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Abstract

We consider the problem of computing identifying codes of graphs and its frac-
tional relaxation. The ratio between the size of optimal integer and fractional so-
lutions is between 1 and 2 ln(|V |) + 1 where V is the set of vertices of the graph.
We focus on vertex-transitive graphs for which we can compute the exact fractional
solution. There are known examples of vertex-transitive graphs that reach both
bounds. We exhibit infinite families of vertex-transitive graphs with integer and
fractional identifying codes of order |V |α with α ∈ {1

4 ,
1
3 ,

2
5}. These families are

generalized quadrangles (strongly regular graphs based on finite geometries). They
also provide examples for metric dimension of graphs.

Keywords: identifying codes, metric dimension, vertex-transitive graphs, strongly
regular graphs, finite geometry, generalized quadrangles
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1 Introduction

Given a discrete structure on a set of elements, a natural question is to be able to locate
efficiently the elements using the structure. If the elements are the vertices of a graph, one
can use the neighbourhoods of the elements to locate them. In this context, Karpovsky,
Chakrabarty and Levitin [29] have introduced the notion of identifying codes in 1998. An
identifying code of a graph is a dominating set having the property that any two vertices
of the graph have distinct neighbourhoods within the identifying code. Hence any vertex
of the graph is specified by its neighbourhood in the identifying code. Initially, identifying
codes have been introduced to model fault-diagnosis in multiprocessor systems but later
other applications were discovered such as the design of emergency sensor networks in
facilities [38]. They are related to other concepts in graphs like locating-dominating
sets [36, 37] and resolving sets [1, 35].

The problem of computing an identifying code of minimal size is NP-complete in
general [11] but can be naturally expressed as an integer linear problem. Also, one can ask
how good the fractional relaxation of this problem can be. We focus on vertex-transitive
graphs since for these graphs, we are able to compute the optimal size of a fractional
identifying code. This value depends only on three parameters of the graph: the number
and degree of vertices and the smallest size of the symmetric difference of two distinct
closed neighbourhoods. Moreover, the optimal cardinality of an integer identifying code
is at most at a logarithmic factor (in the number of vertices |V |) of the fractional optimal
value.

Identifying codes have already been studied in different classes of vertex-transitive
graphs, especially in cycles [6, 21, 28, 39] and hypercubes [7, 12, 13, 27, 29]. In these
examples, the order of the size of an optimal identifying code seems to always match its
fractional value. However, the smallest size of symmetric differences of closed neighbour-
hoods is small compared to the number of vertices: either it is constant (for cycles) or it
has logarithmic order in the number of vertices (for hypercubes). Therefore we focus in
this paper on vertex-transitive strongly regular graphs that are vertex-transitive graphs
with the property that two adjacent (respectively non-adjacent) vertices always have the
same number of common neighbours. In particular, the size of symmetric differences can
only take two values and is of order at least

√
|V | if the graph is not a trivial strongly

regular graph.
Another interest of considering identifying codes in strongly regular graphs is that

they are strongly related to resolving sets. A resolving set is a set S of vertices such that
each vertex is uniquely specified by its distances to S. The minimum size of a resolving
set is called the metric dimension of the graph. If a graph has diameter 2 – as is the case
for non-trivial strongly regular graphs – then a resolving set is the same as an identifying
code except that the vertices of the resolving set are not identified. A consequence is that
the optimal size of identifying codes and the metric dimension have the same order in
strongly regular graphs. Actually, Babai [1] introduced a notion equivalent to resolving
sets in order to improve the complexity of the isomorphism problem for strongly regular
graphs. He established an upper bound of order

√
|V | log2(|V |) on the metric dimension of
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strongly regular graphs [1, 2]. He also gave a finer bound using the degree k of vertices of
order |V | log2(|V |)/k [2]. Thanks to this last bound, any family of strongly regular graphs
for which |V | is linear with k have logarithmic metric dimension. This is for example the
case of Paley graphs that have also been studied by Fijavž and Mohar [15] who gave a
finer bound. Bailey and Cameron [5] proved that the metric dimension of some Kneser
and Johnson graphs has order

√
|V |. Values for small strongly regular graphs have been

computed [4, 30]. Recently, Bailey [3] used resolving sets in strongly regular graphs to
compute the metric dimension of some distance-regular graphs.

Paley graphs give an example of an infinite family of graphs for which the optimal value
of fractional identifying code is constant but the integer value is logarithmic, and so the
gap between the two is also logarithmic. We consider another family of strongly regular
graphs that have never been studied in the context of identifying codes nor resolving
sets: the adjacency graphs of generalized quadrangles. These graphs are constructed
using finite geometries. Constructing identifying codes can be seen as a way to break the
inherent symmetry of these graphs. We give constructions of identifying codes with size
of optimal order. This order is of the form |V |α with α ∈ {1

4
, 1

3
, 2

5
} and corresponds to the

order of the fractional value.

Outline. In Section 1, we give formal definitions and classic results useful for the rest of
the paper. In Section 2, we exhibit the linear program for identifying codes, compute the
optimal value of the relaxation for vertex-transitive graphs and deduce a general bound.
In Section 3, we review known results for identifying codes in vertex-transitive graphs
and compare them to our general bound. Finally in Section 4, we study strongly regular
graphs and in particular adjacency graphs of generalized quadrangles.

2 Preliminaries

All the considered graphs are undirected, finite and simple. Let G = (V,E) be a graph.
Let u be a vertex of G. We denote by N(u) the open neighbourhood of u, that is the
set of vertices that are adjacent to u. We denote by N [u] = N(u) ∪ {u} the closed
neighbourhood of u: u and all its neighbours. The degree of a vertex is the number of its
neighbours. A graph is regular if all vertices have the same degree. Given two vertices u
and v, we denote by d(u, v) the distance between u and v that is the number of edges in a
shortest path between u and v. The diameter of G is the maximum distance between any
pair of vertices of the graph. An isomorphism ϕ : G = (V,E) → G′ = (V ′, E ′) between
two graphs G and G′ is a bijective application from V to V ′ that preserves the edges of
the graph: uv is an edge of G if and only if ϕ(u)ϕ(v) is an edge of G′. If G = G′, ϕ is
called an automorphism of G. A graph is vertex-transitive if for any pair of vertices u and
v there exists an automorphism sending u to v. A vertex-transitive graph is in particular
regular.

A subset of vertices S is a dominating set if each vertex is either in S or adjacent to a
vertex in S. In other words, for every vertex u, S∩N [u] is non-empty. A vertex c separates
two vertices u and v if exactly one vertex among u and v is in the closed neighbourhood

the electronic journal of combinatorics 22(4) (2015), #P4.6 3



of c. In other words, c ∈ N [u]∆N [v] where ∆ denotes the symmetric difference of sets. A
subset of vertices S is a separating set if it separates every pair of vertices of the graph.
A subset of vertices C is an identifying code if it is both a dominating and separating
set. In other words, the set N [u] ∩ C is non-empty and uniquely determines u. There
exists an identifying code in G if and only if G does not have two vertices u and v with
N [u] = N [v]. We say that two such vertices u and v are twin vertices and we will only
consider twin-free graphs. The size of a minimal identifying code of G is denoted by
γID(G). We have the following general bounds.

Proposition 1 (Karpovsky, Chakrabarty and Levitin [29], Gravier and Moncel [20]). Let
G be a twin-free graph with at least one edge. We have

log2(|V |+ 1) 6 γID(G) 6 |V | − 1.

