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Abstract

Let G be a finite Abelian group of order |G| = n, and let S = g1 · . . . · gn−1 be a
sequence over G such that all nonempty zero-sum subsequences of S have the same
length. In this paper, we completely determine the structure of these sequences.
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1 Introduction

Let G be a finite Abelian group (written additively), and let F(G) denote the free Abelian
monoid with basis G, the elements of which are called sequences (over G). A sequence of
not necessarily distinct elements from G will be written in the form

S = g1 · . . . · gl =
l∏

i=1

gi =
∏
g∈G

gvg(S) ∈ F(G),

where gi ∈ G are the terms of S and vg(S) > 0 is called the multiplicity of g in S. Denote
by |S| = l the number of terms in S (called the length of S) and let supp(S) = {g ∈ G :
vg(S) > 0} be the support of S.
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We say that S contains some g ∈ G if vg(S) > 1, and a sequence T ∈ F(G) is a
subsequence of S if vg(T ) 6 vg(S) for every g ∈ G, denoted T |S. If T |S, then let ST−1

denote the sequence obtained by deleting the terms of T from S. Furthermore, we denote
by σ(S) the sum of S, i.e., σ(S) =

∑l
i=1 gi =

∑
g∈G vg(G)g ∈ G. We define∑

(S) = {σ(T ) : T is a nonempty subsequence of S},

the set of subsums of S,

∑
k

(S) =

{∑
i∈I

gi | I ⊆ [1, |S|] with |I| = k

}
,

the set of k−term subsums of S, and for all k ∈ N,∑
6k

(S) =
⋃

j∈[1,k]

∑
j

(S) and
∑
>k

(S) =
⋃
j>k

∑
j

(S).

Let S be a sequence in G. We define S a zero-sum sequence if σ(S) = 0, a zero-sum
free sequence if 0 6∈

∑
(S), and a minimal zero-sum sequence if σ(S) = 0 and σ(T ) 6= 0

for any proper and nontrivial subsequence T of S.
For a sequence S over G, we define

h(S) = max{vg(S) | g ∈ G} ∈ [0, |S|], the maximum of the multiplicities of S.

Let Cn denote the cyclic group of order n, where n ∈ N, and G be a finite Abelian
group (written additively) with |G| > 1. By the Structure Theorem of Abelian Groups,
we have that G ∼= Cn1 ⊕ . . .⊕Cnr , where 1 < n1 | . . . | nr ∈ N, r = r(G) is the rank of G,
and nr = exp(G) is the exponent of G. If n1 = . . . = nr, we denote G = Cr

n.
Here and henceforth, n is a fixed integer greater than 1, and the cyclic group of order

n is identified with the additive group Z/nZ of the integers modulo n.
Graham [4] stated the following conjecture.

Conjecture 1. Let p be a prime and S be a sequence over Z/pZ of length p. If all
nontrivial zero-sum subsequences of S is of the same length, then the number of distinct
terms in S is at most 2.

In 1976, Erdős and Szemerédi [4] verified Conjecture 1 for sufficiently large prime p.
However, the proof was so complicated that the details for small primes were never worked
out. Recently Gao et al [5] proved the following result.

Theorem 2. ([5]) Let S be a sequence over Z/nZ of length n. If all nontrivial zero-sum
subsequences of S are of the same length, then the number of distinct terms in S is at
most 2.

the electronic journal of combinatorics 22(4) (2015), #P4.7 2



Our objects of study can be characterized in very simple terms. To be more specific,
let us recall several standard notions, see [11].

If S = a1 · . . . · ak is a sequence over Z/nZ, let ai be the unique integer in the set
{0, 1, . . . , n − 1} which belongs to the congruence class ai modulo n, i = 1, . . . , k. The
number ai is called the least nonnegative representative of ai modulo n.

Let S = a1 · . . . · at be a sequence of integers. We write m ∗ S = (ma1) · . . . · (mat)
where m is a integer.

If g is an integer coprime to n, multiplication by g preserves the zero sums in Z/nZ
and does not introduce new ones. Hence a sequence S = a1 · . . . · ak is zero-free if and
only if the sequence g ∗S = (ga1) · . . . · (gak) is zero-free. This fact motivates the following
definition.

Let S and T be sequences over Z/nZ. We say that S is equivalent to T and write
S ∼= T if T can be obtained from S through multiplication by an integer coprime to n and
rearrangement of terms. Clearly ∼= is an equivalence relation. Otherwise, we say that S
is not equivalent to T and write S 6∼= T .

More recently, Grynkiewicz [8] gave an exhaustive list detailing the precise structure
of S and showed that the result holds in an arbitrary finite Abelian group. He proved the
following result.

Theorem 3. ([8]) Let G be an Abelian group of order n and let S ∈ F(G). Suppose there
is a unique r ∈ [1, n] such that 0 ∈

∑
r(S). Then |supp(S)| 6 2.

If G is non-cyclic, then G = 〈h〉 ⊕ 〈g〉 ∼= C2 ⊕ C2m, r = n
2

= 2m and

S = gn−1g′ or S = gn/2+x(h+ g)n/2−x or S = gn/2+x

(
h+

n+ 4

4
g

)n/2−x
,

where g ∈ G, h, g′ ∈ G \ 〈g〉, ord(g) = n
2
, ord(h) = 2 and x ∈ [1, n

2
− 1] is odd.

If G ∼= Z/nZ, then S is one of the following:

(i) S ∼= 1n−1g, where g ∈ Z/nZ.

(ii) S ∼= 2n−1g, where n is even and g ∈ Z/nZ is odd.

(iii) S ∼= 1n−2(n+2
2

)2, where n is odd and r = n+1
2

.

(iv) S ∼= 2n/2+x(n+4
2

)n/2−x, where n ≡ 2 (mod 4) and x ∈ [0, n
2
− 1] is even, and r = n

2
.

(v) S ∼= 1n/2+x(n+2
2

)n/2−x, where n is even and x ∈ [0, n
2
− 1] with n

2
−x odd, and r = n

2
.

For the proof in the case where G is a general Abelian group, Grynkiewicz [8] used the
result of the Devos-Goddyn-Mohar Theorem [2]. The main purpose of the present paper
is to give an exhaustive list detailing the precise structure of the sequences for a slight
generalization of Graham’s Conjecture without using the Devos-Goddyn-Mohar Theorem.
The following are our main results.
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Theorem 4. Let G be a finite Abelian group of order n with r(G) > 2, and let S be
a sequence of length n − 1 over G. If all nonempty zero-sum subsequences have the
same length r ∈ [1, n − 1], then G ∼= C2 ⊕ C2m. Moreover, either m = 1, r = 3 and
S =

∏
g∈G\{0} g, or S = 0g1g2, where r = m = 1 and g1, g2 ∈ G \ {0} are distinct, or

r = n
2

= 2m and S is one of the following:

(i) S = gn−1,

(ii) S = gn−2g′,

(iii) S = gn−3g′(2g − g′),

(iv) S = g
n
2

+x(h+ g)
n
2
−1−x,

where g ∈ G, h, g′ ∈ G \ 〈g〉, ord(g) = n
2
, ord(h) = 2 and x ∈ [0, n

2
− 4].

Theorem 5. Let S be a sequence of length n − 1 over G = Z/nZ. Suppose that all
nontrivial zero-sum subsequences of S have the same length r ∈ [1, n − 1], then S is one
of the following:
• S ∼= 1n−2 · g, where g ∈ Z/nZ and ḡ 6= 1.
• S ∼= 1n−3 · 0 · 2 and r = 1.
• S ∼= 1n−3 · 2 · (n− 1) and r = 2.
• S ∼= 1n−3 · 22 and r = n− 2.
• S ∼= 1n−3 · (n+1

2
)2, where n is odd, and r = n+1

2
.

• S ∼= 2n−1, where n is even, and r = n
2
.

• S ∼= 2n−2 · g, where n is even and ḡ is odd, and r = n
2
.

• S ∼= 2n−3 · g · (4− g), where n is even and ḡ is odd, and r = n
2
.

• S ∼= 2u · (n
2

+ 2)n−1−u, where n is even, n
2

is odd, u > n
2
− 1 and r = n

2
.

• S ∼= 1u · (n
2

+ 1)v, where n is even, u > n
2
− 1 and r = n

2
.

• n = 6 and S ∼= 12 · 33, 1 · 33 · 4 or 22 · 33.
• n = 7 and S ∼= 13 · 33.
• n = 8 and S ∼= 14 · 33.

Corollary 6. Let G be a finite Abelian group of order n and let S be a sequence of length
n− 1 over G. If there is an integer r > 0 such that all nonempty zero-sum subsequences
of S have length r, then |supp(Sx−1)| 6 2 for some x ∈ supp(S).

2 Preliminaries

Given two subsets A and B of an Abelian group G, their sumset is the set of all pairwise
sums, denoted A+B = {a+ b : a ∈ A, b ∈ B}. From the basic properties of addition, we
have that A+B = B+A, and that the sumsets of more than two sets, denoted

∑l
i=1Ai =

{
∑l

i=1 ai : ai ∈ Ai}, is well defined. We often use the convention that
∑

i∈∅Ai = {0}. For
sumsets with a single element set, we abbreviate {x} + A to x + A. Substraction of sets
is defined similarly, for instance, −A = {−a : a ∈ A} and A−B = {a− b : a ∈ A, b ∈ B}.
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Arithmetic progressions over an arbitrary Abelian group G (with length l and differ-
ence d) are sets of the form {α + id : i = 1, 2, · · · , l} with α, d ∈ G and l ∈ Z, and
are closely related to the prototypical cases that arise when studying sumsets with small
cardinality.

