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Abstract

If X is a collection of edges in a graph G, let G/X denote the contraction of X.

Following a question of Oxley and a conjecture of Oporowski, we prove that every

projective-planar graph G admits an edge-partition {X,Y } such that G/X and

G/Y have tree-width at most three. We prove that every toroidal graph G admits

an edge-partition {X,Y } such that G/X and G/Y have tree-width at most three

and four, respectively.

1 Introduction

In 2005, Gonçalves settled an old conjecture of Chartrand, Geller, and Hedetniemi [2] by
proving the following [6]:

Theorem 1 (Gonçalves). Every planar graph admits an edge-partition into two outerpla-
nar graphs.

Before that result appeared, Ding, Oporowski, Sanders, and Vertigan [5] (and, inde-
pendently, Kedlaya [7]) proved the following partial result:

Theorem 2 (Ding, Oporowski, Sanders, and Vertigan; Kedlaya). Every planar graph
admits an edge-partition into two series-parallel graphs.

We can rephrase Theorem 2 as follows:

Theorem 3. Every planar graph G admits an edge-partition {E1, E2} such that G\E1

and G\E2 are series-parallel.
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If G is a connected graph embedded on a surface, and G∗ is a surface dual of G, then
the reader can notice that the deletion of an edge of G corresponds to the contraction of
the corresponding edge of G∗; this phenomenon is investigated more fully in Section 2.
Deletion and contraction may, in this way, be viewed as dual operations. Furthermore,
the reader can notice that K4, embedded on the plane, is isomorphic to its own dual.
Therefore it is an easy exercise to prove that if G is a plane graph and G∗ is a surface
dual of G, then K4 is a minor of G if and only if K4 is a minor of G∗. This implies the
following corollary of Theorem 3.

Corollary 4. Every plane graph G admits an edge-partition {E1, E2} such that G/E1

and G/E2 are series-parallel.

With this in mind, Oxley [9] asked the following question.

Question 5 (Oxley). For a cographic matroid M , is there a bipartition {S, T} of the
ground set such that M\S and M\T are series-parallel?

Oxley’s question led the second author to conjecture the following generalization of
Corollary 4.

Conjecture 6 (Oporowski, unpublished). Every graph G admits a partition {E1, E2} of
its edges such that each of G/E1 and G/E2 is series-parallel.

As a first observation, we note that contracting edges in a graph does not raise its
tree-width. In particular, the tree-width of a graph is equal to the maximum tree-width
of its 2-connected blocks. We investigate this issue more fully in Section 2, and prove that
it suffices to consider only 2-connected graphs.

As a second observation, we note that contracting a spanning tree in a (connected)
graph results in a graph with a single vertex. Therefore, if a graph G = (V,E) contains
two edge-disjoint spanning trees T1 and T2, we can partition the edge set into E1 = E(T1)
and E2 = E\E(T1); in this case, G/E1 and G/E2 are singletons. Both Nash-Williams [8]
and Tutte [12] proved theorems characterizing the graphs that contain k edge-disjoint
spanning trees. A nice statement and proof can be found on pages 48–52 of [4].

Theorem 7 (Nash-Williams; Tutte). A graph contains k edge-disjoint spanning trees if
and only if for every partition (V1, . . . , Vl) of its vertex set, it has at least k(l− 1) distinct
(Vi, Vj)-edges, where i and j are in {1, . . . , l}.

The following immediate corollary is relevant to our purposes.

Corollary 8. Every 4-connected graph contains two edge-disjoint spanning trees.

Therefore Conjecture 6 holds for all 4-connected graphs. The question remains: What
about graphs of connectivity two and three?

Demaine, Hajiaghayi, and Mohar [3] have investigated the problem of partitioning the
edge set of a graph embedded on a surface, such that contracting any partite set bounds
the tree-width. They proved the following very powerful theorem.
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Theorem 9 (Demaine, Hajiaghayi, and Mohar). For every two integers g and k such
that g > 0 and k > 2, and for every graph G of Euler genus at most g, the edges of G
can be partitioned into k sets such that contracting any one of the sets results in a graph
of tree width at most O(g2k).

In this paper, we examine a few specific surfaces—namely the plane, the projective
plane, and the torus—to improve significantly the bounds obtained in [3]. We prove the
following two theorems.

Theorem 10. Every projective-planar graph G admits a bipartition {X, Y } of E(G) such
that G/X and G/Y have tree-width at most three.

Theorem 11. Every toroidal graph G admits a bipartition {X, Y } of E(G) such that
G/X and G/Y have tree-width at most three and four, respectively.

Theorem 10 is restated and proved in Section 3 as Theorem 22. Theorem 11 is restated
and proved in Section 5 as Theorem 31. Conjecture 6 in general remains unresolved, but
Theorems 10 and 11 may be considered partial results.

In Section 2, we provide a variety of technical lemmas used in the proof of Theorem 22.
Our method overall, in Sections 2 and 3, is roughly as follows:

1. Reduce the problem to the case of cubic, 2-connected graphs;

2. Look at a surface dual G∗ of an arbitrary cubic, 2-connected projective plane graph
G;

3. Find a disk in the projective plane that contains all the vertices of G∗ and that
induces a connected (spanning) subgraph;

4. Decompose G∗ into nested subgraphs called distance layers ;

5. Obtain a bipartition of E(G∗) by grouping edges in alternating distance layers;

6. Prove that the corresponding bipartition {X, Y } of E(G) satisfies the conclusion of
Theorem 22.

In Section 4, we prove some technical lemmas used in the proof of Theorem 31. Our
method, overall, in Sections 4 and 5, is roughly as follows:

1. Reduce the problem to cubic, 2-connected toroidal graphs;

2. Prove that certain 4-connected plane triangulations admit edge-partitions into two
outerplanar graphs;

3. Use (2) to prove that all planar graphs admit a particular edge-partition into two
series-parallel graphs;

4. Find a suitable set of pairwise non-adjacent edges in our toroidal graph whose
deletion produces a planar graph;
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5. Use the partition from (3) on the planar graph from (4) to produce an edge-partition
{X, Y } of our toroidal graph G;

6. Prove that {X, Y } satisfies the conclusion of Theorem 31.

Any terminology not defined here can be found in [4]. In this paper, we allow graphs
to have loops and multiple edges. Let G be a graph. A block of G is a subgraph of G
isomorphic to a loop, a cut-edge, or a maximal 2-connected subgraph of G. A graph H is
a minor of a G if H can be obtained from a subgraph of G by contracting edges. If T is
a tree and V = {Vt}t∈V (T ) is a collection of sets of vertices of G, then the pair (T,V) is a
tree-decomposition of G if the following hold:

(T1) V (G) =
⋃

t∈V (T ) Vt;

(T2) For every edge e ∈ E(G), there is a vertex t ∈ V (T ), such that e ∈ G[Vt];

(T3) If t1, t2, t3 are vertices of T so that t2 lies on the unique (t1, t3)-path in T , then
Vt1 ∩ Vt3 ⊆ Vt2 .

The sets Vt are called bags. Given a tree-decomposition of G, the width of the decompo-
sition is one less than the size of a largest bag. The tree-width of G, notated as tw(G), is
the minimum width among all tree-decompositions of G. Note that the tree-width of a
tree with at least one edge is one. It is well-known that a graph has tree-width at most
two if and only if it has no K4-minor; we call such graphs series-parallel.

In this paper, we freely consider graphs as topological spaces, in the natural way, and
we therefore mention the following notation: For a subset S of a topological space, the
closure of S is denoted S, the boundary of S is denoted ∂S, and the interior of S is
denoted S̊. The model we use for the projective plane is based on the unit disk in R2

with the supremum metric d∞, defined as d∞((x1, y1), (x2, y2)) = max(|x2−x1|, |y2− y1|).
Then, the projective space is understood as the unit disk U , which appears as a square
{(x, y) : −1 6 x 6 1,−1 6 y 6 1}, in which every point (x, y) in its boundary ∂U is
identified with the antipodal point (−x,−y). We will consider piecewise-linear embeddings
of graphs in the projective plane, in which each vertex is represented as a point in the
interior of U , and each edge is either represented by a single polygonal arc that avoids
∂U , or by two disjoint polygonal arcs, each meeting ∂U in exactly one point, with these
two points being antipodal; the edges of the latter type will also be called antipodal. It is
well known that any graph embedding in the projective plane may be expressed in such
a way without changing its combinatorial structure. An open disk D in U is clean with
respect to a graph G embedded in the projective plane if it is concentric with U and has
radius sufficiently close to 1 (again, measured by d∞) so that it contains all vertices of G,
the boundary of D meets only the antipodal edges of G, and each antipodal edge appears
in U\D as two disjoint straight line segments.

If a graph G is embedded in a surface Γ, a face of G is a connected component of
Γ\G. An edge e is incident to a face F if e ⊆ ∂F . The representativity of an embedded
graph G is the least number of points at which a non-contractible cycle meets G, and is
denoted rep(G).

the electronic journal of combinatorics 22(4) (2015), #P4.5 4



If H is a subgraph of G, an H-bridge of G is a subgraph of G consisting either of

(1) an edge whose endpoints are in H but is itself not in H , or

(2) a connected component B of G\H , together with the edges with one endpoint in B
and one endpoint in H .

The vertices of attachment of an H-bridge B of G are the vertices of B that lie in H .

2 The case of the projective plane — introductory results

Arnborg, Corneil, and Proskurowski [1] proved the following forbidden-minor characteri-
zation of graphs with tree-width at most three.

Theorem 12 (Arnborg, Corneil, and Proskurowski). A graph G has tree-width at most
three if and only if none of K5, M6, M8, M10 is a minor of G; where M6 is the octahedron,
M8 is the Möbius ladder on eight vertices (also called the Wagner graph), and M10 is the
pentagonal prism, as depicted in Figure 1.

K5 M6 M8 M10

Figure 1: The forbidden minors for graphs with tree-width at most three.

The next three lemmas express basic facts about tree-width and contraction, and
together they imply that it suffices to prove Theorems 22 and 31 for cubic, 2-connected
graphs. We omit their proofs.

Lemma 13. If G is a graph and H is a 2-connected minor of G, then H is a minor of
some 2-connected block of G.

Lemma 14. Let G be a connected graph, let G1, G2, . . . , Gk be the blocks of G, and let
m > 1 and n > 1. Then if each E(Gi), for i ∈ {1, . . . , k}, admits a bipartition {Xi, Yi}
such that tw(Gi/Xi) 6 m and tw(Gi/Yi) 6 n, then E(G) admits a bipartition {X, Y }
such that tw(G/X) 6 m and tw(G/Y ) 6 n.

Lemma 15. Let G and G′ be graphs, such that G′ is cubic and can be obtained from G by
suppressing vertices of degree two and one, and by repeatedly splitting vertices of degree
greater than three. If E(G′) admits a partition {X ′, Y ′} such that tw(G′/X ′) 6 m and
tw(G′/Y ′) 6 n, where m > 2 and n > 2, then E(G) admits a partition {X, Y } such that
tw(G/X) 6 m and tw(G/Y ) 6 n.
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The following lemma finds an appropriate “outer layer” with controlled structure,
whose deletion yields a connected planar graph.

Lemma 16. Let G be a 2-connected, non-planar, projective plane triangulation. There is
a closed curve α in the projective plane that bounds a disk D such that the following hold:

(1) α ∩ V (G) = ∅;

(2) V (G) ( D;

(3) |α ∩ e| ∈ {0, 2} for every e ∈ E(G);

(4) The graph induced by the edges that avoid α is connected.