The lower bound can be found by considering that in an identifying code C of size
γID(G), the sets N [u] ∩ C are all distinct and non-empty subsets of a set of size γID(G).
Both bounds are tight and graphs reaching the lower bound are described in [32] whereas
graphs reaching the upper bound are characterized in [16].

When the maximum degree of the graph is small enough, the following lower bound
is better than the previous one.

Proposition 2 (Karpovsky, Chakrabarty and Levitin [29]). Let G be a graph of maximum
degree k. We have

γID(G) >
2|V |
k + 1

.

Karpovsky et al. prove this bound using a discharging method. We use the same
method to obtain a tighter bound that we will need when γID(G) is smaller than the
maximum degree of the graph.

Proposition 3. Let G = (V,E) be a twin-free graph of maximum degree k and C an
identifying code of G with k > |C|+ 1. We have

|V | 6 |C|
2

6
+

(2k + 5)|C|
6

.

Proof. We use the same discharging method as Karpovsky et al. in [29]. Each vertex
receives a charge 1 at the beginning. Then each vertex v gives to the vertices in N [v]∩C
the charge 1

|N [v]∩C| . After this process, only vertices of C have a positive charge and the

total charge is still |V |.
Let c ∈ C. Let Vi be the set of vertices of N [c] with exactly i neighbours in C.

Necessarily |V1| 6 1 since vertices in V1 have only c in their neighbourhood. We have
|V2| 6 |C| − 1. Indeed, a vertex of V2 has c in its neighbourhood and a unique additional
vertex of the code. But all the additional code neighbours of elements of V2 must be
different, hence there are at most |C|−1 vertices in V2. Finally, there are k+1−|V1|−|V2|
other vertices giving charge at most 1/3. Therefore, c receives a charge at most equal to

|V1|+
|V2|
2

+
k + 1− |V1| − |V2|

3
6 1 +

|C| − 1

2
+
k − |C|+ 1

3
=
|C|
6

+
2k + 5

6
.
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Hence the total charge |V | is at most |C|
2

6
+ (2k+5)|C|

6
.

The concept of identifying codes is related to other concepts such as locating-dominat-
ing sets and resolving sets. A locating-dominating set is a dominating set S that separates
the pairs of vertices that are not in S. The size of a minimal locating-dominating set of
G is denoted by γLD(G). Note that every graph admits a locating-dominating set since
the whole set of vertices is one. An identifying code is always a locating-dominating set
and one can obtain an identifying code from a locating-dominating set by adding at most
γLD(G) vertices. Therefore we have the following relations between γLD(G) and γID(G).

Proposition 4 (Gravier, Klasing and Moncel [19]). Let G be a twin-free graph. We have

γLD(G) 6 γID(G) 6 2γLD(G).

A resolving set is a subset of vertices S such that for every pair of vertices u and v,
there exists a vertex x in S that satisfies d(x, u) 6= d(x, v). The smallest size of a resolving
set of G is called the metric dimension and is denoted by β(G). A locating-dominating
set is always a resolving set and so β(G) 6 γLD(G). When the diameter of the graph is 2,
the reverse is almost true: adding a vertex to a resolving set gives a locating dominating
set.

Proposition 5. Let G be a graph of diameter 2. We have

β(G) 6 γLD(G) 6 β(G) + 1.

Proof. The first part is true for any graph since a locating-dominating set is a resolving
set. Now let S be a resolving set of a graph G of diameter 2. Order the vertices of
S = {x1, . . . , xs}. For every vertex u, let L(u) = (d(u, x1), . . . , d(u, xs)) be the distance
vector to vertices of S. Since S is a resolving set, all the vectors L(u) are distinct.
Since the diameter is 2, L(u) ∈ {0, 1, 2}s. But at most one vertex u0 can have L(u0) =
(2, 2, . . . , 2), hence all vertices except u0 are dominated by a vertex of S. Therefore, the
set S ′ = S ∪ {u0} is a dominating set. Let u be a vertex not in S ′. It has only values 1
and 2 in its vector L(u) and the set N [u] ∩ S is given by the value 1 in L(u). Hence all
the sets N [u]∩S for u /∈ S ′ are distinct. Therefore, all the sets N [u]∩S ′ are also distinct
for u /∈ S ′ and S ′ is a locating-dominating set. In particular, γLD(G) 6 β(G) + 1.

Proposition 4 together with Proposition 5 gives a relation between γID(G) and the
metric dimension in graphs of diameter 2. In particular, they have the same order and
let us derive results for identifying codes from results for resolving sets.

Corollary 6. Let G be a twin-free graph of diameter 2. We have

β(G) 6 γID(G) 6 2β(G) + 2.
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3 Fractional relaxation

The problem of finding a minimal identifying code in a graph G can be expressed as a
hitting set problem. Indeed an identifying code is a subset of V that intersects all the
sets N [u] and N [u]∆N [v] for u, v ∈ V . In other words, the problem of finding a minimal
identifying code is equivalent to the following linear integer program PG.

Minimize
∑
xu∈V

xu

such that
∑

w∈N [u]

xw > 1 ∀u ∈ V (domination)

∑
w∈N [u]∆N [v]

xw > 1 ∀u, v ∈ V, u 6= v (separation)

xu ∈ {0, 1} ∀u ∈ V
Let us denote by P ∗G the linear programming fractional relaxation of PG where the

integrality condition xu ∈ {0, 1} is replaced by a linear constraint 0 6 xu 6 1 for all
vertices u ∈ V . The optimal value of P ∗G, denoted by γID

f (G), gives an estimation on
γID(G) within a logarithmic factor.

Proposition 7. Let G be a twin-free graph with at least three vertices. We have

γID
f (G) 6 γID(G) 6 γID

f (G)(1 + 2 ln |V |).

Proof. The first inequality is trivial since P ∗G is a relaxation of PG. Let H be the hyper-
graph with vertex set V and hyperedge set

E = {N [u] | u ∈ V } ∪ {N [u]∆N [v] | u 6= v ∈ V }.

The identifying code problem in G is equivalent to the covering problem in H that is the
problem of finding a set of vertices of minimum size that intersects all the hyperedges.
The linear programming formulations are the same. Using the result of Lovász [31] on
the ratio of optimal integral and fractional covers, we have

γID(G) 6 γID
f (G)(1 + ln r)

where r is the maximal degree of H, i.e. the maximum number of hyperedges a vertex is
belonging to. Let u ∈ V and k its degree in G. Then u is in k+ 1 hyperedges of the form
N [v] and in (|V |−k−1)(k+1) hyperedges of the form N [v]∆N [w]. Indeed, we must have
v ∈ N [u] and w /∈ N [u]. Hence the degree of u in H is (|V | − k)(k + 1). The maximal

value of (|V | − k)(k + 1) with 0 6 k 6 |V | − 1 is obtained for k = |V |−1
2

. Therefore,

r 6 (|V |+1)2

2
6 |V |2 for |V | > 3 which leads to the upper bound of the proposition.

In the case of vertex-transitive graphs, we can compute the exact value of γID
f .
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Proposition 8. Let G be a twin-free vertex-transitive graph. Let k denote the degree of
G and let d denote the smallest size of symmetric differences of closed neighbourhoods
N [u]∆N [v] among all the pairs of distinct vertices u, v. We have

γID
f (G) =

|V |
min(k + 1, d)

.

In particular
|V |

min(k + 1, d)
6 γID(G) 6

|V |(1 + 2 ln |V |)
min(k + 1, d)

.

Proof. Giving to each variable xu the value 1
min(k+1,d)

leads to a feasible solution of P ∗G,
hence

γID
f (G) 6

|V |
min(k + 1, d)

.