For a zero-sum free sequence S, we say that a term x ∈ supp(S) is a 1-term if |
∑

(S)| =
|
∑

(Sx−1)|+ 1.

Definition 7. ([7], Definition 5.1.3) A sequence S ∈ F(G) is called smooth if S =
(n1g)(n2g)· . . . ·(nlg), where |S| ∈ N, g ∈ G, 1 = n1 6 · · · 6 nl, n = n1 +· · ·+nl < ord(g)
and

∑
(S) = {g, . . . , ng} ( in this case we say more precisely that S is g-smooth).

Let S be a sequence in an Abelian group G. Note that
∑

(S) ∪ {0} = {0, g1}+ · · ·+
{0, gl}, where S = g1 · . . . · gl. In particular,

∑
(ST ) ∪ {0} = (

∑
(T ) ∪ {0}) + {0, g1} +

· · · + {0, gl} for any nontrivial sequence T ∈ F(G). With this observation in hand, the
following lemma is easily verified.

Lemma 8. Let A ⊆ G \ {0} be a finite nonempty subset of an Abelian group G. Let
b ∈ G \ {0} and |{0, b} + ({0} ∪ A)| = |A| + 2. Then A ∪ {0} is the union of some
arithmetic progression with difference b and (possibly) some disjoint H − cosets, where
H = 〈b〉.

Let G be an Abelian group. If A and B are subsets of G and g ∈ G, then rg(A,B)
denotes the number of different representations of g as a sum of g = a+ b (a ∈ A, b ∈ B).
The following results will be needed.

Theorem 9. (Addition theorem of Kemperman-Scherk) Let G be an Abelian group,
and A,B be nonempty subsets of G. Then for each element g ∈ A+B,

|A+B| > |A|+ |B| − rg(A,B).

The following result characterizes all zero-sum free sequences S with |
∑

(S)| 6 2|S|−1.
Moreover, if the equality holds, then S is one of the forms of (ii), (iii), (iv) and (v).

Theorem 10. ([13], Theorem 1.1) Let G be a finite Abelian group and let S be a zero-sum
free sequence over G with |

∑
(S)| 6 2|S| − 1. Then S is one of the following:

(i) S is a-smooth for some a ∈ G.

(ii) S = akb, where k ∈ N and a, b ∈ G are distinct.

(iii) S = akbl, where k > l > 1 and a, b ∈ G are distinct with 2a = 2b.

(iv) S = akbl(a− b), where k > l > 1 and a, b ∈ G are distinct with 2a = 2b.

(v) S = akbc, where ord(a) = k + 2 and b, c ∈ G \ 〈a〉 are distinct with b + c = a and
b− c ∈ 〈a〉. In this case,

∑
(S) = 〈a, b, c〉 \ {0}.
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Lemma 11. ([11], Proposition 2) Suppose a sequence S = Ta is zero-sum free over the
Abelian group G and |

∑
(S)| = |

∑
(T )| + 1, let H = 〈a〉 denote the subgroup of G

generated by a, then:

(i)
∑

(T ) is the union of a progression {a, 2a, 3a, . . . , ka} and some cosets (maybe
empty) of H = 〈a〉 where 1 6 k < ord(a)− 1.

(ii) σ(T ) = ka.

(iii) a is the unique element of G with such property.

Lemma 12. A sequence of n− 1 integers in the interval [0, n− 1], assuming two distinct
values, has a nonempty subsequence with sum ≡ 0 (mod n).

Proof. See [1].

Theorem 13 (Savchev-Chen Structure Theorem [11]). Let S ∈ F(Cn) be a zero-sum free
sequence of length |S| = l > n

2
. Then there exists a sequence a1 · . . . · al ∈ F(Z), with

ai ∈ [1, n− 1], such that

(i) S = (a1g) · . . . · (alg) for some g ∈ supp(S), and

(ii)
∑

(S) = {g, 2g, . . . , (a1 + . . .+ al)g}.

Lemma 14. A sequence of n− 2 integers in the interval [0, n− 1], assuming more than
two distinct values, has a nonempty subsequence with sum ≡ 0 (mod n). Furthermore,
if S is a zero-sum free sequence with length n − 2, then S = xn−2 or S = xn−3 · 2x with
x ≡ 0 (mod n) and n > 4.

Proof. See [1].

Let G be a group and D(G) be the Davenport’s constant of G, i.e., the smallest integer
d such that every sequence S over G with |S| > d satisfies 0 ∈

∑
(S). In the following,

we give some properties of D(G).

Lemma 15 ([6], Proposition 5.1.4 and Theorem 5.8.3).

(i) Let G be a finite Abelian group and S a zero-sum free sequence over G. If |S| =
D(G)− 1, then

∑
(S) = G \ {0}.

(ii) Let G = Cn1 ⊕ Cn2 with 1 6 n1 6 n2. Then D(G) = n1 + n2 − 1.

Lemma 16 ([9], Lemma 2.2, Theorem 2.4 and Theorem 5.1).

(i) Let G be a noncyclic finite Abelian group. Then D(G) 6 |G|
2

+ 1, and equality holds
when G ∼= C2 ⊕ C2m.

(ii) Let G be a finite Abelian group of rank greater than 2. Then D(G) 6 |G|
4

+ 2.

(iii) D((Z/pZ)r) = r(p− 1) + 1 for prime p and r > 1.
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Next we discuss the shortest length of zero-sum subsequence of a sequence S with
length n − 1 over a finite Abelian group G with |G| = n, and the result will be used
throughout the proof of our main results.

Before stating the main result explicitly, we first introduce the important concept of
setpartitions, which will be used throughout this thesis. Let S be a sequence. A
n-setpartition of S is a partition of sequence S into n nonempty subsequences A1, . . . , An,
such that terms in each subsequence Ai are all distinct, allowing the Ai to be regarded as
sets.

Lemma 17. Let G be an Abelian group of order |G| = n and let S be a sequence of length
n− 1. If 0 6∈

∑
6h(S)+1(S), then S is one of the following:

(i) G ∼= Cn, S = gn−1 and ord(g) = n.

(ii) G = Cr
2 , supp(S) = G\{0} and h(S) = 1.

Proof. Obviously, 0 6∈ supp(S). First we consider the case h(S) = n − 1. Then S =
gn−1, g 6= 0 and g ∈ G. If ord(g) 6= n, then ord(g) 6 h(S) and ord(g)g = 0, which is a
contradiction. Hence we have ord(g) = n, G ∼= Cn and S = gn−1.

For the case h(S) = 1, we have supp(S) = G \ {0}. If there exists some g ∈ G such
that 2g 6= 0, then g 6= 0, (−g)g|S and −g + g = 0, which is a contradiction. Therefore
we have 2g = 0 for all g ∈ G, and thus G ∼= Cr

2 , r ∈ N.
Suppose that 2 6 h(S) 6 n − 2. We choose b ∈ supp(S) with vb(S) = h(S). Since

h(S) > 2, we have ord(b) > 3. By Bialostocki’s result in [1], the existence of a (h +
1)−setpartition is straightforward, where h = h(S). For any (h + 1)−setpartition A =
A0A1 · · · Ah+1 of S, we set Bi = Ai ∪ {0} for i ∈ [0, h]. It is clear that 0 is a unique
expression element in

∑h
i=0 Bi in view of S being zero-sum free. If there exist two distinct

integers j, k ∈ [0, h] such that |Bj + Bk| > |Bj| + |Bk|, then by the addition theorem of
Kemperman-Scherk, it follows that

|
∑

(B0 · · · Bh)| = |Bj + Bk +
∑
i 6=j,k

Bi|

> |Bj + Bk|+ |
∑
i 6=j,k

Bi| − 1

> |Bj|+ |Bk|+
∑
i 6=j,k

|Bi| − (h− 2)

>
h∑
i=0

|Bi| − h+ 1

> n+ 1.

By the assumptions, we have a contradiction. By the addition theorem of Kemperman-
Scherk, it follows that |Bj + Bk| < |Bj| + |Bk| − 1 cannot hold. Therefore we have
|Bj + Bk| = |Bj|+ |Bk| − 1 for any j, k ∈ [0, h], j 6= k and |

∑
(B0 · · · Bh)| = n.
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Now we choose a special setpartition A = A0A1 · · · Ah such that A0 = {b} and b /∈ Ah.
By Bialostocki’s result in [1], the special (h + 1)−setpartition exists. If there exists an
integer k ∈ [1, h] such that 〈b〉 ⊆ Bk, then we have 0 ∈ b + Ak ⊆

∑
6h(S)+1(S), which is

impossible. Let k ∈ [1, h] be arbitrary. Since |{0, b} + Bk| = |Bk| + 2− 1 = |Ak| + 2 and
〈b〉 6⊆ Bk, Lemma 8 implies that Bk is the union of {0, b, 2b, . . . , ukb} and some 〈b〉-cosets,
where 0 6 uk 6 ord(b)− 2. Moreover, since b /∈ Bh, we have uh = 0.

