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Abstract

The focus of this paper is to study the HOMFLY polynomial of (2, n)-torus link
as a generalized Fibonacci polynomial. For this purpose, we first introduce a form of
generalized Fibonacci and Lucas polynomials and provide their some fundamental
properties. We define the HOMFLY polynomial of (2, n)-torus link with a way simi-
lar to our generalized Fibonacci polynomials and provide its fundamental properties.
We also show that the HOMFLY polynomial of (2, n)-torus link can be obtained
from its Alexander-Conway polynomial or the classical Fibonacci polynomial. We
finally give the matrix representations and prove important identities, which are
similar to the Fibonacci identities, for the our generalized Fibonacci polynomial
and the HOMFLY polynomial of (2, n)-torus link.

Keywords: HOMFLY polynomial; Alexander-Conway polynomial; torus link; Fi-
bonacci polynomial; Binet’s formula; Fibonacci identities

1 Introduction

An important part of works of the knot theory is about discovering the knot invariants
and determining the type of knot by means of the knot invariants.

A knot polynomial is a knot invariant whose coefficients encode some of the properties
of a given knot. There are important knot polynomials in literature [1, 2, 5, 7, 11, 14–18].
The first of these was defined by J. W. Alexander in 1928 [1]. Let L denote an oriented
link (or knot) diagram. The Alexander polynomial, ∆L(t), is a Laurent polynomial in the
variable t with integer coefficients associated with the link diagram L in an invariant way.
There are several ways to define and calculate the Alexander polynomial, see [1,8,10,21].
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In 1969, J. Conway defined a version of the Alexander polynomial with a skein relation,
usually referred to as the Alexander-Conway polynomial [7]. The Alexander-Conway
polynomial, ∇L(z), is a Laurent polynomial in the variable z with integer coefficients
associated with the oriented link diagram L. ∇L(z) is an ambient isotopy invariant of the
link L determined by the following axioms:

∇L+(z)−∇L−(z) = z∇L0(z)

∇©(z) = 1

where L+, L− and L0 are skein diagrams drawn in Figure 1 and © is any diagram of the
unknot.

L
+ L

-

L
0

Figure 1: Skein Diagrams

The relationship between the Alexander-Conway polynomial and the original Alexan-
der polynomial is given by

∆L(t) = ∇L(t
1/2 − t−1/2).

Here, ∆L(t) must be properly normalized (by multiplication ±tn/2) to satisfy the skein
relation

∆L+(t)−∆L−(t) =
(
t
1/2 − t−1/2

)
∆L0(t)

∆©(t) = 1.

Note that this relation gives a Laurent polynomial in the variable t
1/2 .

The significance of the skein relation was not realized until the early 1980s. In 1984,
V. Jones discovered a new polynomial invariant for knots and links [14]. The Jones
polynomial, VL(t), is a Laurent polynomial in the variable t

1/2 associated with the oriented
link diagram L. VL(t) is an ambient isotopy invariant of the link L determined by the
following axioms:

t−1VL+(t)− tVL−(t) =
(
t
1/2 − t−1/2

)
VL0(t)

V©(t) = 1.

The Jones polynomial leds to discover more knot polynomials, such as so-called HOM-
FLY polynomial [5, 11]. The HOMFLY polynomial is a generalization of the Alexander-
Conway polynomial and the Jones polynomial. The HOMFLY polynomial, PL(a, z), is
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two variables Laurent polynomial for the oriented link diagram L. PL(a, z) is an ambient
isotopy invariant of the link L determined by the following axioms:

a−1PL+(a, z)− aPL−(a, z) = zPL0(a, z) (1)

P©(a, z) = 1. (2)

The HOMFLY polynomial specializes to the Jones polynomial for a = t and z =
t
1/2 − t−1/2 , the Alexander-Conway polynomial for a = 1 and the Alexander polynomial

for a = 1 and z = t
1/2 − t−1/2 .

