 2 characters of both r1 and r2 are the same as the last n − 2
characters of r, it follows that r1 and r2 both have relative order 23 · · · j 1 j+1 j+2 · · · k.
Hence, the associated permuations of vw1 and vw2 are both (1 j j−1 · · · 2).

Theorem 12. For n > 3, every Eulerian cycle of Gn,2 can be lifted to a ucycle.

Proof. Observe that the vertex with representation 11 · · · 1 is the only vertex of outdegree
1 and that the edge coming out of this vertex has id. as its associated permutation. All
other vertices have outdegree 2, and the two edges originating from any particular vertex
both have the same associated permutation by Lemma 11. In particular, there is an even
number of (12) permutations. Since S2 is abelian, the permutation product of an Eulerian
cycle will be the identity so that the result follows by Theorem 10.
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Corollary 13. For n > 3, ucycles of P(n, 2) exist.

Proof. This follows directly from Theorem 5 and Theorem 12.

We can also use the permutation product to determine cases when ucycles do not exist.
The easiest way for this to occur is if the multiset consisting of all associated permutations
in Gn,k contains an odd number of odd permutations since this ensures that there is no
ordering of the associated permutations which multiplies to the identity.

Definition 14. We call the multiset consisting of all associated permutations in Gn,k the
permutation multiset of Gn,k.

Definition 15. Let O be the multiset which contains all odd permutations of the permu-
tation multiset of Gn,k. Define the parity function by

Par(n, k) =

{
0 if |O| ≡ 0 mod 2
1 if |O| ≡ 1 mod 2

Lemma 16. If Par(n, k) = 1, then there does not exist a ucycle of P(n, k).

The following formula gives a recursive formula for calculating Par(n, k).

Lemma 17. The function Par(n, k) satisfies the following recurrence relation:

Par(n, k) ≡ k · Par(n− 1, k) + Par(n− 1, k − 1) +

{
n− 2

k − 2

}
mod 2 (1)

with initial conditions Par(n, 2) = 0 for all n, and

Par(n, n− 1) =

{
1 if n ≡ 0 mod 4

0 otherwise

Proof. We establish a relationship between the permutation multiset of Gn,k and those of
Gn−1,k and Gn−1,k−1. Suppose v is a vertex in Gn,k, so v represents a k or k− 1-partition
p of [n− 1]. We consider the edge ep which represents p in either Gn−1,k or Gn−1,k−1. We
know that the associated permutation of ep is determined by the location of the second
occurence of the first symbol in a representation rp of the vertex wp at the tail of ep by
Lemma 11. First, suppose v represents a k-partition of [n− 1]. If the first symbol does
actually occur for a second time in rp, then since there is a representation of v whose first
n−2 characters are precisely rp, it follows that ep has the same associated permutation as
all the edges coming from v. If the first symbol of rp does not occur a second time, then ep
has associated permutation (1 k k−1 · · · 2). If wp has outdegree 1, then the representations
of v do not have a second occurrence of their first symbols, and so all edges from v have
associated permutation (1 k k−1 · · · 2). If wp has outdegree k, then the representations
of v have an occurence of all symbols before a second occurence of the first symbol, so we
get that the edges form v have associated permutation (1 k k−1 · · · 2) again. Since each
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vertex of Gn,k which represents a k-partition of [n− 1] has outdegree k, we get the term
k · Par(n− 1, k).

Now, suppose v represents a k − 1-partition of [n− 1].
Case 1, the first symbol of v appears a second time. Then either the first symbol of rp

appears a second time, or the first symbol of rp is appended by following ep (if the second
appearance in v is at the last character). If the first symbol of rp appears a second time,
then by previous reasoning ep has the same associated permutation as all edges from v.
If the first symbol of rp does not occur a second time, then ep and the edges from v all
have associated permutation (1 k k−1 · · · 2).

Case 2, the first symbol of v does not appear a second time. Then the first symbol of
rp does not appear a second time, and so ep must have associated permutation (1 k−1 k−
2 · · · 2). However, in this case v has associated permutation (1 k k−1 · · · 2). Note that
since the first symbol of v does not appear a second time, the last n − 2 characters of v
represent a k − 2-partition of [n − 2], so this case occurs exactly

{
n−2
k−2

}
times. Thus, we

have
{
n−2
k−2

}
partitions that either switch from even to odd or odd to even; in either case

adding
{
n−2
k−2

}
affects the parity in the desired manner.