For any g ∈ Bk \ {0, b}, k ∈ [1, h], if g /∈ 〈b〉 and g 6∈ Bt for some t ∈ [1, h]\{k}, then
removing g from Bk and appending g to Bt, it yields a new setpartition B′ = B′0B

′
1 · · · B

′

h.
By the structure of Bk, it is easy to see that B′k is not the union of {0, b, 2b, . . . , ukb} and
some 〈b〉- cosets, which is impossible. If g ∈ 〈b〉, then g 6∈ Bh. Removing g from Bk and
appending g to Bh, it leads to a contradiction as above (Bh ∪ {g} is not of that form).
Therefore we obtain that B0 = {0, b},Bh is the union of {0} and some 〈b〉-cosets and
Bi = Bh ∪ {b} for i ∈ [1, h− 1].

If there exists an element g ∈ Bh \ {0} such that g + B1 * B1 + 〈b〉, then, since
g ∈ B1 \ 〈b〉 by the description of the Bi given above, it follows that there exists some
b1 ∈ B1 \ 〈b〉 such that g + b1 /∈ B1 + 〈b〉. Since the description of B1 ensures that
b1 + 〈b〉 ⊆ B1, we have that the entire coset b1 + 〈b〉 is disjoint from B1 + 〈b〉. Thus
removing g from Bh and appending g to B0, it yields a new setpartition B′ = B′0B

′
1 · · · B

′

h

such that (B′1 + B′0) \ (B1 + 〈b〉) contains some 〈b〉-cosets. Since ord(b) > 3 and h > 2, it
follows that |B′1 + B′0| > |B

′
1|+ |〈b〉| > |B

′
1|+ 3 = |B′1|+ |B

′
0|, which is a contradiction.

If every g ∈ Bh \ {0} satisfies g + B1 ⊆ B1 + 〈b〉, we have B1 + Bh = B1 + 〈b〉, which
implies |Bh| > |H|+1, where H = 〈b〉. Recall that |B1 +Bh| = |B1|+ |Bh|−1 > |B1|+ |H|,
where H = 〈b〉; the latter inequality follows in view of the description of Bh. However,
|B1 + Bh| > |B1| + |H| is not possible in view of B1 + Bh = B1 + 〈b〉 = B1 + H and the
description of B1 given above, which makes a contradiction. This completes the proof.

3 The proof of the main results

In order to prove our main results, we need to state a property.
Property. Let G be a finite Abelian group of order n and S be a sequence of length

n − 1 over G. Let T be a nonempty zero-sum subsequence of S. Setting U = ST−1. If
any nonempty zero-sum subsequence of S has length r ∈ [1, n − 1], then the following
statements hold:

(i) |T | = r 6 D(G) and |U | = n − 1 − r 6 D(G) − 1, where D(G) is Davenport’s
constant.

(ii) T is a minimal zero-sum subsequence, and U is zero-sum free.

(iii) For every x|T , x /∈
∑

>2(U).

Next we give the proof of Theorem 4.

Proof of Theorem 4. First we observe that if the rank of G is greater than 2, then,
by Lemma 16(ii), we have D(G) 6 |G|

4
+ 2. If |G| > 9, then we have 2D(G) 6 |G| − 1,
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and so there exist two disjoint nonempty subsequences S1 and S2 of S such that σ(S1) =
σ(S2) = 0, which is impossible. If |G| 6 8, then G ∼= C2 ⊕ C2 ⊕ C2, r = D(G) = 4 and
S =

∏
g∈G\{0} g, which is also impossible.

Now we assume that the rank of G is 2 and let G ∼= Ck ⊕ Ckm with k > 2 and
m > 1. Then by Lemma 15(ii), we have D(G) = km+ k − 1. By Property(i), we obtain
2D(G)− 1 > |G| − 1. It follows that we have k = 2, G ∼= C2 ⊕ C2m and D(G) = 2m+ 1,
or G ∼= C2

3 and D(G) = 5.
Suppose that G ∼= C2

3 and D(G) = 5. By Property, we have 4 6 r 6 5. By Lemma 17,
we have h(S) > r−1 > 3. Let g|S with vg(S) = h(S). Then σ(g3) = 0, which contradicts
that r > 4. Therefore we have G ∼= C2 ⊕ C2m, in which case D(G) = 2m + 1 by Lemma
15.

If 0 ∈ supp(S), then S0−1 is a zero-free and 4m−2 = |G|−2 = |S|−1 6 D(G)−1 = 2m,
and so m = 1. It follows that G ∼= C2

2 and S = 0g1g2, where g1, g2 ∈ G \ {0} are distinct.
In the following argument, we consider 0 /∈ supp(S), and so r > 2. We shall show
2m − 1 6 r 6 2m + 1. Let T be a zero-sum subsequence of S. If r > 2m + 2, then
|T | = r > D(G), and there exists a zero-sum subsequence T1 of T with length < r, which
is a contradiction. If r 6 2m − 2, then n − r > 2m + 1 = D(G), and so there exists a
zero-sum subsequence of ST−1, which is also a contradiction. Next we divide into three
cases to discuss the result.

Case 1: r = 2m + 1. If 0 /∈
∑

6h(S)+1(S), then by Lemma 17, we have r = 3,m = 1

and S =
∏

g∈G\{0} g. Next we consider 0 ∈
∑

6h(S)+1(S), then h(S) > r − 1 = 2m. Take

a|S satisfying va(S) = h(S) > r − 1 = 2m. Then aord(a)|S shows that r = ord(a) 6 2m,
contrary to case hypothesis.

Case 2: r = 2m− 1. Let T |S be a zero-sum subsequence of length r. Let U = ST−1.
Then |U | = 2m = D(G) − 1, and so, by Lemma 15(i),

∑
(U) = G \ {0} and |

∑
(U)| =

2|U | − 1. By Property(iii), for any a ∈ supp(T ), we have a ∈ supp(U), i.e.,

supp(T ) ⊆ supp(U).

By Theorem 10, we distinguish four subcases.
(i) U = axb, where x = 2m − 1, ord(a) = 2m and b /∈ 〈a〉. If a /∈ supp(T ), then

T = b2m−1, which is not possible since T is zero-sum free. If a ∈ supp(T ), then a2m|S,
and σ(a2m) = 0, which contradicts r = 2m− 1 6= 2m.

(ii) U = ax(a + g)y, where x + y = 2m, ord(a) = 2m, ord(g) = 2 and y is odd. Then
T = as(a+ g)t with s+ t = 2m− 1. However, σ(T ) 6= 0, which contradicts σ(T ) = 0.

(iii) U = ax(a+ g)yg, where x+ y = 2m− 1, ord(a) = 2m, and ord(g) = 2. Obviously,
g /∈ supp(T ). Then T = as(a+g)t with s+t = 2m−1, and so σ(T ) 6= 0, which contradicts
σ(T ) = 0.

(iv) U = axbc, where x = 2m− 2, ord(a) = x+ 2 = 2m, and b, c ∈ G \ 〈a〉 are distinct
with b + c = a and b − c ∈ 〈a〉. Obviously, 〈a〉 ∩ supp(T ) = ∅. Otherwise, there exists
sa ∈ supp(S), with s ∈ [1, 2m− 2], such that either a2m−s · sa is a zero-sum subsequence
with length 2m− s+ 1 < r, where s > 3, or a2m−s−1 · sa · b · c is a zero-sum subsequence
with length 2m − s + 2 > r, where s = 1, 2. By Property(iii) and

∑
(U) = G \ {0}, we
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have T = bs or T = cs with s = 2m− 1. If σ(T ) = 0, we have (2m− 1)u = 4m. That is
to say, u = 4,m = 1, and r = 1, which contradicts σ(T ) = 0 since gcd(2m− 1, 2m) = 1.

Case 3: r = 2m. By Lemma 17, we have h(S) > r−1 = 2m−1. We set g ∈ supp(S)
with h(S) = vg(S). Let T

′
= Sg−h(S). Then ord(g) = 2m and supp(T

′
) ∩ 〈g〉 = ∅. In

particular, for any a, b ∈ supp(T ), we must have 2a, 2b, a+ b ∈ 〈g〉.
If |T ′| = 0, then S = g4m−1.
If |T ′| = 1, then S = g4m−2 · g′ with g

′
/∈ 〈g〉.

If |T ′| = 2, then T
′

= h1h2 with h1, h2 /∈ 〈g〉, and h1 + h2 = lg, where l ∈ [1, 2m− 2].
But then g2m−l · h1 · h2 is a zero-sum subsequence, which force h1 + h2 = 2g.

If |T ′| > 3, choose any subsequence h1h2h3|T
′
. Then as shown in the previous case,

h1 + h2 = h1 + h3 = h2 + h3 = 2g, which implies h1 = h2 = h3, and so |supp(T
′
)| = 1. In

addition, 2h1 = 2g implies h1 = g + h with ord(h) = 2. Therefore, by h(S) = vg(S), we
have S = g2m+x(g + h)2m−1−x, where x ∈ [0, 2m− 4]. This completes the proof.

In what follows, we prove the theorem 5.

Proof of Theorem 5. First we consider r = 1, then, by Property (ii), 0 ∈ supp(S),
and S0−1 is zero-sum free. By Lemma 14, we have S = 0 · xn−2 or S = 0 · xn−3 · 2x with
ord(x) = n.

If |supp(S)| = 1, then S = an−1, where ord(a) > n
2
.

In the following argument, we assume that n > 4, |supp(S)| > 2 and 2 6 r 6 n − 1.
By Lemma 17, we obtain h(S) > r− 1. Next we divide into six cases to prove the result.