From the axioms (1) and (2), we have a−1 − a = zP©© or δ = (a−1 − a)z−1 with
δ = P©©, where ©© is trivial link with two components. So, we get δ = −t1/2 − t−1/2

for the Jones polynomial and δ = 0 for the Alexander-Conway polynomial.
To easily calculate the HOMFLY polynomial, we can write the equality (1) as follows:

PL+ = azPL0 + a2PL− (3)

PL− = −a−1zPL0 + a−2PL+ . (4)

Some of the properties of the HOMFLY polynomial are listed as follows.

1. If ©µ is a trivial µ-component link, then P©µ(a, z) = δµ−1.

2. P−L(a, z) = PL(a, z), where −L is reverse oriented L.

3. PL∗(a, z) = PL(a−1,−z), where L∗ is the mirror image of L.

4. PL1]L2(a, z) = PL1(a, z)PL2(a, z), where L1]L2 is composition of L1 and L2

5. PL1tL2(a, z) = δPL1(a, z)PL2(a, z), where L1 t L2 is disjoint union of L1 and L2

It is well known that the Alexander-Conway polynomial of (2, n)-torus link is the
classical Fibonacci polynomial, see [15, 19]. The theory and application of the Fibonacci
numbers and Fibonacci polynomials attract attention in the modern science. There are
many studies on the Fibonacci polynomial and its generalization, see [3, 6, 20, 22, 23] and
others.

This paper is organized as follows. Section 2 includes summary information about our
version of generalized Fibonacci and Lucas polynomial and its fundamental properties.

In section 3, we show that the HOMFLY polynomial of (2, n)-torus link is a generalized
Fibonacci polynomial and examine its fundamental properties. We also give the relation-
ship between this polynomial and the classical Fibonacci polynomial. Thus, we can obtain
the HOMFLY polynomial of (2, n)-torus link from its Alexander-Conway polynomial and
the Jones polynomial of the same link from its Alexander polynomial.

In the last section, we work on the matrix representations of polynomials examined.
We prove identities similar to the identities of Catalan, Cassini and d’Ocagne which are
important Fibonacci identities.

the electronic journal of combinatorics 22(4) (2015), #P4.8 3



2 A generalization of Fibonacci polynomials

In this section, we introduce the following form of generalized Fibonacci and Lucas poly-
nomials which will be the basis to study the HOMFLY polynomials of (2, n)-torus links
and their properties.

Definition 1. The generalized Fibonacci polynomials {Fn(a, z)}∞n=0 in two variables a, z
are defined by the recurrence relation

Fn(a, z) = azFn−1(a, z) + a2Fn−2(a, z), n > 2 (5)

with initial conditions
F0(a, z) = 0, F1(a, z) = 1.

For a = 1, we obtain Fibonacci polynomials in z defined by the recurrence relation

fn(z) = zfn−1(z) + fn−2(z), n > 2

with initial conditions
f0(z) = 0, f1(z) = 1.

It is not difficult to see that

Fn(a, z) = an−1fn(z). (6)

In the polynomial sequence {Fn(a, z)}, we have Fibonacci numbers for a = z = 1 and
natural numbers for a = i and z = −2i with i2 = −1.

If a = iq
1/2 and z = −i

(
q
1/2 + q−

1/2

)
, then the q-form of Fn(a, z) is

Fn(q) = 1 + q + q2 + . . .+ qn−1.

The generating function of the sequence {Fn(a, z)} is defined by

gF (λ) =
∞∑
n=0

Fn(a, z)λn.

The characteristic equation of the relation (5) is

λ2 − azλ− a2 = 0

and the roots are

α =
az + a

√
z2 + 4

2
, β =

az − a
√
z2 + 4

2
. (7)

We have the following relations between a, z and α, β:

α + β = az, αβ = −a2, α− β = a
√
z2 + 4. (8)
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Definition 2. The generalized Lucas polynomials in two variables a, z are defined by the
recurrence relation

Ln(a, z) = azLn−1(a, z) + a2Ln−2(a, z), n > 2 (9)

with initial conditions
L0(a, z) = 2, L1(a, z) = az.

For a = 1, we have Lucas polynomials defined by the recurrence relation

ln(z) = zln−1(z) + ln−2(z), n > 2

with initial conditions
l0(z) = 2, l1(z) = z.

It is easily seen that
Ln(a, z) = an−1ln(z).