Proof. Let G be a 2-connected embedding of a non-planar graph in the projective plane in
which each face has exactly three edges in its boundary. We can represent the projective
plane by a unit disk U as measured by d∞, and can also represent G as a piecewise-linear
drawing in U . Let D be a clean disk with respect to this drawing, let α be the boundary
of D, and let H be the graph induced by the edges that are contained in D. Assume now
that the representation of G was initially chosen so that H has the smallest number of
connected components possible. Notice that if H is connected, then the conditions (1)–(4)
in the statement of the lemma are satisfied. See Figure 2.

α

∂U

H

Figure 2: When H is connected, the conclusion follows.

Suppose now that H has k connected components, with k > 2. Let b1, . . . , bp be the
points in α ∩ G. For each bi, with i ∈ {1, . . . , p}, there is an edge-segment, lying in D,
with endpoints bi and vi, for some vertex vi of G. And we know that each vertex of G lies
in some component of H ; we say that bi is connected to the said component of H . Notice
that b1, . . . , bp divides α up into p closed segments, which we call S1, . . . , Sp. For each Sm

whose endpoints bi and bj are connected to distinct components of H , pick a point in Sm
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that avoids {b1, . . . , bp}; let the resulting points be z1, . . . , zq. Notice that z1, . . . , zq divide
α up into q closed segments, which we call T1, . . . , Tq. Then the points in {b1, . . . , bp}∩Ti,
for each i ∈ {1, . . . , q}, are all connected to the same component of H . We say that a
component of H is represented by Ti if the points of {b1, . . . , bp}∩Ti are connected to that
component. Since G is connected, we know that every component of H is represented by
at least one of T1, . . . , Tq. See Figure 3.

∂U

C1

C2

C3

T1

T2

T3

T4

Figure 3: The components C1, C2, C3 of H are represented by the segments T1, T2, T3,
T4.

Claim 17. Some component of H is represented by exactly one of T1, . . . , Tq.

We will use induction to prove that if C is a component of H that is represented by
more than one of T1, . . . , Tq, then there is a component C ′ of H that is represented by
fewer of T1, . . . , Tq than is C.

If Claim 17 fails, then pick a component C of H , segments Ti and Tj , and a sequence
of segments T ′

1, . . . , T
′

r such that the following hold:

(1) Ti and Tj are distinct representatives of C;

(2) None of T ′

2, . . . , T
′

r−1 are representatives of C;

(3) T ′

1 = Ti;

(4) T ′

r = Tj ;

(5) |T ′

l ∩ T ′

l+1| = 1, for all l ∈ {1, . . . , r − 1};

(6) no other choice of C, Ti, Tj , and T ′

1, . . . , T
′

r satisfying (1)–(5) yields a smaller value
of r.
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(In Figure 3, if we take C to be C3, then a suitable sequence would be T2, T3, T4.) Let C ′

be a component of H represented by at least one segment in T ′

2, . . . , T
′

r−1. According to
the projective plane topology, we know that all the segments that represent C ′ lie in T ′

2,
. . . , T ′

r−1, and (6) ensures that the component C ′ is innermost with respect to T ′

1, . . . , T
′

r.
Therefore C ′ is represented by fewer of T1, . . . , Tq than is C, and hence Claim 17 holds.

We will now prove the following statement, which contradicts our choice of the repre-
sentation of G, and therefore concludes the proof of the lemma.

Claim 18. There is a disk D′ and a closed curve α′ bounding D′ that satisfy conditions
(1), (2), and (3) of the statement of the lemma (when α′ replaces α, and D′ replaces D),
such that the graph induced by the edges contained in D′ has fewer than k components.

Various parts of the construction of α′ are illustrated in Figure 4. Let C be a com-
ponent of H that is represented by exactly one of T1, . . . , Tq. Without loss of generality,
suppose C is represented by T1.

∂U

α

C

b1

b′1

b2

b′2

c1

c′1
c2

c′2 d1

d2

α′

α′

Figure 4: We aim to re-route α from Figure 3 to obtain the curve α′ shown here.

Let S1, . . . , St be the components of G\D whose closures meet T1, listed in order in
which they meet T1. Let b1 = S1∩∂U , let b2 = St∩∂U , and let β be a polygonal arc that
is a part of ∂U , has b1 and b2 as endpoints, and whose closure meets all of S1, . . . , St. Let
b′1 and b′2 be the antipodal points of, respectively, b1 and b2. Note that if one of b

′

1 and b′2
lies on β, then so does the other, and then H has only one other component besides C,
for which the analogous statement does not hold. So, we may assume that neither b′1 nor
b′2 lies on β. Let β ′ = ∂U\β.

Since G is 2-connected and has a piecewise-linear embedding, C contains a path whose
union with S1 and St forms a polygonal arc β ′′ such that the closed disk bounded by β∪β ′′

contains C ∪ S1 ∪ · · · ∪ St. It is easy to see that since the embedding of G is clean, U
contains a polygonal arc γ, sufficiently close to β ′′, that avoids G, meets U\D in two
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disjoint straight line segments, and meets ∂U exactly at its endpoints c1 and c2, which
lie on β ′. Let c′1 and c′2 be the points antipodal to, respectively, c1 and c2. By switching
the names of c1 and c2, if necessary, we may assume that the points b1, c1, c

′

2, b
′

2, b
′

1, c
′

1,
c2, and b2 appear on ∂U in the order listed. Further, U contains another polygonal arc δ,
sufficiently close to γ, that avoids both G and γ, meets U\D in two disjoint line segments,
one of which meets ∂U in a point d1 that lies on β ′ between c1 and c′2, while the other
meets ∂U in a point d2 that lies on β ′ between c′1 and c2. Let the points in which δ meets
α be d′′1 and d′′2 so that d1, d

′′

2, d
′′

1, and d2 appear on δ in the order listed. Let ε1 be a
straight line segment that joins c′1 to a point c′′1 on α so that ε1 avoids all of G, γ, and δ,
and, similarly, let ε2 be a straight line segment that joins c′2 to a point c′′2 on α so that
ε2 avoids all of G, γ, δ, and ε1. Let ζ1 and ζ2 be segments of α that avoid γ, and join,
respectively, c′′1 to d′′1, and c′′2 to d′′2.