Suppose that r > n+1
2

and choose a|S satisfying va(S) = h(S) > r−1 > n−1
2

, it follows
that ord(a) > va(S) = h(S) > n−1

2
. Therefore, ord(a) = n, and without loss of generality,

we set a = 1. Let T be a zero-sum free subsequence of S with |
∑

(T )| > 2|T | − 1 and |T |
maximum. Then we have 1 6 |T | 6 b |

∑
(T )|+1
2
c 6 bn

2
c 6 r − 1. Setting U = ST−1, then

we have the following result.
Claim 1. Suppose that r > n+1

2
. Let all notation be as above, then the following

statements hold:

(i) If |T | 6 r − 2, then U = 1n−1−|T | and supp(T ) ⊆ {1, n− r, n− r + 1}.

(ii) If |T | = r− 1 and |
∑

(T )| = n− 1, then U = 1n−1−|T | and supp(T ) ⊆ {1, n− r, n−
r + 1}.

Proof of Claim 1: (i) Since h(S) > r − 1 > |T |, we have 1|U . Since for any a|U ,
Ta is zero-sum free and a is a 1− term for Ta because of the maximality of T , it follows
in view of Lemma 11 that U = an−1−|T |, and so U = 1n−1−|T | because of 1 ∈ supp(U).
But now Lemma 11 further implies that

∑
(T ) = {1, 2, · · · , k} and U = 1n−1−|T | with

k > 2|T | − 1. If |T | = 1, then |supp(S)| = 1, contrary to what we assumed above.
So |T | > 2. Therefore, there exists a subsequence T1 such that σ(T1) = 0 and T |T1. By
Property(i), we have |T1| = r and |ST−1

1 | = n−1−r. Let x|T1 with x̄ 6= 1. If x̄ > n−r+2,
we can obtain a zero-sum subsequence x · 1n−x̄ of length less than r. If x̄ 6 n − r − 1,
then x̄ = σ(1x̄), and so T1 ·x−1 ·1x̄ is a zero-sum subsequence with length r−1 + x̄, which
forces x̄ = 1. Hence for any x|T , either n− r 6 x̄ 6 n− r + 1 or x̄ = 1.
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(ii) For |T | = r − 1 and |
∑

(T )| = n − 1, we have r 6 n
2

+ 1 and for every a|U ,
Ta is a zero-sum subsequence. Thus U = an−1−|T |. If ā 6= 1, then T = 1r−1 and
|
∑

(T )| = n − 1 = r − 1 implies r = n, which is a contradiction. It follows that
U = 1n−1−|T |.

For any x|T , by the similar argument as above, we have either n− r 6 x̄ 6 n− r + 1
or x̄ = 1. This proves Claim 1.

Case 1. r > n
2

+ 1.
Choose a|S satisfying va(S) = h(S) > r − 1 > n

2
. Since r > n

2
+ 1, it follows that

ord(a) > va(S) = h(S) > n
2
. Therefore, ord(a) = n, and without loss of generality, we

set a = 1. Let T be a zero-sum free subsequence of S with |Σ(T )| > 2|T | − 1 and |T |
maximum. Then we have 1 6 |T | 6 |

∑
(T )|+1
2

6 n
2
6 r − 1.

Subcase 1.1. |T | 6 r − 2.
By Claim 1(i), we have U = 1n−1−|T | and supp(T ) ⊆ {1, n− r, n − r + 1}. There are

three options need to be considered.
(i) If n− r = 1, then S = 1n−2 · 2.
(ii) If r = n

2
+ 1, that is, n − r + 1 = n

2
, then (n − r) + (n − r + 1) = n − 1.

If (n − r) · (n − r + 1)|S, then r = 3 and n = 4, whence S = 12 · 2. So we can
assume supp(S) ⊆ {1, n − r} or supp(S) ⊆ {1, n − r + 1}. In the second case, let
S = 1s·(n−r+1)t = 1s·(n

2
)t. If t > 2, then n = 2, which makes a contradiction. Therefore,

S = 1n−2 · n
2
. In the first case, let S = 1s · (n − r)t = 1s · (n

2
− 1)t with s > r − 1 > n

2
.

We can assume that t > 2, else S = 1n−2 · g, as desired. But v1(S) > r − 1 > n
2
> 2, so

the zero-sum subsequence 12 · (n
2
− 1)2 shows that r = 4, in which case n = 6, and now

we must have S ∼= 13 · 22(else 23 would contradict that r = 4).
(iii) If 3 6 n− r + 1 < n

2
, then

n− r + 2 6 2(n− r) < (n− r) + (n− r + 1) < 2(n− r + 1) < n,

and there exists an integer s < r − 2 such that (n − r) + (n − r + 1) + s ∗ 1 = n. If
(n− r) · (n− r+ 1)|S, then 1s · (n− r) · (n− r+ 1) is a zero-sum subsequence with length
s+ 2 < r, which is a contradiction. So we can assume supp(S) = {1, x}, where x̄ = n− r
or x̄ = n− r + 1.

Suppose that S = 1u · (n − r)v. It is easy to show that u 6 r − 1, and so u = r − 1
and v = n − r > 2. If v = n − r = 2, then S = 1n−3 · 22. If v = n − r > 3, then
0 < n− 2(n− r) < r − 2, that is, n− 2(n− r) < r − 2. Therefore there exists a positive
integer t 6 r − 3 such that (n− r) + (n− r) + t ∗ 1 = n, which is a contradiction.

Suppose S = 1u · (n− r + 1)v, then u > r − 1. Since n− r + 2 < 2(n− r + 1) < n, it
follows that there exists a positive integer t 6 r − 3 such that 2(n − r + 1) + t ∗ 1 = n.
Therefore, v = 1 and S = 1n−2 · (n− r + 1).

Subcase 1.2 : |T | = r − 1 > n
2
.

Since |Σ(T )| > 2|T | − 1, it follows that |Σ(T )| = n− 1, |T | = n
2

and r = n
2

+ 1, and so,
by Claim 1(ii), we have U = 1

n
2
−1 and supp(T ) ⊆ {1, n

2
− 1, n

2
}. There are two options

need to be considered.
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(i) If n
2
|T , then we have vn

2
(S) = 1. If n

2
− 1|T , then n

2
+ (n

2
− 1) + 1 = n implies that

r = 3 and n = 4, and so S = 12 · 2. Therefore, S = 1n−2 · n
2

for n > 4.
(ii) If n

2
− 1|T , then we must have v1(S) 6 n

2
, and n

2
- S in view of the previous

paragraph. Let S = 1s · (n
2
− 1)t with s > t for v1(S) = h(S). Since n

2
> s > r − 1 = n

2
,

it follows that s = n
2

and t = n
2
− 1. If n

2
− 1 > 4, then σ((n

2
− 1)2 · 12) = 0 and

σ((n
2
− 1)4 · 14) = 0, which is a contradiction. If n

2
− 1 = 3, then n = 8, r = 5 and

S = 14 ·33, but the subsequence 12 ·32 shows r = 4, which is a contradiction. If n
2
−1 = 2,

then we have n = 6 and S = 13 · 22. If n
2
− 1 = 1, then we have n = 4 and S = 13, which

contradicts our assumption |supp(S)| > 2.
Therefore, by the above description, S is one of the following in this case:
(i) S ∼= 1n−2 · (n− r + 1) with n > 3.
(ii) S ∼= 1n−3 · (n− r)2 with r = n− 2.
Case 2. r < n

2
− 1.

Let T |S be a nontrivial zero-sum subsequence. Setting U = ST−1, by Property(i) and
(ii), we have |T | = r and U is zero-sum free. It follows that

|U | = n− 1− r > n

2
.

Applying the Savchev-Chen Structure Theorem, we can suppose that U = 1vx1 · . . . · xt
with v + t = n− 1− r > n+1

2
and 2 6 x1 6 . . . 6 xt 6 v +

∑t
i=1 xi 6 n− 1 and

∑
(U) =

{1, 2, . . . , v +
∑t

i=1 xi}. Consequently, since r − 2 6 n − 1 − r 6 v + t 6 v +
∑t

i=1 xi, it
follows that {1, 2, · · · , r−2} ⊆

∑
6r−2(U), which implies that x̄ 6 n−(r−2)−1 = n−r+1

for every x|T . Therefore, for any x|T , we have either x̄ = 1 or

n− r + 1 > x̄ > 1 + v +
t∑
i=1

xi > 1 + σ(Ū) > 1 + |U | = n− r.

Moreover, since the zero-sum subsequence T cannot be all 1’s, there exists x|T with
x̄ 6= 1, which means that the above estimate must hold for some x|T . In consequence,
either U = 1n−1−r or U = 1n−r−2 · 2(as otherwise the above estimate can be improved to
shows no much x|T exists). Moreover, n− r - T . Otherwise, 1r · (n− r) gives a zero-sum
subsequence of length r + 1 in view of r 6 n− r − 2. Thus T = 1t · (n− r + 1)s.

Suppose that U = 1n−1−r. Since r > 2, we have n− 2r+ 2 < n. If n− r 6 n− 2r+ 2,
then r = 2, and so T = 1 · (n − 1) and U = 1n−3, that is, S = 1n−2 · (n − 1). If
n− 2r + 2 6 n− r − 1 and s > 2, then

T · (n− r + 1)−2 · 1(n−2r+2)

is a zero-sum subsequence, which forces n−2r+2 = 2 and r = n
2
. It arises a contradiction.