The characteristic equation of Ln(a, z) and its roots are the same as Fn(a, z)’s.
We now give some fundamental properties of the polynomials Fn(a, z) and Ln(a, z).

We provide the properties of Fn(a, z) and leave the proof of the properties of Ln(a, z) for
readers.

Proposition 3. The generating functions of Fn(a, z) and Ln(a, z) are

gF (λ) =
λ

1− azλ− a2λ2

and

gL(λ) =
2− azλ

1− azλ− a2λ2
.

Proof. The generating function of Fn(a, z) has the following form:

gF (λ) = F0(a, z) + F1(a, z)λ+ F2(a, z)λ
2 + . . .

After the multiplications azλgF (λ) and a2λ2gF (λ), we have

(1− azλ− a2λ2)gF (λ) =F0(a, z) + (F1(a, z)− azF0(a, z))λ

+
∞∑
n=2

(
Fn(a, z)− azFn−1(a, z)− a2Fn−2(a, z)

)
λn

=λ.

Thus, we obtain the generating function of Fn(a, z).

By using rational expansion theorem [13], the Binet’s formulas for the polynomials
Fn(a, z) and Ln(a, z) are obtained from Proposition 3 as follows.
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Proposition 4. For n > 0, the Binet’s formulas of Fn(a, z) and Ln(a, z) are

Fn(a, z) =
αn − βn

α− β
(10)

and
Ln(a, z) = αn + βn. (11)

Proposition 5. For n > 1, the explicit formulas of Fn(a, z) and Ln(a, z) are given by

Fn(a, z) =

bn−1
2
c∑

k=0

(
n− k − 1

k

)
an−1zn−2k−1 (12)

and

Ln(a, z) =

bn
2
c∑

k=0

n

n− k

(
n− k
k

)
anzn−2k.

Proof. By arranging the identity 1.60 in [12] for n, we get

bn−1
2
c∑

k=0

(
n− k − 1

k

)
(xy)k(x+ y)n−2k−1 =

xn − yn

x− y
.

In this identity, by writing α and β instead of x and y, respectively and using the equalities
(8) and (10), we obtain explicit formula of Fn(a, z).

Proposition 6. For n > 1, there are the following identities between Fn(a, z) and
Ln(a, z):

Fn(a, z) =
Ln+1(a, z) + a2Ln−1(a, z)

a2 (z2 + 4)

Ln(a, z) = Fn+1(a, z) + a2Fn−1(a, z).

Proof. Proof follows from the Binet’s formulas (10) and (11).

3 HOMFLY polynomials of (2, n)-torus links

Let Ln be an oriented diagram for (2, n)-torus link, where diagram has the right-hand
orientation, see Figure 2. For simplicity, let Pn(a, z) denote the HOMFLY polynomial
PLn(a, z).

Theorem 7. The HOMFLY polynomial of (2, n)-torus link provides the following recur-
rence relation:

Pn(a, z) = azPn−1(a, z) + a2Pn−2(a, z), n > 2.
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Proof. Let us apply the skein operation to a designated crossing of oriented diagram Ln
drawn in Figure 2 of (2, n)-torus link. If we change over-crossing to under-crossing or vice
versa over the designated crossing of the Ln, the resulting diagram is a (2, n−2)-torus link
by II. Reidemeister moves. If we separate the same crossing, then the resulting diagram
is a (2, n− 1)-torus link. From the equality (3), we have

Pn(a, z) = azPn−1(a, z) + a2Pn−2(a, z)

for n > 2. So the proof is complete.

Figure 2: (2, n)-Torus Link

The recurrence relation in Theorem 7 is also provided for the Jones polynomial with
a = t and z = t

1/2 − t−
1/2 , Alexander-Conway polynomial with a = 1 and Alexander

polynomial with a = 1 and z = t
1/2 − t−1/2 .

Now, let’s rewrite the Theorem 7 as a recurrence relation with initial conditions.