Since G is a vertex-transitive graph, all the vertices play the same role. Consider
the finite set S of extreme optimal solutions (solutions that are vertices of the polytope
defined by P ∗). Any linear combination of elements of S, with the sum of coefficients
equal to 1 is still an optimal solution of P ∗. In particular, x = 1

|S|
∑

s∈S s is an optimal
solution. We claim that all the components of x are equal. Indeed, assume that xu 6= xv
and let ϕ be an automorphism sending u to v. Let s ∈ S, then ϕ(s) and ϕ−1(s), obtained
by permuting the value inside s following the automorphism ϕ are still extreme optimal
solutions. Hence S is stable by ϕ and so ϕ(x) = x, a contradiction since xu 6= xv.

4 Known results on vertex-transitive graphs

We review some known results on classes of transitive graphs. In particular, we discuss
the gap between γID and γID

f . Sometimes, not only identifying codes but also r-identifying
codes have been studied in these classes. Instead of using the closed neighbourhoods, that
are the balls of radius 1, one consider the balls of radius r to identify the vertices. It is
equivalent to consider r-identifying codes in a graph G or to consider identifying codes
in Gr, the rth-power of G, obtained by adding edges between each pair of vertices of G
that are at distance at most r. In the following, we will express the results in terms of
identifying codes in the power graph.

4.1 Cycles

We first consider cycles and powers of cycles. Let n, r ∈ N with n > 5 and 1 6 r < n−1
2

.
The cycle on n vertices, Cn, has vertex set V = {0, 1, . . . , n− 1} and two distinct vertices
i and j are adjacent if |i − j| = 1 (modulo n). The graph Crn is vertex-transitive with
vertex degree 2r. The smallest symmetric difference of closed neighbourhoods has size
2. It is obtained via two consecutive vertices i and i + 1 whose symmetric difference of
closed neighbourhoods is the set {i − r, i + r + 1} (modulo n). Hence the optimal value
of fractional identifying codes is γID

f (Crn) = n
2
.
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On the other hand, the study of integer identifying codes in powers of cycles had taken
several years (see e.g. [6, 21, 39]) before being completed by Junnila and Laihonen [28].
We have the following results. If n is even and at least 2r + 4, then

γID(Crn) =
n

2
= γID

f (Crn).

If n is odd and at least 2r + 3, then

n+ 1

2
6 γID(Crn) 6

n+ 1

2
+ r.

In particular, the difference between γID(Crn) and γID
f (Crn) is bounded by r. Hence the

ratio is converging to 1 when r is fixed and n is large.
When n = 2r + 2, Crn is a complete graph where a perfect matching is removed and

we have γID(Crn) = n − 1. Then γID(Crn)

γIDf (Crn)
→ 2 when n is large. Finally, if n = 2r + 3,

γID(Crn) = b2n
3
c and the ratio is converging to 4/3.

4.2 Hypercubes

Let ` > 3. The vertex set of the hypercube of dimension `, denoted by H`, is the set of
binary words of length `, {0, 1}`. Two vertices are adjacent if the corresponding words
differ on exactly one letter. Clearly, H` is vertex-transitive with vertex degree k = `.
The smallest symmetric difference of closed neighbourhoods has size d = 2` − 2 and is
obtained via two adjacent vertices. Hence, by Proposition 8,

γID
f (H`) =

2`

`+ 1
.

Computing the exact value of γID(H`) seems difficult and only few exact values are
known. However, we have the following bounds (see [12, Theorem 4] for the upper bound
and [29] for the lower bound)

`2`+1

`(`+ 1) + 2
6 γID(H`) 6

9

2
· 2`

`+ 1
.

Hence the optimal values of integer and fractional identifying codes have the same
order and the ratio satisfies

2− 4

`(`+ 1) + 2
6
γID(H`)

γID
f (H`)

6
9

2
.

Let 1 < r < `. We now consider r-identifying codes or equivalently identifying codes
in Hr

` . The graph Hr
` is still vertex-transitive. The degree of the vertices is k =

∑r
i=1

(
`
i

)
.

The smallest symmetric difference of closed neighbourhoods has now size d = 2
(
`−1
r

)
and

is still obtained via two adjacent vertices of H`. Thus, by Proposition 8,

γID
f (Hr

`) =
2`

min
(∑r

i=0

(
`
i

)
, 2
(
`−1
r

)) .
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Concerning the general behaviour of γID(Hr
`), we consider two cases: r is fixed or r

is linearly dependent on `. Assume first that r is fixed and ` is large. The bounds given
by Karpovsky et al. [29] can be translated as follows. There are two constants α and β
(depending on r) such that, for large `,

α · 2`

`r
6 γID(Hr

`) 6 β · 2`

`r
. (1)

Thus γID(Hr
`) and γID

f (Hr
`) have the same order, that is 2`/`r.

Assume now that r = bρ`c for some constant ρ. Honkala and Lobstein [27] proved
that

lim
`→∞

log2 γ
ID(Hr

`)

`
= 1− h(ρ)

where h(x) = −x log2(x)− (1− x) log2(1− x) is the binary entropy function. This result

can be proved with Proposition 7. Indeed,
log2

∑r
i=0 (`

i)
`

and
log2 (`

r)
`

tend to h(ρ). Hence

lim
`→∞

log2 γ
ID
f (Hr

`)

`
= 1− h(ρ)

and

lim
`→∞

log2

(
γID
f (Hr

`)(1 + 2 ln 2`)
)

`
= 1− h(ρ).

But we do not know if γID(Hr
`) and γID

f (Hr
`) have the same order in this case.

4.3 Product of graphs

One can easily obtain other vertex-transitive graphs by forming products of vertex-
transitive graphs such as cliques. This was already the case for the hypercube which
is the Cartesian product of ` cliques of size 2. Identifying codes in the following products
of graphs have been recently considered. Let G = (VG, EG) and H = (VH , EH) be two
graphs. All the products we are using have vertex set VG × VH . We follow notation and
terminology of [23].

• For the Cartesian product G�H, two vertices (uG, uH) and (vG, vH) are adjacent if
either uG = vG and uHvH ∈ EH or uH = vH and uGvG ∈ EG.

• For the direct product G × H, two vertices (uG, uH) and (vG, vH) are adjacent if
uGvG ∈ EG and uHvH ∈ EH .

• For the lexicographic product G ◦H, two vertices (uG, uH) and (vG, vH) are adjacent
if either uGvG ∈ EG or uG = vG and uHvH ∈ EH .

Cartesian product of two cliques. Let 2 6 p 6 q be integers. The Cartesian product
Kp�Kq of two cliques is a vertex-transitive graph with vertex degree k = p+ q − 1. The
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smallest symmetric difference of closed neighbourhoods has size d = 2p−2 and is obtained
via two adjacent vertices. By Proposition 8,

γID
f (Kp�Kq) =

pq

2p− 2
.

Identifying codes in Kp�Kq have been studied by Gravier, Moncel and Semri [22] and
by Goddard and Wash [17]. They proved that

γID(Kp�Kq) =

{
q + bp

2
c if q 6 3p

2

2q − p if q > 3p
2

Therefore, the ratio between the optimal values of integer and fractional identifying
codes is

γID(Kp�Kq)

γID
f (Kp�Kq)

=

{
2 + p

q
− 2

p
− 1

q
if q 6 3p

2

4− 2p
q
− 4

p
+ 2

q
if q > 3p

2

In particular, it is bounded by a constant.
Note that the metric dimension of Cartesian product of graphs and in particular of

cliques have been studied by Cáceres et al. [8].