Therefore, T = (n− r + 1) · 1r−1 and S = 1n−2 · (n− r + 1).
Suppose that U = 1n−r−2 · 2. If n− r+ 1 6 n− 2, then r > 3. However σ((n− r+ 1) ·

1r−1) = 0 and σ((n− r + 1) · 2 · 1r−3) = 0, which is a contradiction. If n− r + 1 > n− 2,
then r = 2, and so S = 1n−3 · 2 · (n− 1).

Therefore, in this case S is one of the following:
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(i) S ∼= 1n−2 · (n− r + 1) with n > 3.
(ii) S ∼= 1n−3 · 2 · (n− 1) = 1n−3 · 2 · (n− r + 1) with r = 2.
Case 3. r = n

2
− 1.

Let T be a nontrivial zero-sum subsequence of S, and set U = ST−1. By Property(i)
and (ii), we have |T | = n

2
− 1, |U | = n

2
and U is zero-sum free. Then

n

2
= |U | 6 |

∑
(U)| 6 n− 1 = 2|U | − 1.

Since r > 2, we have n > 6. By Theorem 10, we divide the proof into five subcases.
Subcase 3.1. U is a-smooth for some a ∈ G. Since |U | = n

2
, without loss of generality

set, we may set a = 1. In the following, we prove that either S = 1n−2 · (n
2

+2) with n > 6
or S = 12 · 33 or S = 13 · 2 · 5 with n = 6.

Let U = 1vx1 · . . . · xt, 2 6 x1 6 · · · 6 xt be 1-smooth with v +
∑t

i=1 xi 6 n − 1 and
v > 1. Since

n− 1 > v + x1 + · · ·+ xt

> v + 2(t− 1) + xt

> v + 2t− 2 + xt

> 2(v + t)− v − 2 + xt

= n− v − 2 + xt,

we have xt 6 v + 1. Let vxt(U) = b.
(i) If xt = v + 1, then equality holds in (1), which implies that either b = 1 or v = 1.

If v = 1, then U = 1 · 2n
2
−1 and |

∑
(U)| = n− 1. Thus for any x|T , we have x ∈

∑
(U),

and so, by Property(iii), we have either x̄ = 1 or x̄ = 2. This contradicts that T is a
minimal zero-sum subsequence with length r = n

2
− 1. If b = 1 with v > 2, then we have

U = 1v · 2n
2
−v−1 · (v + 1) and |

∑
(U)| = n − 1 with v > 2. Similarly, for any x|T , we

have x ∈
∑

(U), and so x̄ = 1 or x̄ = 2 or x̄ = v + 1. Since v > 2, we have 2 - T , so
T = 1s · (v + 1)t with s + t = r. Because the zero-sum subsequence T cannot be all 1’s,
there exists x|T such that x̄ = v+1. If 2|U , then by v+1 = (v−1)+2, 1s ·2 ·(v+1)t−1 ·U ′

is a zero-sum subsequence with length > r, where U
′

is a subsequence of U ·2−1 satisfying
σ(U

′
) = v − 1 and |U ′| > 1. So we can assume U = 1v · (v + 1) = 1

n
2
−1 · n

2
and

T = 1s · (v + 1)t = 1s · (n
2
)t. Therefore, r = 2, and so n = 6 and S = 12 · 33.

(ii) If xt 6 v, then
∑

(U) = {1, 2, · · · , v +
∑t

i=1 xi} and

n

2
= |U | 6 |

∑
(U)| = v +

t∑
i=1

xi 6 n− 1.

For any x ∈
∑

(U) and x̄ 6= 1, if 2 6 x̄ 6 v, then there exists a subsequence U
′
= 1x̄ of U

such that σ(U
′
) = x̄ and |U ′ | = x̄ > 2. If x̄ > v + 1, then there exists a subsequence U

′′

of U such that σ(U ′′) = x̄ and |U ′′ | > 2. So by Property (iii), for any x|T , we have either
x̄ = 1 or x̄ > σ(Ū)+1 > n

2
+1. If there is an element x|T such that x̄ > n−(r−1) = n

2
+2,

then there exists a subsequence U2 of U such that x·U2 is a zero-sum subsequence of length
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less than r. Therefore, for any x|T , we have either x̄ = 1 or n
2

+1 6 σ(Ū)+1 6 x̄ 6 n
2

+2,
and so we have either σ(Ū) = n

2
or σ(Ū) = n

2
+ 1. Since |U | = n

2
and U is 1-smooth, we

have either U = 1
n
2 or U = 1

n
2
−1 · 2.

Since (n
2

+ 1) ·1n
2
−1 is a zero-sum subsequence of length r+ 1, it follows that n

2
+ 1 - T .

Thus T = 1s · (n
2

+ 2)t with s+ t = n
2
− 1, and so s+ (n

2
+ 2)t ≡ 0(modn). It follows that

we have t = 1 and T = 1
n
2
−2 · (n

2
+ 2).

If U = 1
n
2 , then S = 1n−2 · (n

2
+ 2). If U = 1

n
2
−1 · 2, then we must have n

2
− 2 <

2(otherwise, 1
n
2
−4 · 2 · (n

2
+ 2) is a zero-sum subsequence of S with length n

2
− 2 < r), and

so n = 6 and S = 13 · 2 · 5.
Subcase 3.2. U = a

n
2
−1 · b is not smooth with ord(a) > n

2
.

(i) ord(a) = n
2
. Without loss of generality, we set a = 2. Then U = 2

n
2
−1 · b, where

b is odd. By Property(iii), for any x|T , we have either x̄ = 2 or x = b. Clearly, 2 - T .
Hence we have x = b and T = b

n
2
−1, and so σ(b

n
2
−1) = 0. Therefore, ord(b) = n

2
− 1 and

n
2
− 1 | n, and so n = 6 and S = 23 · 32.

(ii) ord(a) = n. Without loss of generality, we set a = 1. Then U = 1
n
2
−1 · b with

b̄ > n
2

+ 1 because U is not 1-smooth. However, 0 ∈
∑

(U), which is a contradiction.
Subcase 3.3. U = ak · (a+ g)l is not smooth with |U | = n

2
, ord(g) = 2 and k > l > 1.

If l is even, then since k > 1 and ord(g) = 2, we must have∑
(U) = {a, · · · , (k + l)a, a+ g, · · · , (k + l − 1)a+ g}.

If l is odd, then, similarly, we must have∑
(U) = {a, · · · , (k + l − 1)a, a+ g, · · · , (k + l)a+ g}.

Thus |
∑

(U)| = (k + l − 1) + (k + l) = n− 1 and ord(a) > n
3
.

(i) ord(a) = n
3
. Since r = n

2
− 1 and {a, 2a, · · · , (k+ l− 1)a} ⊆

∑
(U) with k+ l− 1 =

n
2
− 1, we have n

3
> n

2
− 1, which contradicting that n > 6.

(ii) ord(a) = n
2
. Without loss of generality, we set a = 2. Then U = 2k · (n

2
+ 2)l with

l odd. For any x|T , by Property(iii), we have either x̄ = 2 or x̄ = n
2

+ 2. If 2|T , then
2k · (n

2
+ 2)l−1 · 2 is a zero-sum subsequence of length n

2
> r, which is a contradiction.

Therefore, T = (n
2

+ 2)
n
2
−1, and so n 6 4, which is also a contradiction.

(iii) ord(a) = n. Without loss of generality, we set a = 1. Then U = 1k · (n
2

+ 1)l with
k > l > 1. Similarly, for any x|T , we have either x̄ = 1 or x̄ = n

2
+ 1. Thus T = 1s(n

2
+ 1)t

with s+ t = n
2
− 1. However σ(T ) 6= 0.

Subcase 3.4. U = ak ·(a+g)l ·g is not smooth with |U | = n
2
, ord(g) = 2 and k > l > 1.

By a similar argument of subcase 3.3, we have |
∑

(U)| = n− 1 and ord(a) > n
3
.

(i) ord(a) = n
3
. Since r = n

2
− 1 and {a, 2a, · · · , (k + l)a} ⊆

∑
(U) with k + l = n

2
− 1,

we have n
3
> n

2
− 1, which contradicting that n > 6.

(ii) ord(a) = n
2
. Without loss of generality, we set a = 2 and g = n

2
. Then U =

2k · (n
2

+ 2)l · n
2
. By Property(iii), for any x|T , we have x̄ = 2, n

2
or n

2
+ 2. If n

2
|T , then

r = 2, n = 6, and S = 2 · 33 · 5, which is equivalent to S = 1 · 33 · 4. If 2|T , then we have
either σ(2k(n

2
+ 2)l2) = 0 or σ(2k(n

2
+ 2)l n

2
2) = 0. However these length > n

2
> r, which is
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a contradiction. Therefore, T = (n
2

+ 2)
n
2
−1, and so (n

2
+ 2)

n
2 or (n

2
+ 2)

n
2 · n

2
is a zero-sum

subsequence of length at least n
2
> r, which is a contradiction.

(iii) ord(a) = n. Without loss of generality, we set a = 1. Then U = 1k · (n
2

+ 1)l · n
2
.

