
A Quantitative Study of Pure Parallel Processes∗

O. Bodini
Laboratoire d’Informatique de Paris-Nord,

CNRS UMR 7030, Institut Galilée and
Université Paris-Nord

99, avenue Jean-Baptiste Clement
93430 Villetaneuse, France

Olivier.Bodini@lipn.univ-paris13.fr

A. Genitrini and F. Peschanski
Sorbonne Universités,
UPMC Univ Paris 06,

CNRS, LIP6 UMR 7606
4 place Jussieu 75005 Paris, France

Antoine.Genitrini@lip6.fr

Frederic.Peschanski@lip6.fr

Submitted: Dec 19, 2013; Accepted: Jan 8, 2016; Published: Jan 22, 2016

Mathematics Subject Classifications: 05C05; 05A16; 06A07; 68N19

Abstract

In this paper, we study the interleaving – or pure merge – operator that most
often characterizes parallelism in concurrency theory. This operator is a principal
cause of the so-called combinatorial explosion that makes the analysis of process
behaviours e.g. by model-checking, very hard – at least from the point of view of
computational complexity. The originality of our approach is to study this combina-
torial explosion phenomenon on average, relying on advanced analytic combinatorics
techniques. We study various measures that contribute to a better understanding
of the process behaviours represented as plane rooted trees: the number of runs
(corresponding to the width of the trees), the expected total size of the trees as well
as their overall shape. Two practical outcomes of our quantitative study are also
presented: (1) a linear-time algorithm to compute the probability of a concurrent
run prefix, and (2) an efficient algorithm for uniform random sampling of concurrent
runs. These provide interesting responses to the combinatorial explosion problem.

Keywords: Pure Merge, Interleaving Semantics, Concurrency Theory, Analytic Combi-
natorics, Increasing Trees, Holonomic Functions, Random Generation.

1 Introduction

A significant part of concurrency theory is built upon a simple interleaving operator named
the pure merge in [BW90]. The basic underlying idea is that two independent processes
running in parallel, denoted P ‖ Q, can be faithfully simulated by the interleaving of

∗This research is supported by the CNRS project ALPACA (PEPS INS2I 2012), by the A.N.R. project
MAGNUM, ANR 2010-BLAN-0204 and by the ANR project MetACOnc, ANR-15-CE40-0014.

the electronic journal of combinatorics 23(1) (2016), #P1.11 1

their computations. We denote a.P (resp. b.Q) a sequential process that first executes
an atomic action a (resp. b) and then continues as a process P (resp. Q).

The interleaving law then states1:

a.P ‖ b.Q = a.(P ‖ b.Q) + b.(a.P ‖ Q),

where + is interpreted as the union operator.

The pure merge operator is a principal source of combinatorial explosion of the possible
behaviour, when analysing concurrent processes, e.g. by model checking [CGP99]. This is-
sue has been thoroughly investigated and many approaches have been proposed to counter
the explosion phenomenon, in general based on compression and abstraction/reduction
techniques. If several decidability and worst-case complexity results are known, to our
knowledge the interleaving of process structures as computation trees has not been studied
extensively from the average case point of view.

In analytic combinatorics, the closest related line of work addresses the shuffle of
regular languages, generally on disjoint alphabets [FGT92, MZ08, GDG+08, DPRS12].
The shuffle on (disjoint) words can be seen as a specific case of the interleaving of processes
(for processes of the form (a1 . . . an) ‖ (b1 . . . bm)). Interestingly, a quite related concept of
interleaving of tree structures has been investigated in algebraic combinatorics [BFLR11],
and specially in the context of partly commutative algebras [DHNT11]. We see our work
as a continuation of this line of works, now focusing on the quantitative and analytic
aspects.

Our objective in this work is to better characterize the typical shape of concurrent
process behaviours as computation trees and for this we rely heavily on analytic com-
binatorics techniques, indeed on the symbolic method. One significant outcome of our
study is the emergence of a deep connection between concurrent processes and increasing
labelling of combinatorial structures. We expect the discovery of similar increasingly la-
belled structures if we go deeper into concurrency theory. This work follows the idea of
investigating concrete problems with advanced analytic tools. In the same spirit, we em-
phasize practical applications resulting from such thorough mathematical studies. In the
present case, we develop algorithmic techniques to analyse probabilistically the process
behaviours through counting and uniform random generation.