Direct product of cliques. Let 2 6 p 6 q be integers. The direct product Kp × Kq

of two cliques is a vertex-transitive graph with vertex degree k = (p − 1)(q − 1). The
smallest symmetric difference of closed neighbourhoods has size d = 2p and is obtained
via two vertices belonging to the same copy of Kq. By Proposition 8,

γID
f (Kp ×Kq) =

{
q
2

if p > 4 or q > p
pq

(p−1)2+1
if p 6 3 and p = q.

Rall and Wash [34] gave the exact size of optimal identifying codes in Kp × Kq.
Except the small values of p and q, there are two main cases. If p > 3 and q > 2p, then
γID(Kp×Kq) = q−1. If p > 5 and q < 2p, then γID(Kp×Kq) is either b2(p+q)

3
c or d2(p+q)

3
e

depending on the value of p+q modulo 3. Therefore, the ratio between the optimal values
of integer and fractional identifying codes is either 2− 2/q or 4/3(1 + p/q), and it is again
bounded.

Lexicographic product of graphs. Let G and H be two vertex-transitive graphs that
are not complete graphs. Then G ◦H is also vertex-transitive. If G (respectively H) has
vertex degree kG (resp. kH) and nG (resp. nH) vertices, then G ◦ H has nGnH vertices
and vertex degree k = kGnH +kH . Moreover, the size of the smallest symmetric difference
of closed neighbourhoods of G ◦H and H are equal. Hence

γID
f (G ◦H) =

nGnH
dH
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where dH is the smallest symmetric difference of closed neighbourhoods of H.
Assume that G does not have two vertices u and v such that N(u) = N(v). Feng et

al. [14] proved that in this case

γID(G ◦H) = nGsH

where sH is the minimum size of a separating set of H. Hence we have

γID(G ◦H)

γID
f (G ◦H)

=
sHdH
nH

.

If H is such that kH + 1 > dH , then γID
f (H) = nH

dH
. Since sH is either equal to γID(H)

or γID(H) − 1, the ratio between γID(G ◦ H) and γID
f (G ◦ H) is the same as the ratio

between γID(H) and γID
f (H). In particular, if we have a ratio α for a graph H we can

obtain graphs with arbitrary sizes and still ratio α.

5 Strongly regular graphs

5.1 General remarks

The bound of Proposition 8 is helpful when the symmetric differences are large (larger
than ln |V |). For this reason, we now focus on the family of strongly regular graphs
for which the smallest symmetric difference has, in most cases, size at least

√
|V | (see

Proposition 12).
A strongly regular graph srg(n, k, λ, µ) is a k-regular graphG on n vertices for which any

pair of adjacent (respectively non-adjacent) vertices have exactly λ (resp. µ) neighbours
in common.

The four parameters are related in the following way

(n− k − 1)µ = k(k − λ− 1). (2)

This relation can be proved by considering one particular vertex u and the partition
of V \ {u} between the neighbours A = N(u) and the non-neighbours B = V \N [u] of u.
The number of edges between A and B is (n− k − 1)µ = k(k − λ− 1).

The complement of a strongly regular graph is still a strongly regular graph and has
parameters srg(n, n−1−k, n−2−2k+µ, n−2k+λ). A strongly regular graph is primitive
if the graph and its complement are connected.

Example 9. Let G be a srg(n, k, λ, µ). A trivial non primitive case is given by µ = 0.
Indeed, if µ = 0, then it is the disjoint union of complete graphs on k + 1 vertices. In
particular, λ = k − 1.

Another non primitive case is given by µ = k. Then G is a complete multipartite
graph. Necessarily, all the parts have the same size, n− k. Note that the complement of
G corresponds to the first graph.

The two graphs in the previous example are the only non primitive graphs.
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Lemma 10. Let G be a strongly regular graph. G is primitive if and only if µ /∈ {0, k}.
In particular, all primitive strongly regular graphs have diameter 2.

Proof. As explained in Example 9, if µ ∈ {0, k} then G is not primitive. If µ 6= 0, then
two non-adjacent vertices have at least one vertex in common. Hence the diameter of G
is two and in particular, G is connected. Assume now that µ 6= k. By Equation (2), the
value of µ for the complement of G, n − 2k + λ, is not 0. As before, it means that the
complement of G has diameter 2 and is connected.

We now turn to results concerning identifying codes. Strongly regular graphs have
been used by Gravier et al. [18] to provide families of graphs for which all the subsets
of a given size are identifying codes. However, they did not study optimal identifying
codes. As mentioned in the introduction, resolving sets and metric dimension have been
studied in several contexts for strongly regular graphs. In particular, Babai [1] gave an
upper bound on the size of the symmetric differences of open neighbourhood in strongly
regular graphs which leads to bounds on the metric dimension. Following his ideas, we
prove similar results for identifying codes.

We first compute the smallest size d of the symmetric differences of closed neighbour-
hoods using λ and µ and then give a general upper bound on d.

Proposition 11. Let G be a strongly regular graph srg(n, k, λ, µ). Let u and v be two
vertices of G. If u is adjacent to v, then |N [u]∆N [v]| = 2(k − 1) − 2λ. Otherwise,
|N [u]∆N [v]| = 2(k + 1)− 2µ.

Hence, the smallest symmetric difference of closed neighbourhoods is

d = min(2(k − λ− 1), 2(k − µ+ 1)) = 2k − 2 max(λ+ 1, µ− 1).

If G is vertex-transitive1, we have

γID
f (G) =

n

min(k + 1, 2(k − λ− 1), 2(k − µ+ 1))
.

Proof. Let u and v be two adjacent vertices. There are k − λ neighbours of u that are
not neighbours of v. But v is counted in these vertices. Hence |N [u] \N [v]| = k − 1− λ
and we obtain the results. The computation for the non-adjacent case is similar.

Proposition 12. Let G be a primitive strongly regular graph srg(n, k, λ, µ) on n vertices,
then k >

√
n− 1 and the smallest symmetric difference satisfies d >

√
n− 3.

Proof. Since G is primitive, by Lemma 10, it has diameter 2. Thus there are at most
1 + k + k(k − 1) vertices in G. Hence n 6 1 + k2 and we obtain the upper bound on k.

To prove the second inequality, we use a result of Babai [1]: for every pair of vertices
u, v of a primitive strongly regular graph |N(u)∆N(v)| >

√
n−1. If u and v are adjacent,

|N [u]∆N [v]| = |N(u)∆N(v)| − 2 whereas if u and v are non adjacent, |N [u]∆N [v]| =
|N(u)∆N(v)|+ 2. Hence d >

√
n− 3.

1Actually, it seems that almost all the strongly regular graphs are not vertex-transitive, see for ex-
ample [10]. However, all the strongly regular graphs we are considering in this paper are in fact vertex-
transitive.
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Using these bounds together with Proposition 8, we obtain the following general bound
for strongly regular graphs when they are vertex-transitive.

Corollary 13. Let G be a primitive strongly regular graph srg(n, k, λ, µ). If G is vertex-
transitive, we have

γID(G) 6
n(1 + 2 lnn)√

n− 3
.

In particular γID(G) = O(
√
n lnn).

5.2 Known results on particular families

The only strongly regular graphs for which we know optimal identifying codes are Carte-
sian and direct products of two cliques of the same size that we already mentioned
in the previous section. The Cartesian product Kp�Kp is a strongly regular graph
srg(p2, 2p−2, p−2, 2) whereas Kp×Kp (that is the complement of Kp�Kp) is a srg(p2, (p−
1)2, (p− 2)2, (p− 2)(p− 1)). We obtain results for some other families by considering pre-
vious work on metric dimension.