Similarly, for any x|T , we have x̄ = 1, n
2

or n
2

+ 1. If n
2
|T , then we have r = 2, n = 6 and

S = 1 · 33 · 4. If T = 1s · (n
2

+ 1)l, then s+ (n
2

+ 1)l 6= 0 (mod n), which is a contradiction.
Subcase 3.5. U = ax · b · c is not smooth, where ord(a) = x+ 2 = n

2
and b, c ∈ G\ 〈a〉

are distinct with b+ c = a and b− c ∈ 〈a〉. Then
∑

(U) = 〈a, b, c〉 \ {0} = G \ {0}.
By Property(iii), 〈a〉∩ supp(T ) = ∅. If bc|T , then T (bc)−1a is a zero-sum subsequence

with length r−1. So by Property(iii) and
∑

(U) = G\{0}, we have T = bs or T = cs with
s = n

2
−1. If n > 6, we have σ(T ) 6= 0, which contradicts σ(T ) = 0. If n = 6, without loss

of generality, we set a = 2. Then U = 2 · 3 · 5 and T = 32. Hence, S = 2 · 33 · 5 ∼= 1 · 33 · 4.
Therefore, in this case S is one of the following:
(i) S ∼= 1n−2 · (n− r + 1) with n > 3.
(ii) S ∼= 12 · 33 or S ∼= 22 · 33 or S ∼= 1 · 33 · 4 or S ∼= 13 · 2 · 5 with n = 6 and r = 2.
Case 4. r = n+1

2
.

By Lemma 17, we have h(S) > r− 1 = n−1
2

. Then there exists some element a|S such
that va(S) = h(S) > r − 1 = n−1

2
and ord(a) = n. Without loss of generality, we set

a = 1. Let T be a zero-sum free subsequence of S such that |
∑

(T )| > 2|T | − 1 with |T |
maximal. Set U = ST−1. Since n− 1 > |

∑
(T )| > 2|T | − 1, we have |T | 6 bn

2
c = r − 1.

Subcase 4.1. |T | 6 r − 2.
By Claim 1(i), we have U = 1n−1−|T | and

supp(T ) ⊆ {1, n− r, n− r + 1} = {1, n− 1

2
,
n+ 1

2
}.

Since n− 1− |T | > n− r+ 1 = n+1
2

, it follows that n−1
2
· 1n+1

2 is a zero-sum sequence with
length r + 1. Hence n−1

2
- T , and so T = 1t · (n+1

2
)s. If s > 3, then we obtain a zero-sum

subsequence (n+1
2

)3 · 1n−3
2 of length r + 1. If s = 2, then S ∼= 1n−3(n+1

2
)2. If s = 1, then

we have S ∼= 1n−2 · n+1
2

.
Subcase 4.2. |T | = r − 1 = n−1

2
.

Obviously, |
∑

(T )| > n− 2. There are three options consider.
(i) If Ta is a zero-sum free for every a|U , then |

∑
(Ta)| = |

∑
(T )| + 1. By Lemma

11, we have U = an−1−|T | = a
n−1
2 ,

∑
(T ) = {a, 2a, · · · , (ord(a) − 2)a} ∪ (H − cosets)

and σ(T ) = (ord(a) − 2)a, where H = 〈a〉. If a 6= 1, then T = 1r−1 = 1
n−1
2 because

of v1(S) = h(S) > n−1
2

. It follows from |
∑

(T )| > 2|T | − 1 that |T | = 1 and n = 3,
contradicting that n > 4. Thus a = 1 and

∑
(T ) = {a, 2a, · · · , (n− 2)a}. However, T · 12

is a zero-sum subsequence of length r + 1.
(ii) If Ta is a zero-sum subsequence for every a|U , then U = an−1−|T | = a

n−1
2 . Similarly,

we have U = 1
n−1
2 , and so σ(T ) = n− 1. For any x|T , since σ(T ) = n− 1, if 2 6 x̄ 6 n−3

2
,

then σ(Tx−1) = ȳ ∈ [n+1
2
, n − 3], and then 1n−ȳ · T · x−1 is zero-sum subsequence of

length distinct from r. If x̄ > n+1
2

, then x · 1x̄ is a zero-sum subsequence of length
n − x̄ + 1 < n+1

2
= r, a contradiction. Thus we have either x̄ = 1 or n−1

2
6 x̄ 6 n+1

2
.

Because the zero-sum subsequence T · a cannot be all 1’s, there exists x|T such that
x̄ = n−1

2
or x̄ = n+1

2
. Since σ(n−1

2
· n+1

2
) = 0 and T is zero-sum free, it follows that
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n−1
2

and n+1
2

are not in T simultaneously. So we can assume supp(T ) ⊆ {1, n−1
2
} or

supp(T ) ⊆ {1, n+1
2
}.

If supp(T ) ⊆ {1, n−1
2
}, then T = 1t · (n−1

2
)s with t + s = n−1

2
. If s = 1, then

T = 1r−2 · n−1
2

= 1
n−3
2 · n−1

2
, and σ(T ) = n − 2, which is a contradiction. Thus s > 2.

Since n−1
2

+ n−1
2

+ 1 = n, it follows that r = 3, n = 5 and T = (n−1
2

)2, and so S = 12 · 22.
If supp(T ) ⊆ {1, n+1

2
}, then T = 1t · (n+1

2
)s with t + s = n−1

2
. If s > 3, then

1
n−3
2 · (n+1

2
)3 is z zero-sum subsequence of length > r. If s = 2, then T = 1r−3 · (n+1

2
)2.

However, σ(1 · T ) 6= 0. Therefore, T = 1r−2 · n+1
2

and S = 1n−2 · n+1
2

.
(iii) Suppose that there exist a, b ∈ supp(U) such that Ta is zero-sum free and Tb is

zero-sum. Then by Lemma 11, we have
∑

(T ) = {a, 2a, · · · , (ord(a)−2)a}∪ (H− cosets)
with H = 〈a〉 and σ(T ) = (ord(a) − 2)a, and so b = 2a. Since T · a2 and T · b are

zero-sum, by Lemma 11(iii), we must have U = a · (2a)n−r−1 = a · (2a)
n−3
2 . If a 6= 1

and 2a 6= 1 (mod n), then we have T = 1r−1 = 1
n−1
2 and 2a ≡ 1 (mod n) because of

v1(S) = h(S) > n−1
2

. So U = (n+1
2

)
n−3
2 · a. Since 1

n−3
2 · (n+1

2
)3 is zero-sum of length r + 1,

we have n−3
2

6 2, and so n 6 7. If ā > n+3
2

, then 1n−ā ·a is zero-sum of length n−ā+1 < r.

If 2 6 ā 6 n−1
2

, then 1
n−1
2
−ā · n+1

2
· a is zero-sum of length n−1

2
− ā+ 2 < r. Then we have

ā = n+1
2

, so 2a ≡ 1 (mod n), which is a contradiction. Thus a = 1 or 2a ≡ 1 (mod n), so

U = 1 · 2n−3
2 , or U = 1

n−3
2 · n+1

2
.

If U = 1·2n−3
2 , then

∑
(U) = {1, 2, · · · , n−2}. Applying Property(iii) to T ·(2a) = T ·2

and recalling that |T | = r − 1 and
∑

(T ) = {1, 2, · · · , n − 2}(since a = 1), for any x|T ,
we have x̄ = 1 or x̄ = 2 or x̄ = n − 1. If n − 1|T , then the zero-sum subsequence −1 · 1
implies that r = 2, in which case n = 3, contrary to n > 4. So for any x|T , we have
x̄ = 1 or x̄ = 2. We can assume T = 1s · 2t with s + t = n−1

2
and s + 2t = n− 2, and so

t = n−3
2

and s = 1. It follows that T = 1 · 2n−3
2 and S = 12 · 2n−3, which is equivalent to

S ∼= 1n−3 · (n+1
2

)2.

Suppose U = 1
n−3
2 · n+1

2
. If there is a term x|T satisfying 2 6 x̄ 6 n−1

2
, then 1

n−1
2
−x̄ ·

n+1
2
· x is zero-sum of length n+3

2
− x̄ < r. If there is a term x|T satisfying x̄ > n+3

2
,

then 1n−x̄ · x is zero-sum of length n − x̄ + 1 6 n−1
2

< r. Thus for any x|T , we have

x̄ = 1 or x̄ = n+1
2

. So we can assume T = 1s · (n+1
2

)t. If t > 2, then 1
n−3
2 · (n+1

2
)3 is

zero-sum of length n+3
2

> r. Thus we have t 6 1. Since |
∑

(T )| > 2|T | − 1, we have

T = 1r−2 · (n+1
2

) = 1
n−3
2 · n+1

2
, and so S = 1n−3 · (n+1

2
)2.

Therefore, in this case S is one of the following:

(i) S ∼= 1n−2 · (n− r + 1) with n > 3.

(ii) S ∼= 1n−3 · (n+1
2

)2 = 1n−3 · (n− r + 1)2 with r = n+1
2

and n > 3.

(iii) S ∼= 12 · 22 with n = 5 and r = 3.

Now we give two results. Suppose n−1
2

6 r 6 n
2

and va(S) = v1(S) = h(S) > r−1. Let

T = S · 1−h(S). Assuming σ(T ) > n− r+ 1, define T0 as follows. Let T = x1 · . . . · xl with
2 6 x1 6 · · · 6 xl. Then there must be a minimal index u > 1 such that x1 + · · ·+ xu >
n− r + 1. Set T0 = x1 · . . . · xu. Then we have the following results.
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Claim 2 If x̄ < r for every x|T , then either σ(T ) 6 n − r or else σ(T ) > n − r + 1
and σ(T0) = σ(T0) = n− r + |T0| with 2 6 |T0| 6 r − 1.