Now we define α′ = γ ∪ (δ ∩Di)∪ ε1 ∪ ε2 ∪ ζ1 ∪ ζ2. Then α′ and the disk D′ it bounds
satisfy the assertion 18, and the conclusion of the lemma follows.

Duality in topological graph theory is a far less versatile concept than, for example,
in matroid theory, since all duals are tied to a particular embedding. And any particular
graph may admit numerous distinct embeddings, with variety in the number of faces. If
there are embeddings of a graph G with distinct numbers of faces, then any surface duals
of these embeddings will not be isomorphic, since they will have a different number of
vertices. For example, we may embed K4 in the torus in the two ways represented in
Figure 5.

Figure 5: Toroidal embeddings of K4, with a different number of faces.

In Figure 5, we see that the embedding on the left has four faces, and the embedding on
the right has two faces. Therefore the surface duals of these embeddings will have distinct
numbers of vertices. Hence the surface duals of these embeddings are non-isomorphic, as
graphs.

Given a graph G embedded in a surface, the following easy lemma, which we mention
without proof, allows us to speak of the surface dual of G, which is a graph, not embedded
in a surface, and is isomorphic to all surface duals of G.

Lemma 19. Let G be a graph embedded in a surface. Then all surface duals of G are
isomorphic, as graphs.

The following lemma expresses an elementary fact about graph duality on the projec-
tive plane.
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Lemma 20. Let G be a non-planar projective plane graph, and let G∗ be a surface dual
of G. Let B1 and B2 be distinct blocks of G such that E(B1) ∩ ∂F and E(B2) ∩ ∂F are
non-empty, for some face F of G. Let E∗

B1
and E∗

B2
be the edges of G∗ corresponding, via

duality, to E(B1) and E(B2), respectively. Then E∗

B1
and E∗

B2
lie in distinct blocks of G∗.

Proof. Assuming the conditions of the lemma, we leave it to the reader to check that the
vertex of G∗ corresponding to F induces a 1-separation in G∗ that separates B1 from B2.
(The non-planarity of G ensures that precisely one block is non-planar. The other blocks
are arranged accordingly.)

The next lemma is another elementary fact about graph duality. We omit its proof.
It is the central premise of the proof-techniques in the main results of this chapter.

Lemma 21. Let G be a connected graph embedded on the projective plane, and let G∗

be a surface dual of G. Let X be a subset of edges of G, and let X∗ be the edges of G∗

corresponding, by duality, to the edges X. Then G/X is isomorphic, as a graph, to the
surface dual of G∗\X∗.

3 The case of the projective plane — main result

We are now ready to prove our main result on projective-planar graphs.

Theorem 22. For any projective-planar graph G, there is a bipartition {X, Y } of E(G)
such that G/X and G/Y have tree-width at most three.

Proof. Let G be a projective-planar graph. If G is planar, the conclusion follows from
Corollary 4. Suppose, therefore, that G is not planar. By Theorem 12, it suffices to find
a bipartition {X, Y } of E(G) such that G/X and G/Y contain no minor isomorphic to
K5, M6, M8, and M10.

By Lemmas 14 and 15, we may suppose that G is 2-connected and cubic. Embed G
in the projective plane, and let G∗ be a surface dual of G. Then G∗ is a 2-connected,
non-planar, projective plane triangulation. Lemma 16 gives us a particular closed curve
α and disk D. Let G∗

−1 be the subgraph of G∗ induced by the edges that meet α. Let
V0 consist of the vertices of G∗ that lie on the boundary of the face of G∗\E(G∗

−1) that
contains α. See Figure 6. For i ∈ {1, 2, 3, . . .}, let Vi consist of the vertices of G∗ that
are a distance i from V0. For i ∈ {0, 1, 2, . . .}, let G∗

i be the graph induced by the edges e
that satisfy one of the following:

(1) both endpoints of e lie in Vi; or

(2) e has one endpoint in Vi and one endpoint in Vi+1.

We call the graphs G∗

i distance layers. Let X∗ =
⋃

k>0E(G∗

2k−1), and let Y ∗ =
⋃

k>0E(G∗

2k). Let X and Y consist of the edges of G that correspond, via duality, to the
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edges in X∗ and Y ∗, respectively. Then {X, Y } is a bipartition of the edges of G. We
now prove that G/X and G/Y have no minors isomorphic to K5, M6, M8, and M10. By
Lemma 21, we know that G/X and G/Y are isomorphic to the surface duals of G∗\X∗

and G∗\Y ∗, respectively.

∂U

α

C1

C1

Figure 6: Left: The boundary of the shaded regions contains V0. Note that the graph
represented here, G∗, is a triangulation; for clarity, only some representative edges are
shown. Right: A closer look at C1. The shaded regions represent components of G∗

1 ∪
G∗

2 ∪G∗

3 ∪ · · · that lie in the disk bounded by C1.