Kneser and Johnson graphs (of diameter 2). Let 1 6 p 6 m. The Johnson graph
J(m, p) is the graph whose vertices are the subsets of size p of a set of m elements and
two vertices are adjacent if the corresponding sets intersect in exactly p − 1 elements.
Since the diameter of J(m, p) is min(p,m− p), the graph J(m, p) is a primitive strongly
regular graph if and only if p = 2 or p = m− 2. Note that the two corresponding graphs
are isomorphic and have parameters srg(

(
m
2

)
, 2(m− 2),m− 2, 4).

The Kneser graph K(m, p) is the graph whose vertices are the subsets of size p of a
set of m elements and two vertices are adjacent if the corresponding sets do not intersect.
The Kneser graph K(5, 2) corresponds to the well known Petersen graph. The graph
K(m, p) is a primitive strongly regular graph if and only if p = 2. The graph K(m, 2) is
a srg(

(
m
2

)
,
(
m−2

2

)
,
(
m−4

2

)
,
(
m−3

2

)
).

Bailey and Cameron [5] have computed the exact value of the metric dimension in
J(m, 2) and K(m, 2).

Proposition 14 ([5, Corollary 3.33]). For m > 6, the metric dimension of the Johnson
graph J(m, 2) and the Kneser graph K(m, 2) is 2

3
(m− i) + i where m ≡ i (mod 3).

Using Corollary 6 we obtain a bound for identifying codes.

Corollary 15. Let G be K(m, 2) or J(m, 2). We have

2m

3
6 γID(G) 6

4(m+ 1)

3
.

In particular, γID(G) = Θ(
√
|V |).
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To compute the fractional identifying code number, one just has to compute the value
of the smallest symmetric difference using Proposition 11. For K(m, 2) and m > 6,
µ− 1 > λ+ 1 and 2k − 2µ+ 2 = 2(m− 1) 6 k + 1. Hence, for m > 6,

γID
f (K(m, 2)) =

m(m− 1)

4(m− 1)
=
m

4
.

For J(m, 2), λ+ 1 > µ− 1 whenever m > 4 and 2k − 2λ− 2 = 2(m− 3) = k. Hence

γID
f (J(m, 2)) =

m(m− 1)

4(m− 3)
=
m

4
+ 2.

In all cases, we have γID
f (G) = Θ(

√
|V |) and the fractional and integer values have the

same order for these graphs.

Paley graphs. The Paley graph Pq is defined for a prime power q ≡ 1 (mod 4). Vertices
are the elements of the finite field Fq on q elements, and a is adjacent to b if a − b is a
square. They are strongly regular srg

(
q, 1

2
(q − 1), 1

4
(q − 5), 1

4
(q − 1)

)
. Paley graphs have

the particularity to have symmetric difference of closed neighbourhoods of order |V |, hence
the fractional identifying code number is bounded by a constant and the identifying code
number is of order log2 |V |.

Proposition 16. Let q be a prime power satisfying q ≡ 1 (mod 4) and q > 9. We have
γID
f (Pq) = 2q

q−1
and thus

log2(q + 1) 6 γID(Pq) 6 (2 + o(1))(1 + 2 ln q).

In particular, γID(Pq) = Θ(log2 |V |).

Proof. We first compute the value of d. We have

max(λ+ 1, µ− 1) = q−1
4
.

Thus d = q−1
2
< k + 1 = q+1

2
and γID

f (Pq) = 2q
q−1
6 2 + o(1).

The lower bound on γID(Pq) is the general lower bound of Proposition 1. For the
upper bound, we use the bound of Proposition 7 with γID

f (Pq).

Similar results were obtained for metric dimension.

Proposition 17 (Fijavž and Mohar [15]). Let q be a prime power satisfying q ≡ 1
(mod 4). Then the metric dimension of the Paley graph Pq satisfies

log2 q 6 β(Pq) 6 2 log2 q.

In particular, β(Pq) = Θ(log2 |V |).
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5.3 Generalized quadrangles

The graphs obtained from generalized quadrangles form another family of strongly regular
graphs. Let s, t be positive integers. A generalized quadrangle GQ(s, t) is an incidence
structure, i.e. a set of points and lines, such that

• there are s+ 1 points on each line,

• there are t+ 1 lines passing through each point,

• for a point P that does not lie on a line L, there is exactly one line passing through
P and intersecting L.

Such an incidence structure has (st+ 1)(s+ 1) points and (st+ 1)(t+ 1) lines. A trivial
example is the incidence structure given by a square grid of size s×s which is a GQ(s−1, 1).
The dual of a generalized quadrangle is obtained by reversing the role of the lines and the
points. In particular, the dual of a GQ(s, t) is a GQ(t, s).

Adjacency graphs can be naturally obtained from generalized quadrangles: consider
the points as vertices and two vertices are adjacent if the corresponding points belong to a
common line. For example, the adjacency graph of the square grid is exactly the Cartesian
product of two cliques of size s, Ks�Ks, already mentioned in Section 3.3. By abuse of
notation, GQ(s, t) will also denote the adjacency graph of a generalized quadrangle with
parameters s and t.

Observe that a GQ(s, t) is a strongly regular graph srg((st+1)(s+1), s(t+1), s−1, t+1).
Indeed, any vertex has degree k = s(t+1), any pair of adjacent vertices has s−1 common
neighbours and any pair of non adjacent vertices has t + 1 common neighbours. From
these values, we can easily compute the smallest size of symmetric differences of closed
neighbourhoods :

d = 2s(t+ 1)− 2 max(s, t).

We have d > k+ 1 if and only if GQ(s, t) is not trivial, i.e. s > 1 and t > 1. In that case,
the following inequalities, for which Cameron gave a short combinatorial proof [9], hold.

Lemma 18 (Higman’s inequality [24, 25]). For a GQ(s, t), if s > 1 and t > 1, then t 6 s2

and dually s 6 t2.

From now on, we assume that s > 1 and t > 1. We obtain the following bounds on
γID
f for generalized quadrangles.

Proposition 19. Let G be a vertex-transitive GQ(s, t) with s > 1 and t > 1. Let n denote
the number of vertices of the graph G. We have

2−5/4 · n1/4 6 γID
f (G) 6 2 · n2/5.

Proof. Let G be a vertex-transitive GQ(s, t) with s > 1 and t > 1. Then n = (st+1)(s+1)
is the number of vertices of G. We have by Proposition 8

γID
f (G) =

(st+ 1)(s+ 1)

s(t+ 1) + 1
=

s2t

st+ s+ 1
+ 1.
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Polar space Name (s, t)

Q+(3, q) Hyperbolic (q, 1) a grid

Q(4, q) Parabolic (q, q) dual of W (3, q)

Q−(5, q) Elliptic (q, q2) dual of H(3, q2)

H(3, q2) Hermitian (q2, q) dual of Q−(5, q)

H(4, q2) Hermitian (q2, q3)

W (3, q) Symplectic (q, q) dual of Q(4, q)

Table 1: The finite classical polar spaces of rank 2.

As st < st+ s+ 1 < 2st, we obtain 1
2
s < γID

f (G) < 2s.
Moreover, using the previous lemma, we obtain

s5/2 6 s2t < s2t+ st+ s+ 1 = n 6 s4 + s3 + s+ 1 < 2 · s4.