Proof of Claim 2: We assume σ(T ) > n − r + 1 and proceed to show σ(T0) has
the desired value. Since x1 6 r 6 n − r(in view of r 6 n

2
), we must have |T0| > 2. Let

T
′
0 = T0 · x−1

u . Then the minimality of u ensures that σ(T
′
0) 6 n− r, which together with

xu 6 r gives σ(T0) 6 n.
Suppose σ(T0) = n. Then we must have xu = r and T0 is a zero-sum subsequence.

Thus |T0| = r and n = σ(T0) > r+2(r−1), which implies r 6 bn+2
3
c. In view of r > dn−1

2
e

and n > 4, this is only possible if n = 7 or n = 5 or n = 4, with r = bn+2
3
c = dn−1

2
e.

If n = 4 or n = 5, then r = 2, in which case supp(T0) = {2}. Thus, if n = 4, then
T0 = 2 · 2, so that v1(S) 6 |S| − 2 = 1, contradicting that v1(S) = h(S), while if n = 5,
then σ(T0) = n = 5 is not possible as σ(T0) must be even. Finally, if n = 7, then r = 3
and T0 = 2 · 2 · 3. But then, since v1(S) = h(S) > r − 1 = 2, the zero-sum 12 · 2 · 3
contradicts that r = 3. So we have obtained a contradiction in all cases and can instead
assume σ(T0) 6 n− 1.

Thus n − r + 1 6 σ(T0) 6 σ(T0) 6 n − 1( with the first inequality in view of the

definition of T0). But now T0 · 1n−σ(T0) is a zero-sum sequence of length |T0|+ n− σ(T0).
Moreover, it is a subsequence in view of n− σ(T0) 6 r − 1 6 h(S) 6 v1(S), which forces
σ(T0) = n− r + |T0|. Since σ(T0) 6 n− 1, it follows that |T0| 6 r − 1.

Claim 3 Suppose that σ(T ) > n − r + 1 and x̄ 6 r for every x|T . Let T1 =
T0 · 1r−|T0|(which is a zero-sum subsequence of length r). Then supp(T ) = {x} for some
x̄ ∈ [2, n − 1], so that T1 = 1v · xu and ST−1

1 = 1t · xs with s > 1. Moreover, x̄ > v and
x̄ > t.

Proof of Claim 3: First, let us show that T0 6= T . Suppose to the contrary that
T0 = T . Then Claim 2 implies σ(T ) = n − r + |T | with 2 6 |T | 6 r − 1. Consequently,
letting T

′
= T · x−1

1 , we have σ(T ′) = n− r + |T | − x1 with x1 ∈ [2, r], in which case

3 6 x1 + 1 6 n− σ(T ′) = r − |T |+ x1 6 2r − |T | 6 n− |T | = v1(S) + 1.

If the above upper bound were tight, then we must have x1 = r and r = n
2
. Hence

supp(T ) = {r} = {n
2
} with |T | > |T0| > 2, whence the zero-sum subsequence n

2
· n

2

force n
2

= r = 2. But now v2(S) > 2 has greater multiplicity than 1, contradicting that
v1(S) = h(S). Therefore, we conclude that the above upper bound is not right. As a

result, the zero-sum subsequence 1n−σ(T ′ ) · T ′ forces

r = n− σ(T ′) + |T ′ | = n− (n− r + |T | − x1) + |T | − 1,

implying x1 = 1, which contradicts that x1 > 2. So we instead conclude that T0 6= T .
Thus let x ∈ supp(T · T−1

0 ).

Let xi ∈ supp(T0) and let T
′
0 = T0 · x−1

i . If σ(T
′
0) > n− r+ 1, then 1n−σ(T

′
0) · T ′0 will be

a zero-sum subsequence (in view of σ(T
′
0) 6 σ(T0) 6 n− 1) of length (in view of Claim 2)

n− σ(T
′
0) + |T ′0| = n− (n− r + |T0| − xi) + |T0| − 1 = r + xi − 1,
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which forces xi = 1, contradicting that xi > 2. Therefore we may instead assume σ(T
′
0) 6

n − r. Thus, since x̄ 6 r for every x|T , it follows that σ(T
′
0 · x) 6 n. However, if

σ(T
′
0 · x) = n, then T

′
0 · x is a zero-sum subsequence of length |T ′0 · x| = |T0| 6 r − 1(in

view of Claim 2), which is not possible. Therefore σ(T
′
0 · x) 6 n − 1. By the definitions

of T0 and x, we have x̄ > xu > xi. Thus σ(T
′
0 · x) > σ(T0) > n− r + 1. Consequently, as

in the proof of Claim 2, the zero-sum subsequence 1n−σ(T
′
0·x) · T ′0 · x forces

σ(T0)− xi + x̄ = σ(T
′
0 · x) = n− r + |T ′0 · x| = n− r + |T0|,

whence Claim 2 implies x = xi. Since xi ∈ supp(T0) and x ∈ supp(T ·T−1
0 ) were arbitrary,

we have now established that supp(T ) = {x}, which clearly implies that T1 = 1v · xu and
S · T−1

1 = 1t · xs.
We have s > 1 since T 6= T0. That T1 is zero-sum follows by a simple calculation using

Claim 2. If x̄ 6 t, then we could replace a single term x in the zero-sum T1 with x̄ > 2
terms equal to 1 from S · T−1, yielding a zero-sum of length other than r. Likewise, If
x̄ 6 v, then we could replace v > x̄ > 2 terms equal to 1 in T1 with single term equal to
x from S · T−1

1 (which exists since s > 1) to yield a zero-sum of length other than r. Thus
x̄ > v and x̄ > t.

Case 5. r = n
2
.

By Lemma 17, we have h(S) > r − 1 = n
2
− 1. Then there exists a|S such that

va(S) > n
2
− 1. There are two subcases to consider.

Subcase 5.1. ord(a) = n
2
. Without loss of generality, we set a = 2. Let T = S ·2−h(S)

and x|T , which exists else S = 2n−1, as desired. If x is even, then x 6= 2 as all terms equal
to 2 have already been removed, and then we obtain a zero-sum subsequence of length
less than n

2
, which is a contradiction, by combining x with an appropriate number of the

other v2(S) = h(S) > n
2
− 1 terms from S equal to x = 2. Therefore all terms of T are

odd.
If S has only one odd element, then S = 2n−2 · b with b odd. If S has precisely

two odd elements b1 and b2, then b1 + b2 is even and S = 2n−3 · b1 · b2. It is easy
to show that b1 + b2 = 4. Thus S = 2n−3 · b · (4 − b) with b odd. If S has more
than two odd elements, then, letting x1, x2 and x3 be three odd elements in S, we have
x1 + x2 = x1 + x3 = x2 + x3 = 4, and so x1 = x2 = x3 = n

2
+ 2 with n

2
odd. Thus

S = 2v · (n
2

+ 2)u with v > n
2
− 1 and n

2
odd.

Subcase 5.2. ord(a) = n. Without loss of generality, we set a = 1. Let T = S ·1−h(S)

and x|T . Then we must have x̄ 6 n
2

+ 1, otherwise x · 1n−x̄ will be zero-sum of length
< n

2
. So for all x ∈ supp(S), we have x̄ 6 n

2
+ 1. First we give a Claim.

Claim 4 Let all notation be as above and n > 6. If there exists x|T such that
x̄ = n

2
+ 1, then S = 1u · (n

2
+ 1)v, where u+ v = n− 1, u > n

2
− 1 and v > 1.

Proof of Claim 4: For n > 6, we have r > 3. If there exists y|T such that ȳ < n
2
, then

n
2
+1+ȳ > n

2
+2, and so (n

2
+1)·y ·1n

2
−1−ȳ is a zero-sum subsequence of length n

2
+1−ȳ < n

2
,

which is a contradiction. Clearly, if n
2
|T , then we have v1(S) = n

2
−1, |T | = |S|−v1(S) = n

2

and vn
2
(T ) = 1, as v1(S) = n

2
− 1 and 1

n
2 · n

2
and (n

2
)2 are zero-sum of length 6= r. Thus
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T = n
2
· (n

2
+ 1)

n
2
−1. However, n

2
· (n

2
+ 1)2 · 1n

2
−2 is a zero-sum subsequence of length r+ 1,

which is also a contradiction.
By the above argument, we have S = 1u · (n

2
+ 1)v, where u + v = n − 1, u > n

2
− 1

and v > 1. This proves the Claim 4.

For n = 4, we have r = 2 and there must exist some x|T with x̄ > 2 = n
2
. In this case,

we have S = 1 ·2 ·3 or S = 12 ·3 in view of v1(S) = h(S). So we can assume n > 6. If there
is some x|T with x̄ > n

2
+ 1, then Claim 4 completes the proof. Therefore we may assume

x̄ 6 n
2

= r for all x|T , and now we can apply Claim 2. As a result, either σ(T ) 6 n
2

or

there exists a subsequence T0|T with σ(T0) = n
2

+ |T0| 6 n− 1. Let |T | = u > 2.
Let T1 = T0 · 1

n
2
−u be a zero-sum subsequence. By Claim 3, we have T1 = 1vxu and

ST−1
1 = 1txs with x̄ > v, x̄ > t. Since σ(T1) = n, it follows that x̄ = n−v

u
= n−r

u
+1 = n

2u
+1

with x̄ > t and x̄ > v. Since n − 1 > 2x̄ > v + t + 2 > n
2

+ 1, we have x̄ > n
4

+ 1
2
. In

view of the definition of T0 and r = n
2
, we have |T0| > 2, so u = 2. Thus T1 = x2 · 1n

2
−2

and x̄ = n
4

+ 1 with 4|n. For n > 10, (n
4

+ 1)3 · 1n
4
−3 will be a zero-sum subsequence of

incorrect length unless x̄ = n
4

+ 1 has multiplicity 2, in which case S = (n
4

+ 1)2 · 1n−3 and

(n
4

+ 1) · 1 3n
4
−1 is this time of incorrect length, which is a contradiction. For n = 8, then

we have x = 3, so T1 = 12 · 32 and S = 14 · 33 by v1(S) = h(S).
Therefore, in this case, S is one of the following:
(i) S ∼= 2n−1.
(ii) S ∼= 2n−2 · b, where b is odd.
(iii) S ∼= 2n−3 · b · (4− b), where b is odd.
(iv) S ∼= 2u · (n

2
+ 2)v, where n

2
is odd and u > n

2
− 1.