We now examine the structure of the surface duals of G∗\X∗ and G∗\Y ∗. We know
that G∗\X∗ = G∗

0∪G∗

2∪G∗

4∪· · · and G∗\Y ∗ = G∗

−1∪G∗

1∪G∗

3∪· · · . We know as well that
G∗

i and G∗

j are vertex-disjoint if |i− j| > 1. Then each connected component of G∗\X∗ is
a connected component of some G∗

2i, with i > 0; and each connected component of G∗\Y ∗

is a connected component of some G∗

2i−1, with i > 0.
By Lemma 20, we can conclude the following: No block B of the surface dual of G∗\X∗

(or G∗\Y ∗) contains edges corresponding, via duality, to two distinct blocks of G∗\X∗ (or
G∗\Y ∗).

Hence, using Lemma 13, it suffices to show that for each block B of G∗\X∗ and G∗\Y ∗,
the surface dual of B contains no minor isomorphic to K5,M6,M8, and M10. We now
prove the following:

Claim 23. The surface duals of G∗\X∗ and G∗\Y ∗ contain no K5- and no M8-minor.

Since E(G∗

−1) is in X∗, we know that G∗\X∗ is embedded in the disk D. Therefore we
can find a surface dual of G∗\X∗ that lies in D; and since D is a disk, this surface dual is
planar. Therefore, since K5 and M8 are not planar, the surface dual of G∗\X∗ contains
no K5- and no M8-minor.

Let F−1 be the face of G
∗\E(G∗

0) in which
(

E(G∗

0)
)

l̊ies. Then F−1 is a face of G∗\Y ∗.
Let f−1 be the vertex of the surface dual of G∗\Y ∗ corresponding to F−1, and suppose,
without loss of generality, that f−1 ∈ D.
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We first prove that G∗

−1 has only one face. Suppose that two edges uv and uw in G∗

−1

are adjacent in the ordering induced by α. Since G∗ is a triangulation, we know that vw
is an edge of G∗

0. Let α
′ be a component of α\G∗ with endpoints α∩uv and α∩uw. Then

α′ lies in F−1. Since α′ was chosen arbitrarily, we know that all components of α\G∗ lie

in F−1. Therefore G
∗

−1 lies in F̊−1. Hence G
∗

−1 has only one face. See Figure 7. Hence the
surface dual of G∗

−1 has only one vertex, namely f−1, and |E(G∗

−1)| loops.

∂U

α

Figure 7: G∗

−1 has only one face.

Notice that G∗\(Y ∗∪G∗

−1) lies in D. Therefore we can find a surface dual of G∗\(Y ∗∪
G∗

−1) that lies in D, ensuring that the vertex corresponding to the face containing F−1 is
f−1; and since D is a disk, we know that this surface dual is planar. Therefore the surface
dual of G∗\Y ∗ is a planar graph containing a vertex f−1, to which we add |E(G∗

−1)| loops
at f−1. Therefore the surface dual of G∗\Y ∗ contains no K5- and no M8-minor. This
concludes the proof of Claim 23.

The following definition will be useful: for each i ∈ {0, 1, 2, . . .}, an internal face of
G∗

i is a face of G∗

i that avoids α. We now prove the following:

Claim 24. For each i ∈ {0, 1, 2, . . .}, every (Vi, Vi)-edge e that is incident to an internal
face of G∗

i lies in a 3-cycle of G∗

i .

Let i ∈ {0, 1, 2, . . .} and let uv be a (Vi, Vi)-edge that is incident to an internal face F
of G∗

i . Then there is a vertex w and an edge uw, such that w 6= v and uw is incident to
F . Since G∗ is a triangulation, we know that there is a triangular face F ′ of G∗ such that
the following hold:

(1) uv is incident to F ′;

(2) F ′ ⊆ F .
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Let w′ be the unique vertex incident to F ′ and distinct from u and v. Since w′ is
adjacent to u, we know that w′ ∈ Vi ∪Vi+1. Therefore uw

′ and vw′ are edges of G∗

i . Then
uvw′ is a 3-cycle of G∗

i containing uv. This concludes the proof of Claim 24.
Using the definition of G∗

i , with i ∈ {0, 1, 2, . . .}, and Claim 24, we see that each
connected component of G∗

i , with i ∈ {0, 1, 2, . . .}, is of the form described by the following
construction:

(1) Let T be a tree;

(2) For each v ∈ V (T ), let Pv be a graph consisting of either an edge or a cycle with at
least three edges, such that Pu and Pv are disjoint when u 6= v;

(3) For each edge e in T , with endpoints u and v, let xe,u and xe,v be arbitrary vertices
of Pu and Pv, respectively;

(4) Let L′ be the graph formed from the graph
⋃

v∈V (T ) Pv by identifying, for every

uv ∈ E(T ), the vertices xu and xv;

(5) Embed L′ in D;

(6) Let L be the graph (embedded in D) formed from L′ by doing the following, for
each cycle C in L0:

(a) Let DC be the closed disk bounded by C;

(b) Let ZC be a finite collection of points in D̊C ;

(c) Embed any number of
(

V (C), V (C)
)

-edges in D̊C\ZC;

(d) Embed
(

V (C), ZC

)

-edges in such a way that each
(

V (C), V (C)
)

-edge lies in a
3-cycle.

See Figures 8 and 9 for illustrations of the construction.
We see that each block of G∗

i , with i ∈ {1, 2, . . .}, that contains more than one edge is
contained in some component of G∗

0\
{

E(Pv) : v ∈ V (T ), and Pv is an edge
}

. Therefore,
it suffices for us to prove the following:

Claim 25. The surface dual of an arbitrary component of G∗

0\
{

E(Pv) : v ∈ V (T ), and
Pv is an edge

}

contains no M6- and no M10-minor.