So
(

1
2
n
)1/4

< s < n2/5. It follows that
(

1
2

)5/4
n1/4 < γID

f (G) < 2n2/5.

Constructions of GQ(s, t) are known only for (s, t) or (t, s) in the set

{(q, q), (q, q2), (q2, q3), (q − 1, q + 1)}

where q is a prime power. Many of them are based on finite geometries. Generalized
quadrangles coming from finite classical polar spaces of rank 2 are given in Table 1. For
more information on these geometric structures, see e.g. [26]. It is well known that these
polar spaces give rise to generalized quadrangles and they are often referred to as the
classical generalized quadrangles [33]. As an example, the Cartesian product Kq+1�Kq+1

can be seen as the adjacency graph of the incidence structure Q+(3, q) obtained from the
points of a hyperbolic quadric in a finite projective space (when q is a prime power).

There are other generalized quadrangles known, however they have the same param-
eters as the ones given in Table 1 or they have parameters (q − 1, q + 1) or (q + 1, q − 1).
We provide identifying codes of optimal order for some cases. A summary of our results
in generalized quadrangles is given in Table 2.

5.3.1 Identifying codes in T ∗
2 (O), a particular GQ(q − 1, q + 1)

Proposition 20. Let q > 2 be a power of 2. There exists a GQ(q − 1, q + 1) with an
identifying code of size 3q − 3 = Θ(n1/3) where n is the number of vertices.

Before giving the proof, we will consider a particular construction of a GQ(q−1, q+1)
and give some structural properties. This construction is done in finite projective geom-
etry. We recall some definitions for readers unfamiliar with them. For more information
on finite projective geometry, see e.g. [24, 26].
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GQ (s, t) n Lower bound Upper bound Order

T ∗2 (O) (q − 1, q + 1) q3 3q − 7 3q − 3 n1/3

Q(4, q) (q, q) (q2 + 1)(q + 1) 5q − 2 3q − 4 n1/3

Q−(5, q) (q, q2) (q3 + 1)(q + 1) 5q 3q + 2 n1/4

H(3, q2) (q2, q) (q3 + 1)(q2 + 1) 5q2 − 2 2q2 − 2 n2/5

Table 2: Results obtained on optimal values of integer identifying codes of some general-
ized quadrangles. The number of vertices is denoted by n. Every order matches the order
of the optimal value of fractional identifying codes. Note that in the first line, q must be
a power of 2 whereas in the other cases, q is any prime power. Also in the first line, O is
a hyperconic.

Let q be a power of 2. We set ourselves in the 3-dimensional projective space PG(3, q)
over the finite field Fq of order q. The points of PG(3, q) can be described using four
coordinates (X0, X1, X2, X3) ∈ F4

q \{0} where two coordinates that are proportional refer
to the same point. Consider the hyperplane H∞ of equation X0 = 0 in PG(3, q) and the
conic C of equation X1X3 −X2

2 = 0 in the hyperplane H∞. Any line of H∞ intersects C
in 0, 1 or 2 points. A line intersecting C in one point is tangent to C. There is a special
point, N(0, 0, 1, 0), called the nucleus of C, that lies on all tangents of C. Then any other
point of H∞ lies on exactly one tangent of C. The set O = C ∪ {N} is a hyperconic. This
set has the property that each line of H∞ intersects O in 0 or 2 points.

Now consider the following incidence structure T ∗2 (O) = (P ,L), where the set P of
points is the set of affine points, i.e. points of PG(3, q) not in H∞ and the set L of lines
is the set of the lines through a point of O not lying in H∞. This incidence structure is
well-known to be a GQ(q − 1, q + 1) (see for example [33, Theorem 3.1.3]).

We will now construct an identifying code in T ∗2 (O). In T ∗2 (O), the neighbourhood
of a point P is composed of a cone PC (all the lines going through P and a point of C)
and the line PN , where the points of H∞ are removed. The common neighbours of two
adjacent vertices are the q − 2 points lying on the unique line incident with these two
vertices. In the case of non adjacent vertices, we first determine the intersection of their
two cones.

Lemma 21. Consider two distinct affine points P and Q such that PQ ∩H∞ /∈ O. The
intersection of the two cones PC and QC consists of the points of the conic C and of points
lying in a plane containing N and PQ ∩H∞.

Proof. Consider two distinct affine points P (1, a, b, c) and Q(1, α, β, γ) such that PQ ∩
H∞ /∈ O. Consider the cones PC and QC in PG(3, q). It is clear that the conic C belongs
to PC ∩ QC. Consider now a point V (1, v1, v2, v3) not lying in H∞. Then V belongs to
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PC if and only if

(0, a− v1, b− v2, c− v3) ∈ C
⇐⇒ (a− v1)(c− v3)− (b− v2)2 = 0

⇐⇒ (ac− b2)− cv1 − av3 + (v1v3 − v2
2) = 0.

A similar computation holds for V ∈ QC. Hence V ∈ PC ∩QC implies that

(ac− b2)− (αγ − β2)− (c− γ)v1 − (a− α)v3 = 0.

So V lies in the plane π of equation ((ac−b2)− (αγ−β2))X0− (c−γ)X1− (a−α)X3 = 0.
Consider the intersection of H∞ and π. It is the line ` satisfying the equations X0 = 0
and −(c− γ)X1− (a−α)X3 = 0. Clearly, the line ` contains the nucleus N(0, 0, 1, 0) and
also the point PQ ∩H∞ = (0, a− α, b− β, c− γ).

Remark 22. In the previous statement, the points, arising as the intersection of the two
cones, lie in a plane containing N and PQ∩H∞, and they actually form a conic C ′. Since
the two quadratic cones intersect in an algebraic curve of degree 4 which already contains
the conic C, the remaining curve Γ of degree 2 is either a conic C ′, either a line with
multiplicity 2 or two lines. The last two cases are in contradiction with the fact that P
and Q are two distinct points with PQ ∩H∞ /∈ C ∪ {N}. So it follows that Γ = C ′.

Corollary 23. Consider two distinct non adjacent vertices P and Q of T ∗2 (O). Their
common neighbours are q points lying in a plane containing N and PQ ∩H∞, a point of
the line PN and a point of the line QN .

Proof. Let P and Q be two distinct non adjacent vertices of T ∗2 (O). From the structure
of the GQ(q− 1, q + 1), P and Q have q + 2 common neighbours. Consider the lines PN
and QN . They intersect only in N . Since P (respectively Q) has a unique projection P ′

on QN (resp. Q′ on PN), P ′ and Q′ are two common neighbours. The q other common
neighbours come from the intersection of the two cones PC and QC. Hence, from the
previous lemma, they lie on a plane containing N and PQ ∩H∞.

Theorem 24. The affine points of three lines of T ∗2 (O) containing N and spanning
PG(3, q) form an identifying code of T ∗2 (O).

Proof. Consider three lines `1, `2, `3 of T ∗2 (O) containing N and spanning PG(3, q). The
points of these lines form a dominating set since any point is either on one of these lines
or has a unique projection on each line `i. As each point has a unique projection on each
line `i, it is clear that two points on these lines are always separated. Similarly, a point
incident with a line `i is always separated from a point not incident with `1, `2, or `3.