Our study is organized as follows. In Section 2 we define the recursive construction
of the interleaved process behaviours from syntactic process trees, and study the basic
structural properties of this construction. In Section 3 we investigate the number of
concurrent runs that satisfy a given process specification. Based on an isomorphism with
increasing trees – that proves particularly fruitful – we obtain very precise results. We
then provide a precise characterization of what “exponential growth” means in the case
of pure parallel processes. We also investigate the case of non-plane trees. In Section 4 we
discuss, both theoretically and experimentally, the decomposition of computation trees by
level. This culminates with a rather precise characterization of the typical shape of process

1When one is interested in a finite axiomatization of the pure merge operator, a left variant must be
introduced, cf.[BW90] for details.

the electronic journal of combinatorics 23(1) (2016), #P1.11 2

behaviours. We then study, in Section 5, the expected size of process behaviours. This
typical measure is precisely characterized by a linear recurrence relation that we obtain
in three distinct ways. While reaching the same conclusion, each of these three proofs
provides a complementary view of the combinatorial objects under study. Taken together,
they illustrate the richness and variety of analytic combinatorics techniques. Section 6 is
devoted to practical applications resulting from this quantitative study. First, we describe
a simple algorithm to compute the probability of a run prefix in linear time. As a by-
product, we obtain a very efficient way to calculate the number of linear extensions of a
tree-like partial order or tree-poset. The second application is an efficient algorithm for
the uniform random sampling of concurrent runs. These algorithms work directly on the
syntax trees of the process without requiring the explicit construction of their behaviour,
thus avoiding the combinatorial explosion issue.

This paper is an updated and extended version of [BGP12]. It contains new material,
especially the study of the typical shape of process behaviours in Section 4. The more
complex setting of non-plane trees is also discussed. Appendix A was added to discuss
the weighted random sampling in dynamic multisets. The proofs in this extended version
are also more detailed.

2 A tree model for process semantics

As a starting point, we recast our problem in combinatorial terms. The idea is to relate the
syntactic domain of process specifications to the semantic domain (or model) of process
behaviours.

2.1 Syntax trees

The grammar we adopt for pure parallel processes is very simple. A process is specified
as follows:

• an atomic action, denoted by α, is a process,

• the prefixing α.P of an action α and a process P is a process, and, more precisely,
a prefixed process,

• the composition P1 ‖ . . . ‖ Pn of a finite number of atomic actions or prefixed
processes is a process.

Furthermore each action can appear only once in a process. We consider that two pro-
cesses are equivalent if and only if the first one can be transformed in the second one by
a bijective relabelling of the actions.
We define the size of a process to be the number of actions it contains.

Let us first remark that this grammar takes the parallel operators, denoted ‖, as
associative operators and thus two of them cannot appear consecutively, i.e. in the com-
position P1 ‖ . . . ‖ Pn, no Pi is a composition. Moreover, in the rest of the paper we will

the electronic journal of combinatorics 23(1) (2016), #P1.11 3

a

·

b

·
‖

c d

·
‖

e f g

a

b

c d

e f g

Figure 1: A process (left), its isomorphic syntax tree (right).

focus on prefixed processes, i.e. we do not allow a whole process to be a composition. This
choice does not deplete the results thanks to the bijection between prefixed processes of
size n and processes that are compositions of size n− 1.

The following is an example process:

a.b.(c ‖ d.(e ‖ f ‖ g)).

This process, that we use as an illustration throughout the paper, is depicted on the
left-hand side of Figure 1. A straightforward isomorphic representation is obtained by
removing the internal nodes corresponding to the · and the ‖ operators (cf. on the right-
hand side of Figure 1).

The process above is equivalent by relabelling to e.g. b.a.(r ‖ d.(e ‖ f ‖ g)). We
call the representative of a class of equivalent processes a syntax tree with is the unique
process such its actions are labelled alphabetically according to the preorder traversal.

Syntax trees are the classical plane rooted trees with some decoration: the actions in
the nodes.

In the rest of the paper, we are only dealing with syntax trees, thus the names of the
actions convey no combinatorial meaning. The right-hand side of Figure 1 is indeed the
syntax tree of our example process.

An alternative interpretation of a syntax tree is as a set of precedence constraints
between atomic actions. Under this light the action a at the root must be executed first
and then b. There is no relation between c and d – they are said independent – and e, f, g
may only happen after d. In order-theoretic terms, this forms a tree-poset [Atk90]

In combinatorial terms, we adopt the classical specification for plane rooted trees to
represent the syntax trees. The size of a tree is its total number of nodes (i.e. the number
of actions of the process).

Definition 1. The specification C = Z × Seq(C) represents the combinatorial class of
plane rooted trees.

the electronic journal of combinatorics 23(1) (2016), #P1.11 4

As a basic recall of analytic combinatorics and statement of our conventions2, we
remind the reader that for such a combinatorial class C, we define its counting sequence
Cn consisting of the number of objects of C of size n. This sequence is linked to the
formal power series C(z) =

∑
n>0Cnz

n, called the (ordinary) generating function of C.
We denote by [zn]C(z) = Cn the n-th coefficient of C(z). Analogous writing conventions
will be used for all combinatorial classes in this paper.