Let F0 be the face of G∗

0 that contains α. We know that the boundary of F0 may
contain cycles of G∗

0; and we know that the blocks of G∗

0 (other than the blocks that
consist of single edges) are those subgraphs of G∗

0 that are contained in the closed disks
bounded by those cycles. Let C be a cycle contained in the boundary of F0. (Then C = Pv

for some v ∈ V (T ).) Let D1 be the closed disk bounded by C. We consider now the edges
of G∗

0 embedded in D1. Let J consist of all chords of C. (Note that all such chords
are embedded in D1.) Let {v1, v2, . . . , vk} = V1 ∩ D1; and for each i ∈ {1, . . . , k}, let Si

consist of all (V0, vi)-edges. Let K = {S1, . . . , Sk}. Then K consists of all (V0, V1)-edges
that lie in D1. We know that every edge of G∗

0 embedded in D1 is in C ∪ J ∪K. Then
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C
D

Figure 8: We see here the first five steps in the construction. The tree T (here, a path)
is represented with thick gray vertices and edges.

C C

Figure 9: We see here step six of the construction. The figure on the left shows steps
(6a), (6b), and (6c). The figure on the right shows step (6d).

G∗[C ∪ J ∪K] is an arbitrary component of G∗

0\{E(Pv) : v ∈ V (T ), and Pv is an edge}.
We must therefore show that the surface dual of G∗[C ∪ J ∪K] contains no M6- and no
M10-minor.

We now construct a surface dual of G∗[C∪J ∪K]. Let f0 be a point in D∩D1. Notice
that the surface dual of G∗[C ∪J ] is a tree, with all its leaves identified (notice that these
leaves all lie outside of D1); let R0 be such a graph, embedded in D1. Without loss of
generality, we may assume the following:

(1) f0 is the vertex of R0 to which the leaves were identified;

(2) R0 avoids {v1, . . . , vk}.

Given R0, we obtain a sequence R1, . . . , Rk of graphs by performing the following
inductive process on Ri−1:
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(1) Let F i
1 be the face of G∗[C ∪ J ∪ {S1 ∪ · · · ∪ Si−1}] in which vi lies;

(2) Let fi be the vertex of Ri−1 corresponding to F i
1;

(3) Let (n1, n2, . . . , nl) be the rotation scheme at fi of Ri−1;

(4) Delete fi (and all the edges incident to it) from Ri−1 and embed a cycle Ci of length
|Si| (possibly a loop or doubled edge) in the resulting face such that Ci bounds a
closed disk that avoids {vi+1, . . . , vk} ∪ (Ri−1\fi);

(5) For each j ∈ {1, . . . , l}, embed the appropriate
(

V (Ci), nj

)

-edge.

Thusly we obtain Rk, which is a surface dual of G∗[C ∪ J ∪ K]. If M6 or M10 is to
be a minor of Rk, then Rk must contain two disjoint, nested cycles Z1 and Z2, and three
pairwise disjoint (Z1, Z2)-paths. See Figure 10.

Z1

Z2

Rk

Figure 10: When M6 or M10 is a minor of Rk, then Rk contains this substructure.

We prove now that Rk contains no such cycles. Let Z1 and Z2 be disjoint nested cycles
in Rk, and suppose that Z2 is contained in the disk bounded by Z1. Notice that cycles in
Rk are of two types: those that contain f0 and those that do not contain f0. In step (4) of
the construction of Ri from Ri−1, we specified that the closed disk bounded by Ci avoid
{vi+1, . . . , vk}. Therefore no pair of C1, . . . , Ck are nested. Since {v1, . . . , vk} are pairwise
non-adjacent in G∗

0, we know that no two distinct Ci and Cj (with i 6= j) share an edge.
Therefore, every cycle in Rk that avoids f0 is in {C1, . . . , Ck}. Therefore Z2 = Ci for some
i ∈ {1, . . . , k}, and Z1 contains f0. Then Z1\f0 is a path in the tree-like structure Rk\f0,
and we know that there are not two disjoint (Z2, Z1\f0)-paths in Rk\f0. Therefore three
pairwise disjoint (Z1, Z2)-paths do not exist in Rk. Hence Rk contains no M6- and no
M10-minor. This concludes the proof of Claim 25 and Theorem 22.

4 The case of the torus — introductory results

In this section, we need a few specialized definitions. Suppose that G is a plane graph
with a 3-cycle xyz. We define the interior of xyz, notated int(xyz), as the subgraph of G
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induced by the edges whose interiors lie in the interior of the disk bounded by xyz. Note
that no edge of xyz lies in int(xyz). We define the exterior of xyz, notated ext(xyz), as
the subgraph induced by the edges whose interiors lie outside of the disk bounded by xyz.

The next lemma is an easy and well-known fact about representativity. The curve it
provides will allow us to find a suitable set of edges, whose deletion produces a suitable
planar graph.

Lemma 26. If G is a graph embedded in a surface, then there is a closed, non-contractible
curve α such that |α ∩G| = rep(G) and α ∩G ⊆ V (G).

We will need the following well-known theorem of Tutte [11], which, notably, implies
that 4-connected planar graphs are Hamiltonian.

Theorem 27 (Tutte). Let G be a plane graph, and let e and f be distinct edges of G such
that e is not a cut-edge and such that e and f both lie in some cycle that is contained in
the boundary of some face. Then G contains a cycle C that satisfies the following:

(1) e and f are edges of C;

(2) Every C-bridge has at most three vertices of attachment;

(3) If a C-bridge B shares a vertex with a cycle C ′ such that C ′ contains e and is con-
tained in the boundary of some face, then B has exactly two vertices of attachment.

We will need the following lemma, which comes from [10].

Lemma 28 (Sanders). Let G be a 4-connected plane graph. If C is a cycle of G of length
at least four, and int(C) is 3-connected, then int(C) has a Hamilton cycle containing any
three edges of C.

We will also use the following lemma, which is a slight modification of Lemma 2.3
in [5].