Consider now two points S1 and S2 that do not lie on the lines `i. Assume that these
points are not separated. In other words, assume that Q1 ∈ `1, Q2 ∈ `2 and Q3 ∈ `3

are common neighbours of S1 and S2. If S1 and S2 are adjacent, then their common
neighbours lie on the same line S1S2. Hence Q1, Q2 and Q3 are collinear, a contradiction
since `1, `2, `3 span PG(3, q).
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If S1 and S2 are not adjacent, then either Q1, Q2, Q3 all lie in the plane, which is
uniquely defined by the previous corollary, that contains the nucleus N and S1S2 ∩H∞,
or at least one of them lies in the plane containing S1, S2 and N . In the first case, the three
points Q1, Q2, Q3 are all in the same plane containing N . Hence, `1, `2, `3 are coplanar
which is a contradiction. In the second case, suppose that Q1 lies in the plane containing
S1, S2 and N . It follows that Q1 is incident with the line S1N or S2N . It implies that
either S1 ∈ `1 or S2 ∈ `1, which is a contradiction.

Therefore the set of points on `1, `2, `3 is an identifying code of T ∗2 (O).

Proof of Proposition 20. Let `1, `2 and `3 be three lines incident with N and spanning
PG(3, q). Consider the set C consisting of the points of T ∗2 (O) on `1, `2, `3. By Theorem 24,
this set is an identifying code of size 3q. Let Q1 be a point on `1 and Q2, Q3 be its
projections on respectively `2 and `3. The set C \ {Q1, Q2, Q3} is still a dominating
set. Indeed, a point P that does not lie on the lines `i can not have Q1, Q2 and Q3 as
neighbours. Otherwise, Q2 would have two projections on the line Q1P , namely Q1 and
P .

Moreover, we have a one-to-one correspondence between the sets

(N [P ] ∩ C) \ {Q1, Q2, Q3} and N [P ] ∩ C

since we can easily determine which vertices are eventually missing in the first sets. Hence,
C \ {Q1, Q2, Q3} is an identifying code of T ∗2 (O) of size 3q − 3.

The next proposition gives lower bounds on the size of an identifying code in any
adjacency graph of a GQ(q− 1, q+ 1). In particular, our previous construction is optimal
for q = 4 and close to a constant for the other cases.

Proposition 25. Let q be a power of 2. Any identifying code of a GQ(q − 1, q + 1) has
size at least 3q−7. Moreover, it has size at least 9 = 3q−3 if q = 4, 19 = 3q−5 if q = 8,
42 = 3q − 6 if q = 16 and 90 = 3q − 6 if q = 32.

Proof. To prove this proposition, we use Proposition 3. Any identifying code C of a
GQ(q − 1, q + 1), with |C| < q2 + q − 2 satisfies the inequality

q3 6
|C|2

6
+

(2(q2 + q − 2) + 5)|C|
6

.

Hence, |C|2 + (2q2 + 2q+ 1)|C|−6q3 > 0. If there exists an identifying code of size 3q−8,
then the right-hand side of the inequality is equal to

(3q − 8)2 + (2q2 + 2q + 1)(3q − 8)− 6q3 = −q2 − 61q + 56

which is negative for all q > 32. This is a contradiction. Therefore, any identifying code of
a GQ(q−1, q+1) has size at least 3q−7. For small values of q, we can obtain a better bound
using the same inequality. Since the expression (3q− c)2 + (2q2 + 2q + 1)(3q− c)− 6q3 is
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negative for (q, c) ∈ {(4, 5), (8, 6), (16, 7), (32, 7)}, any identifying code of a GQ(q−1, q+1)
has size at least 

8 = 3q − 4 if q = 4

19 = 3q − 5 if q = 8

42 = 3q − 6 if q = 16

90 = 3q − 6 if q = 32.

We can slightly improve the bound for q = 4 using a technical analysis. The details
can be found on the arXiv version of our paper: arXiv:1411.5275v1.

5.3.2 Identifying codes in a parabolic quadric which is a GQ(q, q)

Proposition 26. Let q be a prime power. There exists a GQ(q, q) with an identifying
code of size 5q − 2 = Θ(n1/3) where n is the number of vertices.

Before giving the proof, we will consider a particular construction of a GQ(q, q) and
give some structural properties.

Let q be a prime power. Let Q be the set of points of PG(4, q) that satisfy the equation
X2

0 +X1X2 +X3X4 = 0 (Q is a parabolic quadric).

Lemma 27 ([26, 33]). The incidence structure Q(4, q) obtained from the points of Q and
lines of Q (i.e. lines of PG(4, q) included in Q) is a generalized quadrangle GQ(q, q).
Moreover, the closed neighbourhood of a point A of Q(4, q) is exactly the intersection
between a hyperplane πA (called the tangent hyperplane) and Q.

Lemma 28. Let A and B be two non adjacent points of Q. The common neighbours of
A and B are coplanar.

Proof. Let πA (respectively πB) be the hyperplane containing all the neighbours of A
(resp. B). Since A and B are non adjacent, πA and πB are two distinct hyperplanes (of
dimension 3). The common neighbours of A and B are all located in the intersection of
πA and πB which is a plane.

Proof of Proposition 26. We will construct an identifying code for Q(4, q), which is, by
Lemma 27, a GQ(q, q). Consider a hyperplane π = PG(3, q) intersecting Q(4, q) in a
hyperbolic quadric Q+(3, q) (for example the hyperplane X0 = 0). The hyperbolic quadric
is isomorphic to a grid Kq+1�Kq+1.

Consider three lines `0, `1, `2 of Q+(3, q) that are pairwise not intersecting. Consider
two distinct points P1, P2 ∈ `2 and take lines M1 and M2 through P1 and P2 respectively,
both not contained in the Q+(3, q) and hence not lying in the 3-space π.

The set of 3(q + 1) + 2q = 5q + 3 points S = `0 ∪ `1 ∪ `2 ∪M1 ∪M2 is an identifying
code. Since it contains a whole line, it is a dominating set. A point A on a line N1 of S
is clearly separated from all the points that are not on N1 since it is adjacent to all the
points of N1. The point A is also separated from all the other points of N1 since they
have different projection on any line N2 of S not intersecting N1. Hence all the points of
S are separated from all the other points.
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Consider now a point of Q+(3, q) \ S. It has exactly three neighbours on `0, `1, `2

(that are collinear). Two points of Q+(3, q) \ S with the same projections on `0, `1, `2 are
necessarily collinear. Hence they have different neighbours on M1 (if the projection on
`2 is not P1) or on M2 (otherwise). Hence any point of Q+(3, q) \ S has a unique set of
neighbours.

A point A that is not in Q+(3, q) has four or five neighbours in `0 ∪ `1 ∪ `2 ∪M1 ∪M2.
Since A does not lie in Q+(3, q), the three points on `0, `1 and `2 are not collinear, hence
they span a plane, that is contained in π. The only points of M1 and M2 that could be
contained in this plane are the intersection of M1 and M2 with π which is exactly the
points P1 and P2. Since P1 and P2 are both in `2 they cannot be both in the neighbourhood
of A. Finally, the neighbours of A in S are not coplanar. Using Lemma 28, A is separated
from all the other vertices.

To conclude the proof, note that as before we can remove a point on each line of S
and still have an identifying code (remove a point on `0, which does not have P1 or P2 as
a neighbour, and remove its 4 distinct projections on the other lines).

The next proposition gives a lower bound on the size of any identifying code of a
GQ(q, q). In particular, the order of our previous construction is optimal. The proof is
similar to the proof of Proposition 25.

Proposition 29. Let q be a prime power. Any identifying code of a GQ(q, q) has size at
least 3q − 4.

5.3.3 Identifying codes in an elliptic quadric which is a GQ(q, q2)

Proposition 30. Let q be a prime power. There exists a GQ(q, q2) with an identifying
code of size 5q = Θ(n1/4) where n is the number of vertices.