Definition 8. The HOMFLY polynomials {Pn(a, z)}∞n=0 for the oriented diagrams of
(2, n)-torus links is defined by the recurrence relation

Pn(a, z) = azPn−1(a, z) + a2Pn−2(a, z), n > 2 (13)

with initial conditions

P0(a, z) = δ =
(
a−1 − a

)
z−1, P1(a, z) = 1. (14)

Then, Pn(a, z) is a generalized bivariate Fibonacci polynomial. For a = 1 in (13)
and (14) we obtain the classical Fibonacci polynomial, fn(z), or the Alexander-Conway
polynomial, ∇n(z), for (2, n)-torus link.

From the third property of the HOMFLY polynomials in section 1 and the identity
(4), the HOMFLY polyomial sequence {Pn(a, z)} can be applied to L∗n which is mirror
image of (2, n)-torus link Ln. Hence, by using P−n(a, z) instead of PL∗n(a, z), we have

P−n(a, z) = −a−1zP−(n−1)(a, z) + a−2P−(n−2)(a, z). (15)

The characteristic equation of the recurrence relation (13) is

λ2 − azλ− a2 = 0

and the roots are

α =
az + a

√
z2 + 4

2
, β =

az − a
√
z2 + 4

2
. (16)
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Note that, the characteristic equations of the recurrence relations for the polynomials
Pn(a, z) Fn(a, z) and Ln(a, z) are same and also the roots of the characteristic equation
of the recurrence relation (15) are 1

α
and 1

β
.

By using (13) and (14), we give the following HOMFLY polynomials table of (2, n)-
torus links.

n Pn(a, z)
0 δ
1 1
2 az − (a3 − a) z−1

3 a2z2 − a4 + 2a2

4 a3z3 − (a5 − 3a3) z − (a5 − a3) z−1
5 a4z4 − (a6 − 4a4) z2 − 2a6 + 3a4

6 a5z5 − (a7 − 5a5) z3 − (3a7 − 6a5) z − (a7 − a5) z−1
...

...

We now prove some properties of the polynomial Pn(a, z).

Proposition 9. The generating function

gP (λ) =
∞∑
n=0

Pn(a, z)λn

of the sequence {Pn(a, z)} is given by

gP (λ) =
a3zλ− a2 + 1

−a3zλ2 − a2z2λ+ az
.

Proof. The generating function of Pn(a, z) has the following form:

gP (λ) = P0(a, z) + P1(a, z)λ+ P2(a, z)λ
2 + . . .

After the multiplications azλg(λ) and a2λ2g(λ), we have

(1− azλ− a2λ2)gP (λ) =P0(a, z) + (P1(a, z)− azP0(a, z))λ

+
∞∑
n=2

(
Pn(a, z)− azPn−1(a, z)− a2Pn−2(a, z)

)
λn

=P0(a, z) + (P1(a, z)− azP0(a, z))λ.

We thus obtain the generating function of Pn(a, z) as

g(λ) =
P0(a, z) + (P1(a, z)− azP0(a, z))λ

1− azλ− a2λ2
(17)

or

g(λ) =
a3zλ− a2 + 1

−a3zλ2 − a2z2λ+ az
.
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Proposition 10. The Binet’s formula for the HOMFLY polynomial sequence {Pn(a, z)}
is given by

Pn(a, z) = Aαn +Bβn

where

A =
(1 + a2) z + (1− a2)

√
z2 + 4

2az
√
z2 + 4

and

B = −(1 + a2) z − (1− a2)
√
z2 + 4

2az
√
z2 + 4

.

Proof. By using rational expansion theorem, [13], we get Binet’s form from (17) as

Pn(a, z) = (1− βδ) αn

α− β
− (1− αδ) βn

α− β
. (18)

By using (16) and (8) in (18) and reformulating, we reach Binet’s formula.

Proposition 11. For n > 2, the explicit formula for the HOMFLY polynomial of (2, n)-
torus link is given by

Pn(a, z) =

bn−1
2
c∑

k=0

(
n− k − 1

k

)
an−1zn−2k−1

+
(
1− a2

) bn−22 c∑
k=0

(
n− k − 2

k

)
an−1zn−2k−3. (19)

Proof. Likewise the proof of Proposition 5, by using identity 1.60 in [12] and considering
the equations (8) and (18), we reach the explicit formula.