Thus, each vertex in Gn,k which represents a k−1-partition of [n−1] has the same asso-
ciated permutation as it does in the graph Gn−1,k−1 except for

{
n−2
k−2

}
permutations which

change sign. Since each such vertex has outdegree 1, we get the Par(n−1, k−1) +
{
n−2
k−2

}
term.

Finally, the initial condition Par(n, 2) = 0 for all n follows from Theorem 12, and
the initial condition

Par(n, n− 1) =

{
1 if n ≡ 0 mod 4

0 otherwise

follows from the remark following Theorem 5 in [4]

Corollary 18. For n > 4 and 2 6 k < n,

Par(n, k) ≡

{
0 mod 2 if n is odd{
n−2
k−2

}
mod 2 if n is even

(2)

Proof. We proceed by induction. For the base cases, we show that the initial conditions
of the recursion in Corollary 17 satisfy Equation ( 2). If we define

{
n
0

}
:= 0 for all n,

then Equation ( 2) yields Par(n, 2) = 0 for all n. Also, if n is even, then Equation 2
yields

Par(n, n− 1) =

{
n− 2

n− 3

}
=

(
n− 2

2

)
=

(n− 2)(n− 3)

2

≡

{
0 mod 2 if n ≡ 2 mod 4

1 mod 2 if n ≡ 0 mod 4

as desired.
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Now, suppose that (2) holds for Par(n− 1, k) and Par(n− 1, k− 1). If n is odd then
n − 1 is even, so by (1), the induction hypothesis, and the fundamental Stirling number
recurrence,

Par(n, k) ≡ k · Par(n− 1, k) + Par(n− 1, k − 1) +

{
n− 2

k − 2

}
mod 2

≡ k ·
{
n− 3

k − 2

}
+

{
n− 3

k − 3

}
+

{
n− 2

k − 2

}
mod 2

≡ 2

{
n− 3

k − 2

}
+

{
n− 2

k − 2

}
+

{
n− 2

k − 2

}
mod 2

≡ 2

{
n− 2

k − 2

}
mod 2

≡ 0 mod 2

If n is even, then n − 1 is odd and so Par(n − 1, k) = Par(n − 1, k − 1) = 0. Hence,
Par(n, k) ≡

{
n−2
k−2

}
mod 2 by (1).

Corollary 19. If n is even and
{
n−2
k−2

}
is odd, there does not exist a ucycle for k-partitions

of [n].

Proof. This follows directly from Corollary 18.

Corollary 20. For each k > 3, k 6≡ 1 (mod 4), there are infinitely many even n’s for
which ucycles of P(n, k) do not exist.

Proof. To prove the corollary, we use the well-known fact [1] that{
n

k

}
=

(
n− bk/2c − 1

n− k

)
(mod 2). (3)

Thus {
n− 2

k − 2

}
=

(
n− bk/2c − 2

n− k

)
=

(
n− bk/2c − 2

k − bk/2c − 2

)
(mod 2).

We also know (see, e.g., Theorem 4.1.10 at http://www.cs.columbia.edu/~cs4205/

files/CM4.pdf) that(
n

k

)
≡

{
0 (mod 2) if n is even and k is odd(bn/2c
bk/2c

)
(mod 2) otherwise

(4)

If k = 4s+ 1, then {
n− 2

k − 2

}
≡
(
n− 2s− 2

2s− 1

)
(mod 2),

and no conclusion may be reached due to (4), since this is an
(
even
odd

)
situation. Using the

above facts, it is easy to check that for k = 3, 4, 6, ucycles do not exist for any even k. For
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k = 7,
{
n−2
5

}
≡
(
n−5
2

)
= (n− 5)(n− 6)/2 (mod 2) and thus ucycles do not exist if n ≡ 0

(mod 4). The same is true for k = 8. For k = 10, by (3) and (4), we see that ucycles do
not exist when b(n − 7)/2c is odd, or when n ≡ 2 (mod 4). We treat the general cases
k = 4s, k = 4s + 2, k = 4s + 3 next, simultaneously. In these three cases respectively we
have, by (3), {

n− 2

k − 2

}
≡
(
n− 2s− 2

2s− 2

)
or{

n− 2

k − 2

}
≡
(
n− 2s− 3

2s− 1

)
or{

n− 2

k − 2

}
≡
(
n− 2s− 3

2s

)
.