Before giving the proof, we will consider a particular construction of a GQ(q, q2) and
give some structural properties.

Let q be a prime power. Let Q be the set of points of PG(5, q) that satisfy the
equation f(X0, X1) + X2X3 + X4X5 = 0 where f(X0, X1) = dX2

0 + X0X1 + X2
1 , d ∈ Fq,

is an irreducible binary quadratic form over Fq (Q is an elliptic quadric).

Lemma 31 ([26, 33]). The incidence structure Q−(5, q) obtained from the (q3 + 1)(q+ 1)
points of Q and the (q3 + 1)(q2 + 1) lines of Q (i.e. lines of PG(5, q) included in Q) is
a generalized quadrangle GQ(q, q2). Moreover, the closed neighbourhood of a point A of
Q−(5, q) is exactly the intersection between a hyperplane πA (the tangent hyperplane of
A) and Q.

Lemma 32. Let A and B be two non adjacent points of Q. The common neighbours of
A and B lie in a 3-dimensional space.

Proof. Let πA (respectively πB) be the hyperplane containing all the neighbours of A
(resp. B). Since A and B are non adjacent, πA and πB are two distinct hyperplanes (of
dimension 4). The common neighbours of A and B are all located in the intersection of
πA and πB which is a 3-dimensional space.

the electronic journal of combinatorics 22(4) (2015), #P4.6 21



Proof of Proposition 30. We will construct an identifying code for Q−(5, q) which is a
generalized quadrangle GQ(q, q2). Consider a line `0 of Q−(5, q), take two distinct 3-spaces
π1 and π2 of PG(5, q) intersecting each other only in `0 such that πi∩Q−(5, q) = Q+(3, q).
Take two lines `1, `2 in π1 ∩Q−(5, q) such that `0, `1 and `2 are pairwise non-intersecting.
Using the geometry, one can always consider two lines `3, `4 in π2 ∩Q−(5, q) such that `0,
`3 and `4 are pairwise non-intersecting.

We will prove that the set of 5(q+1) = 5q+5 points of S = {`i}i=0,...,4 is an identifying
code. Since S contains a whole line, the set S is a dominating set.

A point A on a line N1 of S is clearly separated from all the points that are not on N1

since it is adjacent to all the points of N1. The point A is also separated from all the other
points of N1 since they have different projections on any line N2 of S not intersecting N1.
Hence all the points of S are separated from all the other points.

Any point of (π1 ∩ Q−(5, q))\S has exactly three neighbours on `0, `1, `2 (that are
collinear). Moreover, two points of (π1∩Q−(5, q))\S with the same projection on `0, `1, `2

are necessarily collinear. Hence, they have different neighbours on `3. It follows that all
the points of (π1 ∩Q−(5, q))\S are separated from all the other points. Equivalently, also
all the points of (π2 ∩Q−(5, q))\S are separated from all the other points.

A point P ∈ Q−(5, q) not in π1 ∪ π2 has five neighbours in S. Since P does not lie
in π1, the three points on `0, `1 and `2 are not collinear, hence they span a plane of π1,
containing one point of `0. Since P does not lie in π2, the three points on `0, `3 and `4 are
not collinear, hence they span a plane of π2, containing one point of `0. Now it is clear
that the five neighbours of P span a 4-space. Using Lemma 32 it follows that the point
P is separated by S from all other points.

To conclude the proof, note that as before we can remove a point on each line of S and
still have an identifying code (remove a point on `0 and remove its 4 distinct projections
on the lines `1, `2, `3, `4).

The next proposition gives a lower bound on the size of any identifying code of a
GQ(q, q2). In particular, the order of our previous construction is optimal. The proof is
similar to the proof of Proposition 25.

Proposition 33. Let q be a prime power. Any identifying code of a GQ(q, q2) has size
at least 3q + 2.

5.3.4 Identifying codes in a Hermitian variety which is a GQ(q2, q)

Proposition 34. Let q be a prime power. There exists a GQ(q2, q) with an identifying
code of size 5q2 − 2 = Θ(n2/5) where n is the number of vertices.

Before giving the proof, we will consider a particular construction of a GQ(q2, q) and
give some structural properties.

Let q be a prime power. Let H be the set of points of PG(3, q2) that satisfy the
equation Xq+1

0 +Xq+1
1 +Xq+1

2 +Xq+1
3 = 0 (H is a Hermitian variety).

Lemma 35 ([26, 33]). The incidence structure H(3, q2) obtained from the (q3 +1)(q2 +1)
points of H and the (q3 + 1)(q + 1) lines of H (i.e. lines of PG(3, q2) included in H) is
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a generalized quadrangle GQ(q2, q). Moreover, the closed neighbourhood of a point A of
H(3, q2) is exactly the intersection between a plane πA (the tangent hyperplane of A) and
H.

It is well known that the dual of H(3, q2) is Q−(5, q), see [33, 3.2.3].

Lemma 36. Let A and B be two non adjacent points of H. The common neighbours of
A and B lie on a line.

Proof. Let πA (respectively πB) be the hyperplane containing all the neighbours of A
(resp. B). Since A and B are non adjacent, πA and πB are two distinct planes. The
common neighbours of A and B are all located in the intersection of πA and πB which is
a line.

Proof of Proposition 34. We will construct an identifying code for H(3, q2) which is a
generalized quadrangle GQ(q2, q).

Consider three disjoint lines L0, L1, L2, two distinct points P1, P2 ∈ L0 and two lines
M1 and M2 containing P1 and P2 respectively, and not intersecting L1 or L2. The set
S = L0 ∪ L1 ∪ L2 ∪M1 ∪M2 of |S| = 5q2 + 3 points will be an identifying code.

Since S contains a whole line, the set S is a dominating set.
A point A on a line N1 of S is clearly separated from all the points that are not on N1

since it is adjacent to all the points of N1. The point A is also separated from all the other
points of N1 since they have different projections on any line N2 of S not intersecting N1.
Hence all the points of S are separated from all the other points.

If two points R and Q have the same neighbourhood on {L0, L1, L2}, then this neigh-
bourhood consists of collinear points by Lemma 36. If the line containing these points
also contains P1, then the projections of R and Q on the line M2 are different. If the line
would contain P2, then the projections of R and Q on the line M1 are different. Hence,
S is a separating set.

To conclude the proof, note that as before we can remove a point on each line of S
and still have an identifying code (remove a point on L1, that is not a neighbour of P1 or
P2, and remove its 4 distinct projections on the lines L0, L2,M1,M2).

The next proposition gives a lower bound on the size of any identifying code of a
GQ(q2, q). In particular, the order of our previous construction is optimal. The proof is
similar to the proof of Proposition 25.

Proposition 37. Let q be a prime power. Any identifying code of a GQ(q2, q) has size
at least 2q2 − 2.

6 Conclusion and Perspectives

We provide identifying codes for several vertex-transitive families of graphs which have
size of the same order as the fractional value. Since the graphs considered have diameter
2, our results can be extended to locating-dominating sets and to metric dimension,
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providing new constructions of optimal order for such sets in some families of strongly
regular graphs.

Paley graphs are an example of a family of graphs for which the optimal order for
the size of identifying codes is at a logarithmic factor of the fractional value. However,
the fractional value is bounded by a constant. It would be interesting to exhibit a family
of graphs for which the optimal values of integer and fractional identifying codes do not
have the same order and such that the fractional value is not bounded by a constant.
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[15] G. Fijavž and B. Mohar, Rigidity and separation indices of Paley graphs, Discrete
Math., 289(1-3), 157–161 (2004)
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