Theorem 12. The relation between the HOMFLY polynomial Pn(a, z) of (2, n)-torus link
and generalized Fibonacci polynomial Fn(a, z) is

Pn(a, z) = Fn(a, z) +
(
a− a3

)
z−1Fn−1(a, z), n > 2. (20)

Proof. Proof follows from the equalities (12) and (19).

The following theorem lets us to obtain the HOMFLY polynomial of (2, n)-torus link
from its Alexander-Conway polynomial.

Theorem 13. Let Pn(a, z) and ∇n(z) denote the HOMFLY polynomial and the Alexander
-Conway polynomial for (2, n)-torus link, respectively. Then, for n > 2,

Pn(a, z) = an−1
(
∇n(z) +

(
1− a2

)
z−1∇n−1(z)

)
. (21)
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Proof. By using (6) in the relation (20),

Pn(a, z) = an−1
(
fn(z) +

(
1− a2

)
z−1fn−1(z)

)
.

Since fn(z) = ∇n(z), the proof is completed.

Corollary 14. Let Vn(t) and ∆n(t) denote the Jones polynomial and the Alexander poly-
nomial for (2, n)-torus link, respectively. Then, for n > 2,

Vn(t) = tn−1
(

∆n(t)−
(
t
3/2 + t

1/2
)

∆n−1(t)
)
. (22)

Proof. If we take a = t and z = t
1/2 − t−1/2 in the identity (21), we obtain the equality

(22).

4 Matrix representations

In this section, we use the sum property for determinants of the matrices which are
associated with the generalized Fibonacci polynomial and the HOMFLY polynomial of
(2, n)-torus link to prove the following identities. For similar studies, see [4, 6, 9, 24].

Theorem 15. Let

A =

[
az 1
a2 0

]
be a matrix which is associated with Fn(a, z). For n > 1,

An =

[
Fn+1 Fn
a2Fn a2Fn−1

]
(23)

with Fn = Fn(a, z).

Proof. We proceed by induction on n. The theorem holds for n = 1. We assume that it
holds for n = k (k > 1). Then, we have

Ak+1 =

[
Fk+1 Fk
a2Fk a2Fk−1

] [
az 1
a2 0

]
=

[
Fk+2 Fk+1

a2Fk+1 a2Fk

]
.

Corollary 16 (Cassini’s Identity). For n > 1,

Fn+1Fn−1 − F 2
n = (−1)na2n−2. (24)
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Proof. From the determinant of n-th power of the matrix A, we have |An| = (−1)na2n.
On the other hand, the determinant of matrix (23) is |An| = a2(Fn+1Fn−1 − F 2

n). Hence,
we obtain the identity (24).

Corollary 17. For n,m > 0,

Fn+m+1 = Fn+1Fm+1 + a2FnFm

and in particular, for n = m,

F2n+1 = F 2
n+1 + a2F 2

n .

Proof. These results are obtained from An+m = AnAm.

Theorem 18 (d’Ocagne’s Identity). For m > n > 1,

Fn+1Fm − FnFm+1 = (−1)na2nFm−n. (25)

Proof. Let B0 be the matrix

B0 =

[
Fn+2 Fn+2

a2Fn+1 a2Fn+1

]
.

We construct the matrix B1 by adding the first column of the matrix An multiplied with
a2 to the first column of the matrix B0 multiplied with az. Hence, we have

B1 =

[
Fn+3 Fn+2

a2Fn+2 a2Fn+1

]
.

In the same way, we construct the matrix Br by adding the first column of the matrix
Br−2 multiplied with a2 to the first column of the matrix Br−1 multiplied with az, for
r > 2. Thus, we have

B2 =

[
Fn+4 Fn+2

a2Fn+3 a2Fn+1

]
, B3 =

[
Fn+5 Fn+2

a2Fn+4 a2Fn+1

]
,

etc. By induction, it can be shown that

Br =

[
Fn+r+2 Fn+2

a2Fn+r+1 a2Fn+1

]
. (26)

From the determinant sum property, we obtain

|Br| = az|Br−1|+ a2|Br−2|. (27)

The recurrence relation (27) implies that the sequence {|Br|} is actually a generalized
Fibonacci polynomial sequence. It is easily seen that |B0| = 0 and from Corollary 16, we
get

|B1| = (−1)n+2a2n+4.
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By the relation (27) and the Definition 1, we obtain

|Br| = (−1)n+2a2n+4Fr. (28)

On the other hand, the determinant of matrix (26) is

|Br| = a2 (Fn+r+2Fn+1 − Fn+r+1Fn+2) . (29)

By writing m = n+ r in (29) and using (28), we have

Fm+2Fn+1 − Fm+1Fn+2 = (−1)n+2a2n+2Fm−n (30)

and by replacing m and n with m− 1 and n− 1 in (30), respectively,

Fm+1Fn − FmFn+1 = (−1)n+1a2nFm−n.