We remind the reader that in the case of class C, the sequence Cn corresponds to the
Catalan numbers (indeed, shifted by one). For further reference, we give the generating
function of C and the asymptotic approximations of the Catalan numbers (obtained by
the Stirling formula approximation of n! as in e.g. [Com74, p. 267]).

Fact 2. C(z) = 1
2
−
√
1−4z
2

and Cn = 1
n

(
2n−2
n−1

)
= 4n−1
√
πn3

(
1 + 3

8n
+ 25

128n2 +O
(

1
n3

))
.

In the paper, we use the classical definitions in the context of plane rooted trees, (cf.
e.g. [FS13]). A tree has a root (for example the root of the syntax tree in Figure 1 is
the node a). Each node of a tree has an outdegree called the arity of the node. In our
example, the root has arity 1. The children of a node ν are the nodes attached to ν: b is
the single child of a. Conversely the node a is the parent of the node b. The descendants
of a node are the children of the node and iteratively all their respective descendants. In
fact, the descendants of a are the nodes b, c, d, e, f and g. We define a subtree rooted at a
node to be the whole tree induced by all the descendants of the node. The subtree rooted
in d in our example is the whole structure induced by d.(e ‖ f ‖ g). Finally, let us define
a child-subtree of a node ν to be a subtree whose root is a child node of ν.

2.2 Computation trees

As a semantic domain, we study computation trees [CES86], a subclass of plane rooted
trees that encode the semantics of concurrent processes. An example of a computation tree
is depicted in Figure 2, which is induced by our example syntax tree. Each branch of the
computation tree, e.g. 〈a, b, c, d, e, f, g〉, corresponds to a run (or admissible computation)
of the process. We note that in the computation tree all the branches share their common
prefix. We now formalize the construction.

To describe the recursive construction of computation trees, we use an elementary
operation of child contraction.

Definition 3. Let T be a plane rooted tree and v1, . . . , vr be the children of the root. For
i ∈ {1, . . . , r}, the i-contraction of T is the plane tree with root vi and the child-subtrees
attached to vi are T (v1), . . . , T (vi−1), T (vi1), . . . , T (vim), T (vi+1), . . . , T (vr) (from left to
right and T (ν) denotes the subtree of T whose root is ν and vi1 , . . . , vim are the children
of T (vi)). We denote by T C i the i-contraction of T .

2 The reader will find our conventions and the material about analytic combinatorics introduced in
both books of Flajolet and Sedgewick [FS09, FS13].

the electronic journal of combinatorics 23(1) (2016), #P1.11 5

a

b

c

d

e

f

g
(b1)

g

f

f

e

g

g

e

g

e

f

f

e

d

c

e

f

g

g

f

f

e

g

g

e

g

e

f

f

e

e

c

f

g

g

f

f

c

g

g

c

g

c

f

f

c

f

c

e

g

g

e

e

c

g

g

c

g

c

e
(b23)

e

c

g

c

e

f

f

e

e

c

f

f

c

f

c

e

e

c

Figure 2: The computation tree induced by the syntax tree of Figure 1.

For example, if T is a

cb f

d e

then T C 2 is c

d eb f

Note that the root (here a) is replaced by the 2-nd child (here c). Now, the interleaving
operation follows a straightforward recursive scheme.

Definition 4. Let T be a syntax tree, then its computation tree Sem(T) is defined
inductively as follows:

• if T is a leaf, then Sem(T) is T ,

• if T has a root ν of arity r (r ∈ N\{0}), then Sem(T) is the plane tree with root ν and
the child-subtrees attached to ν are, from left to right, Sem(T C1), . . . ,Sem(T Cr).

A run of the process encoded by T is the sequence of action labels encoded by a branch of
Sem(T).

The mapping between the syntax trees on the one side, and the computation trees on
the other side is trivially one-to-one. Figure 3 depicts the enumeration of the first syntax
trees (from sizes 1 to 4) together with their corresponding computation trees.

We note that the computation trees are balanced (i.e. all their leaves belong to the
same level), and, even more important that their height is n, where n is the size of the
associated syntax tree. This is obvious since at each step of the recursive construction
exactly one node is consumed. Thus there are as many computation trees of height n as
there are syntax trees of size n (as counted by Cn above).