Lemma 29 (Ding, Oporowski, Sanders, Vertigan). Let G be a 4-connected plane trian-
gulation with the cycle xyz as the boundary of the infinite face, and suppose that z has
degree greater than three. Then G has an edge-partition {A,B} such that the following
hold:

(1) Each of G[A], G[B] contains xyz and is outerplanar;

(2) Every path in A from x or y to z uses xz or yz;

(3) B has no path between any of x, y, z except those contained in xyz;

(4) A contains every edge of G that has an endpoint in {x, y}.
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Proof. Let G be a 4-connected plane triangulation with the cycle xyz as the boundary of
the infinite face, and suppose that z has degree greater than three. Let C be the cycle of
G that bounds the infinite face of G− z. Let vx be the unique neighbor of x in C that is
not y, and let vy be the unique neighbor of y in C that is not x. Let D = {vxx, vyy, xy}.
Since G is 4-connected, we know that vx 6= vy. And since z has more than three neighbors
in G, we know that either |V (G− z)| = 3 or |E(C)| > 4. Therefore, whether trivially or
by Lemma 28, we know that G− z has a Hamiltonian cycle H containing D.

Let X consist of the edges of H together with E(xyz) and the edges of G lying in the
disk bounded by H . Let Y consist of E(xyz) together with the edges of G whose interiors
lie outside of the disk bounded by H .

Notice that every vertex of G[A] is incident to the face of G[A] that lies outside of the
disk bounded by H and inside of the disk bounded by xyz; therefore G[A] is outerplanar.
Notice that every vertex of G[B] is contained in the face of G[B] that contains the disk
bounded by H ; therefore G[B] is outerplanar. Hence condition (1) of the lemma holds.
Since A contains no edges incident to z except for xz and yz, we know that every path
in A from x or y to z uses xz or yz. Hence condition (2) of the lemma holds. Since the
only edges in B that have an endpoint in {x, y} are {xy, xz, yz}, we know that B has
no path between any of x, y, z except those contained in xyz. Hence condition (3) of the
lemma holds. And finally, since every edge with an endpoint in {x, y} is either in xyz,
in H , or contained in the disk bounded by H , we know that A contains all such edges.
Hence condition (4) of the lemma holds.

The following theorem is a strengthening of Theorem 2.2 from [5].

Theorem 30. If G is a plane graph and v is a vertex of G, then the edges of G can
be bipartitioned into {S, T} such that G[S] and G[T ] are series-parallel and all the edges
incident to v lie in S.

Proof. Let S consist of all triples (G, e, f) satisfying the following three conditions:

(1) G is a plane graph;

(2) The edges e and f of G are distinct, incident, and co-facial;

(3) G does not admit the desired edge-partition with respect to v, where v is taken to
be the vertex shared by e and f .

Let (G, e, f) ∈ S be a triple such that G has the fewest vertices. Without loss of generality,
we may suppose that G is a triangulation, and via a stereographic projection, we may
suppose that e and f lie on the infinite face. Clearly |V (G)| > 4.

Case 1. Suppose that G is 4-connected. Then Theorem 27 yields a Hamiltonian cycle
H , which contains e and f . Let v be the vertex shared by e and f . Since e, f , and v lie
on the boundary of the infinite face, we see that all edges incident to v lie either on H or
in the disk bounded by H . Let S be the graph induced by H and the edges that lie inside
of the disk bounded by H . Let T be the graph induced by the edges that lie outside of
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the disk bounded by H . Then S and T are outerplanar and therefore series-parallel, and
all the edges incident to v lie in S.

Case 2. Suppose thatG is not 4-connected. ThenG has a separating triangle. Let xyz
be a separating triangle such that int(xyz) is minimal with respect to number of vertices.
If e and f are contained in xyz, then xyz is the boundary of the infinite face, and int(xyz)
is not connected; this contradicts the fact that the interior of a separating triangle in a
(simple) plane triangulation is connected. Therefore one of e, f is not contained in xyz.
Furthermore, notice that xyz contains at most one edge on the boundary of the infinite
face. Therefore, without loss of generality, we may assume that if xyz contains an edge of
the infinite face, then e = xy. Let I = xyz∪ int(xyz), and let E = xyz∪ ext(xyz). Notice
that e and f lie in E. By minimality, we know that E has an edge-partition {S ′, T ′} into
two series-parallel graphs such that the edges incident to v are contained in S ′.

If there is only one vertex u in the interior of xyz, then we obtain the desired partition
of the edges of G by letting S = S ′ ∪ {ux, uy} and T = T ′ ∪ uz. Since the property of
being series-parallel is retained under doubling edges and subdividing edges, this partition
is as desired.

Suppose, then, that there is more than one vertex in int(xyz). Since the int(xyz) is
minimal with respect to vertices, we know that I has no separating triangles. Hence I is
4-connected, and the degrees of x, y, and z in I are each greater than three. Thus I has
an edge-partition {A,B} as specified in Lemma 29. Let S = S ′ ∪ (A\{xy, xz, yz}), and
let T = T ′ ∪ (B\{xy, xz, yz}). Since A contains all edges of I with an endpoint (with
respect to G[I]) in {x, y}, we know that any edges of G[I] that are incident to v lie in
S. Recall that A contains no paths between x or y and z except xz and yz. Therefore
we may obtain S from S ′ by doubling and subdividing edges and by adding leaves to x
and y. Therefore S is series-parallel. Recall also that B contains no paths between any
of x, y, z except those contained in xyz. Therefore we may obtain T from T ′ by adding
leaves to z. Therefore T is series-parallel.

5 The case of the torus — main result

We now prove our main result on toroidal graphs.

Theorem 31. If G is a toroidal graph, then there is a bipartition {X, Y } of E(G) such
that tw(G/X) 6 3 and tw(G/Y ) 6 4.