The identity (25) follows from last identity and the proof is complete.

Theorem 19 (Generalized Catalan’s Identity). For m > n > 1,

FnFm − Fn−rFm+r = (−1)n−ra2n−2rFm−n+rFr. (31)

Proof. Let C0 be the matrix

C0 =

[
Fn Fn−r

a2Fn+1 a2Fn+1

]
and

C1 =

[
Fn+1 Fn−r+1

a2Fn a2Fn−r

]
.

be the matrix obtained by replacing n with n− r−1 in the matrix Br. We now construct
the matrix Cs by adding the first row of the matrix Cs−2 multiplied with a2 to the first
row of the matrix Cs−1 multiplied with az, for s > 2. By induction, it can be shown that

Cs =

[
Fn+s Fn−r+s
a2Fn a2Fn−r

]
. (32)

From the determinant sum property, we obtain

|Cs| = az|Cs−1|+ a2|Cs−2|. (33)

Th recurrence relation (33) implies that the sequence {|Cs|} is also a generalized Fi-
bonacci polynomial sequence. It is obvious that |C0| = 0 and by (28), we get |C1| =
(−1)n−r+1a2n−2r+2Fr. By induction on s in the relation (33) and Definition 1 we get

|Cs| = (−1)n−r+1a2n−2r+2FrFs. (34)

On the other hand, the determinant of matrix (32) is

|Cs| = a2 (Fn−rFn+s − Fn−r+sFn) . (35)

By writing s = m− n+ r in (35) and using (34), we have

Fn−rFm+r − FmFn = (−1)n−r+1a2n−2rFm−n+rFr. (36)

Thus, the identity (31) is obtained from the identity (36) and the proof is complete.

the electronic journal of combinatorics 22(4) (2015), #P4.8 12



Remark 20. For m = n in the identity (31), we have Catalan’s identity

F 2
n − Fn−rFn+r = (−1)n−ra2n−2rF 2

r

for Fn(a, z). The Cassini’s identity (24) is a special case of Catalan’s identity with r = 1.

Definition 21. Let D denotes the matrix of size 2× 2 which is associated with Pn(a, z)
as

D =

[
az + (a− a3)z−1 1

a2 (a− a3)z−1
]
.

Note that, D = A + (a− a3) z−1I.

Theorem 22. For n > 2,

DAn−1 =

[
Pn+1 Pn
a2Pn a2Pn−1

]
(37)

where Pn = Pn(a, z) denotes the HOMFLY polynomial of (2, n)-torus link.

Proof. By matrix product and considering (5), we have

DAn−1 =

[
Fn+1 + (a− a3)z−1Fn Fn + (a− a3)z−1Fn−1

a2(Fn + (a− a3)z−1Fn−1) a2(Fn−1 + (a− a3)z−1Fn−2)

]
.

From Theorem 12, we obtain the matrix (37).

Corollary 23 (Cassini’s Identity). For n > 2,

Pn+1Pn−1 − P 2
n = (−1)n−1

(
(1− a2)2z−2 − a2

)
a2n−2. (38)

Proof. By using |DAn−1| = |D||An−1|, we get result.

Corollary 24. For n,m > 0,

Pn+m+1 + (a− a3)z−1Pn+m = Pn+1Pm+1 + a2PnPm

and in particular, for n = m,

P2n+1 + (a− a3)z−1P2n = P 2
n+1 + a2P 2

n .

Proof. Since DAn = AnD, this results are obtained from D(DAn+m) = (DAn)(DAm).