A further basic observation is that the contraction operator (cf. Definition 3) ensures
that the number of nodes at a given level of a computation tree is at most equal to the

the electronic journal of combinatorics 23(1) (2016), #P1.11 6

a a a

b

a

b

a

b

c

a

b

c

b c

a a

b c

c b

a

b

c

d

a

b

c

d

c d

b

a a

b

c d

d c

b c

a

d

a

b

c

d

c

b d

d b

b d

a

c

a

d

b

c

b

c d

d c

b c

a

d

a

c db

c d

d c

b d

d b

b c

c b
n=4n=3n=2n=1

Figure 3: Enumerating the behaviours (computation trees) of processes (syntax trees).

number of nodes at the next level. Thus, the width of the computation tree corresponds
to its number of leaves.

An important step in our study is to interpret computation trees as sets of linear
extensions of tree-like partial orders or tree-posets [Atk90].

Definition 5. Let T be the syntax tree of a process, and A its set of actions. We define
the poset (A,≺) such that a ≺ b if a is a node that is the parent of a node b in T ; moreover,
the relation ≺ is taken to be transitive. The set of linear extensions of (A,≺) is the set
of all the total orders (A,<) that extend the partial order.

For example, the syntax tree depicted in Figure 1 is interpreted as the partial order
a ≺ b; b ≺ c; b ≺ d; d ≺ e; d ≺ f ; d ≺ g.

Proposition 6. Each branch of a computation tree Sem(T) encodes a distinct linear
extension of the tree-poset represented by T .

Proof. At the i-th step of the construction of Sem(T), the children of the root node αi
can either be a child in T , or a sibling, hence a relation compatible with the tree-poset
encoded by T . Moreover, all the nodes are consumed by the process, it is the trivial to
show that a linear extension of the order is produced.

Proposition 7. Sem(T) encodes all the possible linear extensions of T as a tree-poset.

Proof. We proceed by induction on n, the number of nodes of T . We have to show that
at step k (1 6 k 6 n), Sem(T) encodes all the prefixes of linear extensions of T of length
k. For k = 1 there is only the root node α1 and all the linear extensions of T must start
with this node, hence satisfying the property. Now if we suppose that at step k − 1 the
construction encodes all the linear extensions `k−1 of length k − 1 then all the possible
direct successors of αk in a linear extension are trivially a minimum of `k−1. By prefixing
with αk we thus obtain `k as desired.

Corollary 8. ρ is a run of T if, and only if, it is a linear extension of the tree-poset
encoded by T .

the electronic journal of combinatorics 23(1) (2016), #P1.11 7

Corollary 9. Let T be a syntax tree and b = α1, . . . , αn a branch (from the root to a leaf)
of the semantic tree Sem(T). The branch b is a complete traversal of T .

Interestingly, the tree T can be recovered by only considering a single branch of its
computation tree, which requires some technical tools that we now define.

Definition 10. Let T be a syntax tree and b = α1, . . . , αn a branch of the semantic tree
Sem(T). We define the sequences:

ξb = (α1, N1), . . . , (αn, Nn) and ζb = (α1, c1), . . . , (αn, cn) with:

Nn = 0 and ∀i, 1 6 i < n,Ni is the number of children of node αi in b;

c1 = 1 and ∀i, 1 < i 6 n, ci is the position of αi below αi−1 in b.

For example, consider the branch b23 = a, b, d, f, g, c, e of the computation tree of
Figure 2. The corresponding sequences are:[

ξb23 = (a, 1), (b, 2), (d, 4), (f, 3), (g, 2), (c, 1), (e, 0)
ζb23 = (a, 1), (b, 1), (d, 2), (f, 3), (g, 3), (c, 1), (e, 1)

The node d has 4 children (c, e, f, g) in branch b23, and to reach f we select the 3rd child.
From such a sequence it is easy to recover the arities of the nodes in the syntax tree T .

Proposition 11. Let T be a syntax tree and ξb = (α1, N1), . . . , (αn, Nn) a branch sequence
of Sem(T). Then the number of children of αi in T is arity(αi) with

arity(α1) = N1 and ∀i, 1 < i 6 n, arity(αi) = Ni −Ni−1 + 1.

Proof. In a branch sequence ξb the passage from step (αi−1, Ni−1) to (αi, Ni) corresponds
to the ci-contraction in the construction of Sem(T) at node αi−1. An obvious fact is that
Ni is the number of children of αi after the contraction (hence in the semantic tree). This
also contains the Ni−1 − 1 children of αi−1 inherited by the contraction process (i.e. all
its children except αi itself).

Now, we can distinguish the first branch of a computation tree (e.g. b1 in Figure 2)
as the preorder traversal of the syntax tree.