Proof. Let G be a toroidal graph. By Lemmas 15 and 14, we may suppose that G is
cubic and 2-connected. Our first goal is to find a suitable set Z of edges that satisfies
a few specified properties, most notably that G\Z is planar. If there is a closed, non-
contractible curve on the torus that meets G at precisely one interior point of one edge
e, then let Z = {e}. Otherwise, we must look more closely to find Z. Suppose that G
admits no such curve on the torus. Then the closure of each face of G is a disk.

By Lemma 26, there exists a closed, homotopically non-trivial curve Γ on the torus
such that Γ ∩G ⊂ V (G) and |Γ ∩G| = rep(G). We now prove the following:
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Claim 32. No face of G contains more than one connected component of Γ\G.

Let F be a face of G, and assume that F contains two distinct connected components A
and A′ of Γ\G. Note that for every point x in Γ∩G, every open disk about x intersects at
least two distinct faces; for otherwise we could very easily find a new curve homotopically
equivalent to Γ that intersects G one fewer times than does Γ. Therefore, since F is a
disk, we know that Γ\(A ∪ A′) consists of two connected components B and B′ and at
least one of B ∪ F and B′ ∪ F is homotopically non-trivial. Without loss of generality,
assume that B ∪ F is homotopically non-trivial. Let Γ′ be the curve consisting of B and
a segment whose endpoints are the two vertices in B ∩ F and whose interior lies in the
interior of F . Then Γ′ is a homotopically non-trivial curve that hits G only at vertices
and that hits G fewer times than does Γ. This contradicts the minimality of Γ. Therefore
Claim 32 holds.

Since every face of G is disk, and since |Γ ∩ G| = rep(G), Claim 32 implies that
|Γ ∩ e| 6 1, for every e ∈ E(G).

Let v1, v2, . . . , vk be the vertices contained in Γ. The rotation scheme at vi, for i ∈
{1, . . . , k}, will be as follows: ei,Γ, e

′

i, e
′′

i ,Γ, where ei, e
′

i, and e′′i are the three edges incident
to vi.

We will now alter Γ slightly to produce a curve Γ′ that will yield a desirable set of
edges; a set whose deletion produces a planar graph. For each vi, let Bi be an open disk
such that the following hold:

(1) vi ∈ Bi;

(2) Bi ∩G is an open star;

(3) Bi ∩G equals Bi ∩G and contains none of V (G)− vi.

Let Γ′ be the curve obtained from Γ by replacing, for every i ∈ {1, . . . , k}, the path
Bi ∩ Γ with the path on the boundary of Bi that intersects ei. Then Γ′ ∩ G consists of
precisely one interior point from ei, for each i ∈ {1, . . . , k}. Let Z = {e1, . . . , ek}. Note
that |Γ′ ∩G| = rep(G). We now prove the following:

Claim 33. The edges of Z are pairwise non-adjacent.

Assume, en route to a contradiction, that ei and ej are adjacent at vertex v, with i 6= j.
Then by Claim 32 and the fact that |Γ′ ∩ ei| = |Γ′ ∩ ej | = 1, it follows that |i − j| = 1.
Let B be an open disk such that the following hold:

(1) v ∈ B;

(2) Γ′ ∩G is an open star;

(3) B ∩G equals B ∩G and contains none of V (G)− v.

Let Γ′′ be the curve obtained from Γ′ by replacing the path Γ′ ∩ B with the path on the
boundary of B that intersects neither ei nor ej . Then Γ′′ is a non-contractible curve and
|Γ′′ ∩G| < |Γ′ ∩G|. This contradicts the minimality of |Γ′ ∩G|. Hence Claim 33 holds.
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M6 and M∗

6 M10 and M∗

10

Figure 11: M6, M10, and their plane duals.

Therefore G\Z is planar and the face created by the deletion of Z is bounded by two
cycles S and T . Let G′ be G\Z with the vertices of degree two suppressed, and embed
G′ in the plane such that S and T are facial cycles. Let H be a plane dual of G′, and let
s and t be the vertices of H associated with the faces S and T of G′. Since G′ is cubic,
we know that H is a triangulation.

Using Theorem 30, we bipartition E(H) into E ′

1 and E ′

2 such that all the edges incident
to s lie in E ′

1, and H\E ′

1 and H\E ′

2 are series-parallel. Let Et consist of the edges incident
to t, and let E1 = E ′

1\Et and E2 = E ′

2 ∪ Et. Then H\E2 is a subgraph of H\E ′

2 and
therefore is series-parallel. Hence, by Lemma 21, we know that G/E2 is series-parallel.

We see that H\E1 can be obtained from H\E ′

1 by adding a vertex to V (H\E ′

1) and
adding any number of edges between that vertex and the rest of the vertices in H\E ′

1.
We know that the unique plane dual of M6 is the cube, and the unique plane dual of M10

is the double 5-wheel. See Figure 11.
Furthermore, both the cube minus any vertex and the double 5-wheel minus any vertex

contain a K4-minor. Therefore, since H\E ′

1 contains no K4-minor, we know that H\E1

contains no minor isomorphic to the cube or the double 5-wheel. Hence, by Lemma 21, we
know that G′/E1 has no minor isomorphic to M6 or M10. And by planarity, we know that
G′/E1 has no minor isomorphic to K5 or M8. Hence tw(G′/E2) 6 2 and tw(G′/E1) 6 3.
Furthermore, S ⊆ E1 and T ⊆ E2.

Let u be the vertex to which S is contracted in G′/E1, and let v be the vertex to which
T is contracted in G′/E2. Then we can construct a tree decomposition of G/(E1 ∪ Z),
with width at most four, by adding u to every bag in the tree decomposition of G′/E1.
And we can construct a tree decomposition of G/E2, with width at most three, by adding
v to every bag in the tree decomposition of G′/E2. Let X = E1 ∪ Z and Y = E2. Then
{X, Y } is the desired bipartition of E(G).
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