Theorem 25 (d’Ocagne-like Identity). For m > n > 2,

Pn+1Pm − PnPm+1 = (−1)n+1a2n
(
(1− a2)2z−2 − a2

)
Fm−n. (39)
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Proof. Let E0 be the matrix

E0 =

[
Pn+2 Pn+2

a2Pn+1 a2Pn+1

]
.

We construct the matrix E1 by adding the first column of the matrix An−1 multiplied
with a2 to the first column of the matrix E0 multiplied with az. Thus, we have

E1 =

[
Pn+3 Pn+2

a2Pn+2 a2Pn+1

]
.

We now construct the matrix Er by adding the first column of the matrix Er−2 multiplied
with a2 to the first column of the matrix Er−1 multiplied with az, for r > 2. By induction,
it can be shown that

Er =

[
Pn+r+2 Pn+2

a2Pn+r+1 a2Pn+1

]
. (40)

From the determinant sum property, we obtain

|Er| = az|Er−1|+ a2|Er−2|. (41)

The recurrence relation (41) implies that the sequence {|Er|} is a generalized Fibonacci
polynomial sequence. It is easily seen that |E0| = 0 and from Corollary 23, we get

|E1| = (−1)n+1a2n+4
(
(1− a2)2z−2 − a2

)
.

By the relation (41) and Definition 1, we obtain

|Er| = (−1)n+1a2n+2
(
(1− a2)2z−2 − a2

)
Fr. (42)

On the other hand, the determinant of matrix (40) is

|Er| = a2 (Pn+r+2Pn+1 − Pn+r+1Pn+2) . (43)

By writing m = n+ r in (43) and using (42), we have

Pm+2Pn+1 − Pm+1Pn+2 = (−1)n+1a2n+2
(
(1− a2)2z−2 − a2

)
Fm−n (44)

and by replacing m and n with m− 1 and n− 1 in the identity (44), respectively,

Pm+1Pn − PmPn+1 = (−1)na2n
(
(1− a2)2z−2 − a2

)
Fm−n.

Thus, the identity (39) is obtained from last identity and the proof is complete.

Theorem 26 (Generalized Catalan-like Identity). For m > n > 1,

PnPm − Pn−rPm+r = (−1)n−r+1a2n−2r
(
(1− a2)2z−2 − a2

)
Fm−n+rFr. (45)
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Proof. Let F0 be the matrix

F0 =

[
Pn Pn−r

a2Pn+1 a2Pn+1

]
and

F1 =

[
Pn+1 Pn−r+1

a2Pn a2Pn−r

]
be the matrix obtained by replacing n with n− r− 2 in the matrix Er. We now construct
the matrix Fs by adding the first row of the matrix Fs−2 multiplied with a2 to the first
row of the matrix Fs−1 multiplied with az, for s > 2. By induction, it can be shown that

Fs =

[
Pn+s Pn−r+s
a2Pn a2Pn−r

]
. (46)

From the determinant sum property, we obtain

|Fs| = az|Fs−1|+ a2|Fs−2|. (47)

The recurrence relation (47) implies that the sequence {|Fs|} is also a generalized Fi-
bonacci polynomial sequence. It is obvious that |F0| = 0 and by (42), we get

|F1| = (−1)n−r+1a2n−2r+2
(
(1− a2)2z−2 − a2

)
Fr.

By induction on s in the relation (47) and Definition 1, we have

|Fs| = (−1)n−r+1a2n−2r+2
(
(1− a2)2z−2 − a2

)
FrFs. (48)

The determinant of the matrix (46) is

|Fs| = a2 (Pn−rPn+s − Pn−r+sPn) . (49)

By writing s = m− n+ r in (49) and using (48), we obtain

Pn−rPm+r − PmPn = (−1)n−ra2n−2r
(
(1− a2)2z−2 − a2

)
Fm−n+rFr.

Thus, the identity (45) is obtained from last identity and the proof is complete.

Remark 27. For m = n in the identity (45), we have

P 2
n − Pn−rPn+r = (−1)n−r+1a2n−2r

(
(1− a2)2z−2 − a2

)
F 2
r ,

which is a Catalan-like identity. The Cassini’s identity (38) is a special case of Catalan-like
identity with r = 1.
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