In each of these cases we cannot conclude summarily that the Stirling number
{
n−2
k−2

}
is

even – since we never have an
(
even
odd

)
situation. Let us proceed to iterate (4) until, after

roughly log(k
2
) steps, we arrive at an

(
M
1

)
= M term for some m ∈ Z+. We claim that for

each odd M , it is possible to choose at least one starting n for which the above iterations
never contain an

(
even
odd

)
term, so that we can deduce that a ucycle doesn’t exist. Starting

at
(
M
1

)
we manipulate the backward path of equivalences to be(

2M + 1

a1

)
,

(
4M + 3

a2

)
,

(
8M + 7

a3

)
,

etc., none of which are of the form
(
even
odd

)
, where the ai are determined by the value of

k+ bk/2c− 2 in the starting binomial coefficient. Now if r iterations of (4) are needed to
get to M , then the initial binomial coefficient must equal(

n− bk/2c − 2

k − bk/2c − 2

)
=

(
2r + 2r − 1

k − bk
2
c − 2

)
,

so that the required solution is n ≡ bk/2c + 1 (mod 2r+1). This completes the proof,
though it should be noted that we have not entirely characterized those n for which
ucycles do not exist in terms of k, since if ai is even there are two choices for the “top”
binomial coefficient. Overall, however, the solutions get progressively sparser due to the
fact [8] that “most binomial coefficients are even”.

In practice, for fixed k, the task of identifying suitable n’s can be done exactly, as seen
by the following example.

Example 21. Ucycles of P(n, 23) do not exist for n ≡ 8, 12 (mod 16).

Proof. We have {
n− 2

23− 2

}
≡
(
n− 13

10

)
≡
(
bn−13

2
c

5

)
≡
(
a

2

)
≡
(
b

1

)
,
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where a, b are respectively the “twice- and thrice-iterated half-floors” of n− 13. For any
odd b > 1, moreover, we must have a = 2b or a = 2b+ 1. Thus⌊

n− 13

2

⌋
= 4b, 4b+ 1, 4b+ 2, or 4b+ 3,

whence we get n− 13 = 8b, . . . , 8b + 7, or n = 13 + 8b, . . . , 20 + 8b. Eliminating the odd
n’s leads to n = 14 + 8b, 16 + 8b, 18 + 8b, 20 + 8b, or

n =
16(b+ 1)

2
+ 6,

16(b+ 1)

2
+ 8,

16(b+ 1)

2
+ 10,

16(b+ 1)

2
+ 12.

The solutions that are congruent to 6 or 10 (mod 16) can be checked to teminate pre-
maturely in an

(
even
odd

)
coefficient. This proves the claim.

4 Open Questions

We can ask the following:
(a) The smallest case remaining after our investigation is the one for n = 5, k = 3, for

which we have found the ucycle 3112311123213233112131322. All other cases for n = 5
and n = 6 are solved. This leads to the question: What is the best result that can be
proved along the following lines “For n > 3 and 3 6 k < n, ucycles of k-partitions of [n]
exist if and only if n is odd?”

(b) In general, how can one use Theorem 10 to prove results on existence of ucycles
(rather than non-existence)?

(c) Even if ucycles of P(n, k) may not exist, when it it true that ucycles exist for
P(n, s, t), the set of partitions of [n] into between s and t parts; s < t?

(d) Throughout this paper, we have insisted on having the alphabet size equal k. How
do our results change if we relax this condition?

Acknowledgments

The research of all the authors was supported by NSF Grant 1263009. We thank the
anonymous referee for their careful remarks, and a vital suggestion that vastly improved
Corollary 20.

References

[1] O-Y. Chan and D. Manna. Congruences for Stirling numbers of the second kind.
Contemporary Math., 517, 97—11, 2010.

[2] F. Chung, P. Diaconis, and R. Graham. Universal cycles for combinatorial structures.
Discrete Math., 110, 43–59, 1992.

[3] D. Curtis, T. Hines, G. Hurlbert, and T. Moyer. Near-universal cycles for subsets
exist. SIAM J. Discrete Math., 23, 1441–1449, 2009.

the electronic journal of combinatorics 22(4) (2015), #P4.48 14



[4] K. Casteels and B. Stevens. Universal cycles of (n−1)-partitions of an n-set. Discrete
Math., 309, 5332–5340, 2009.
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