(v) S ∼= 1u · (n
2

+ 1)v with u > n
2
− 1 and n > 5.

(v) S ∼= 14 · 33 with n = 8.
Case 6. r = n−1

2
.

By Lemma 17, we have h(S) > r − 1 = n−3
2

. Then there exists a|S such that va(S) =
h(S) > n−3

2
. Since n > 4, so that n

3
< n−1

2
, we may without loss of generality set a = 1.

Let T = S · 1−h(S). For any x|T , it is easy to show that x̄ 6 n+3
2

. We first give a Claim.
Claim 5 If there exists x|T such that x̄ > n+1

2
, then we have S = 1n−2 · n+3

2
or

S = 12 · 2 · 4 with n = 5, or S = 13 · 53 ∼= 13 · 33 with n = 7.
Proof of Claim 5: Since n > 5, we have r > 2 and h(S) > 1. If n+1

2
|T , then

obviously, we have v1(S) = n−3
2

. If n−1
2
|T , then obviously, we have v1(S) 6 n−1

2
. If

vn−1
2

(S) > 2, then 1 · (n−1
2

)2 is a zero-sum subsequence of length 3, which implies r = 3

and n = 7. Since v1(S) > n−3
2

= 2, we have 12 · (n−1
2

)2 = 12 · 32|S, and so 4 is not in S.
If 2|S, then 12 · 2 · 3 is a zero-sum subsequence of length 4 > r = 3. So we can assume
supp(S) ⊂ {1, 3, 5}. Because v1(S) = h(S) and 1 · 3 · 52, 14 · 3 and 13 · 32 · 5 is a zero-sum
sequence of incorrect length, we must have S = 13 · 33, which contradicts that x̄ > n+1

2

foe some x|T . So we can assume vn−1
2

(S) 6 1.

If (n−1
2

)(n+1
2

)|T , then we have r = 2 and n = 5, so v1(S) = 1 = h(S) and S = 1 ·2 ·3 ·4,
which is a contradiction.

If (n+3
2

)(n+1
2

)|T , then our above work shows that v1(S) = n−3
2

, so that |T | = n+1
2

> 3.
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If there were some x|T with x̄ 6 n−3
2

, then the zero-sum subsequence 1
n−3
2
−x̄ ·x · n+3

2
must

have length r, implying x̄ = 1, which contradicts the definition of T . Therefore, in view of
the previous paragraph, we have supp(T ) = {n+3

2
, n+1

2
}. We must also have vn+1

2
(T ) = 1,

as otherwise 1
n−3
2
−1 · (n+1

2
)2 · n+3

2
will be a zero-sum subsequence of length r + 1 6= r.

Thus T = n+1
2
· (n+3

2
)
n−1
2 . But now vn+3

2
(S) > n−1

2
> n−3

2
= v1(S), contradicting that

v1(S) = h(S).
If (n+3

2
)(n−1

2
)|T , then our above work shows that vn−1

2
(S) = 1, v1(S) 6 n−1

2
and

vn+1
2

(S) = 0. In view of v1(S) 6 n−1
2

, we have |T | > n−1
2

. If there were some x|T
with x̄ 6 n−3

2
, then the zero-sum subsequence 1

n−3
2
−x̄ · x · n+3

2
must have length r, imply-

ing x̄ = 1, which contradicts the definition of T . Therefore supp(T ) = {n+1
2
, n+3

2
} with

vn−1
2

(S) = 1, which implies T = n−1
2
· (n+3

2
)|T |−1. Thus vn+3

2
(S) > |T | − 1 > n−3

2
. Conse-

quently, if n > 5, then the zero-sum subsequence 1
n−5
2 · n−1

2
·(n+3

2
)2 has length greater than

r, which is a contradiction. On the other hand, if n = 5, then S = 12 ·2·4 follows in view of
v1(S) = h(S). In view of the above work, if n+3

2
|S, then we have vn−1

2
(S) = vn+1

2
(S) = 0.

Moreover, as argued in both of the above paragraphs, we also cannot have any x|T with
x̄ 6 n−3

2
. Thus supp(T ) = {n+3

2
}. If vn+3

2
(S) > 3, then we must have v1(S) = h(S) > 3,

which implies n > 7, and then the zero-sum subsequence (n+3
2

)3 · 1n−3
2
−3 has incorrect

length for n > 7, while for n = 7, we have S = 13 · 53 ∼= 13 · 33, as desired. If vn+3
2

(S) = 2,

then S = 1n−3 · (n+3
2

)2, in which case the zero-sum subsequence 1n−3 · (n+3
2

)2 has length
n − 1 > r, which is a contradiction. Finally, if vn+3

2
(S) = 1, then S = 1n−2 · n+3

2
, as

desired. So we can now assume n+3
2

- T .
Since n+3

2
- T , our hypotheses ensure that n+1

2
|T . Then we must have supp(T ) ⊆

{2, n+1
2
}, otherwise 1

n−1
2
−x̄ · x · n+1

2
would be a zero-sum subsequence of incorrect length

if 3 6 x̄ 6 n−1
2

. If 2|T and v2(T ) > 2, then 1
n−9
2 · 22 · n+1

2
is zero-sum, and this implies

n = 7 or n = 5. If n = 5, then v1(S) = h(S) = v2(S) > 2 and vn+1
2

(S) > 1 imply

|S| > 5 > n− 1, contrary to hypothesis. For n = 7, we have 12 · 22 · 4|S, so S = 12 · 22 · 42

or S = 13 · 22 · 4. The latter has 13 · 4 as a length 4 > r zero-sum, while the former has
12 · 22 · 42 as a length 6 > r zero-sum, both contradictions. So we have v2(S) 6 1. Hence
vn+1

2
(S) > n−1

2
> 2(as shown at the start of the proof), so n = 5 and v2(S) = 1, which

implies S = 12 · 2 · 3 in view of v1(S = h(S). This proves Claim 5.

In view of Claim 5, we may assume x̄ 6 n−1
2

= r for every x|T . Let T = S · 1−h(S).

By Claim 2, we have that either σ(T ) 6 n+1
2

or there exists T0|T such that σ(T0) =
n+1

2
+ |T0| 6 n − 1. If σ(T ) 6 n+1

2
, then either 0 /∈

∑
(S) or there exists a zero-sum

subsequence of length > r, which is impossible. Therefore, there exists a subsequence
T0|T such that σ(T0) = n+1

2
+ |T0| 6 n− 1 with 2 6 |T0| 6 n−3

2
. Let |T0| = u > 2.

Let T1 = T0 · 1
n−1
2
−u. Then σ(T1) = n. By Claim 3, we have T1 = xu · 1v and

ST−1
1 = xs · 1t with x̄ > v and x̄ > t. Since σ(T1) = 0, we conclude that x̄ = n+1

2u
+ 1.

Since supp(S) = {1, x} with v1(S) = h(S), it follows that v + t = v1(S) > 1
2
|S| = n−1

2
.

Thus, since x̄ > v and x̄ > t, we have x̄ > n+3
2

. Hence n+1
2u

+ 1 = x̄ > n+3
4

, which implies

the electronic journal of combinatorics 22(4) (2015), #P4.7 20



u 6 3 in view of n > 5.
If u = 3, then n+1

2u
+1 = x̄ > n+3

4
implies n = 5, x = 2 and r = 2. But supp(S) = {1, x}

together with v1(S) = h(S) and |T0| > 2 implies S = 12 · 22, so that the zero-sum
subsequence 1 · 22 contradicts that r = 2. Therefore we may instead assume u = 2, in
which case x̄ = n+1

4
+ 1 with 4 | n+ 1, and T1 = x2 · 1v with v = r− 2 = n−5

2
. Since x̄ > v

and 4 | n + 1, we have n = 11 or n = 7. If n = 11, then supp(S) = {1, 4}, r = 5 and
v1(S) = h(S) ensure that S = 15 · 45, S = 16 · 44, S = 17 · 43, S = 18 · 42 and S = 19 · 4 are
the only possibilities for S. However, the zero-sum sequences 12 · 45, 16 · 44 and 17 · 4 yield
the contradiction r 6= 5 in all but the final case. This completes the case n = 11.

If n = 7, then supp(S) = {1, 3}, r = 3 and v1(S) = h(S) ensure that S = 13 · 33, S =
14 · 32 and S = 15 · 3 are the only possibilities for S. However, the zero-sum sequences
14 · 3 and 17 · 4 contradicts that r = 3 in the second case, leaving only the other two.

Therefore, in this case, S is one of the following:

(i) S ∼= 1n−2 · (n− r + 1) with n > 5.

(ii) S ∼= 12 · 2 · 4 with n = 5; S ∼= 13 · 33 with n = 7.

This completes the proof.
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