Proposition 12. The leftmost branch b1 of a computation tree Sem(T) corresponds to
the preorder traversal of T .

Proof. In the sequence ζb1 = (α1, c1), . . . (αn, cn) we have ci = 1 (for all i), hence we only
consider 1-contractions, i.e. contracting the leftmost child in the construction Sem(T). If
instead of attaching all the child subtrees but only the first (i.e. only Sem(T C 1) instead
of Sem(T C 1), . . . ,Sem(T C r)) then Definition 4 trivially becomes a definition of the
preorder traversal of T .

Corollary 13. A syntax tree T can be recovered from the leftmost branch b1 of Sem(T).

the electronic journal of combinatorics 23(1) (2016), #P1.11 8

Proof. Based on Proposition 11 we can obtain the successive arities of the leftmost b1,
which according to Proposition 12 corresponds to the preorder traversal of T . This gives
us the preorder degree sequence of T , which is isomorphic to T itself, cf. [FS09, p. 74].

Interestingly, the original tree can be in fact recovered by any branch of the semantic
tree, provided a good witness to its extreme level of redundancy.

Proposition 14. A syntax tree T can be recovered from any branch bk of Sem(T).

Proof. Let ξbk = (α1, N1), . . . , (αn, Nn) and ξbk = (α1, c1), . . . , (αn, cn) be the sequences
associated to bk. By Proposition 11 we obtain the arities arity(α1), . . . , arity(αn). The next
step is to recover the permutation of the αi’s corresponding to the preorder traversal. First
let us introduce two notations. An empty sequence is denoted by 〈〉 and a sequence ζ with
its first element e singled out is denoted by e :: ζ. Then, we proceed recursively according
to the following definitions:

next((α, c) :: ζ) =

((α, c), ζ) if c = 1
((β, d), (α, c− 1 + arity(β)) :: ζ ′)

with ((β, d), ζ ′) = next(ζ) otherwise

prefix(ζ) =

{
〈〉 if ζ = 〈〉
ν :: prefix(ζ ′) with (ν, ζ ′) = next(ζ) otherwise

The role of the function next is to fetch in a sequence corresponding to a branch suffix
in the computation tree, the element that would be the next element in the preorder
traversal. The function also performs the permutation that allows this next element to
bubble-up until the head of the sequence. The function prefix now repeats this process,
hence generating the preorder traversal as expected. The central element of this construc-
tive demonstration is as follows. We consider (α, c) :: ζ is a non-empty sequence of a given
suffix of a given branch b in Sem(T). This yields a pair ((β, d), ζ ′′) and we want to prove
that, first d = 1 which means it corresponds to a 1-contraction in the elaboration of the
semantic tree. Moreover, the sequence ζ ′′ must correspond to a valid branch suffix b′ in
Sem(T), and moreover a branch located to the left of b in the semantic tree. First, if c = 1
then by definition of next we have: β = α and d = 1, and the suffix ζ is left unchanged
thus b′ = b is a correct branch suffix. In the case c > 1 we proceed by induction. The
next element is (β, d) with β 6= α and the updated suffix is (α, c − 1 + arity(β) :: ζ ′).
An important information is that α cannot be a descendant of β because α preceeded
β in the original branch suffix b. In the original sequence, we were in fact performing
a c-contraction for node α. But now, operating the permutation α ↔ β corresponds to
enforcing a 1-contraction for β. Consequently, the contraction for α must take place after
the arity(β) chidren of β to update the resulting sequence so that the b′ remains a correct
branch suffix. By hypothesis of induction we also know that d = 1 (because the element
β is simply propagated) and the remaining sequence ζ ′ corresponds to a correct suffix.

Now, the prefix function applies recursively the next function, i.e. prefixing the se-
quence by the next element in the preorder traversal, hence prefix(ζbk) is exactly the
sequence corresponding to the leftmost branch b1 (i.e. ζb1).

the electronic journal of combinatorics 23(1) (2016), #P1.11 9

3 Enumeration of concurrent runs

Our quantitative study begins by measuring the number of concurrent runs of a process
encoded as a syntax tree T . This measure in fact corresponds to the number of leaves
– and thus the width – of the computation tree Sem(T). Given the exponential nature
of the merge operator, measuring efficiently the dimensions of the concurrent systems
under study is of a great practical interest. In a second step, we quantify precisely
the exponential growth of the computation trees, which provides a refined interpretation
of the so-called combinatorial explosion phenomenon. Finally, we study the impact of
characterizing commutativity for the merge operator. As a particularly notable fact, this
section reveals a deep connection between increasingly labelled structures and concurrency
theory.

3.1 An isomorphism with increasing trees

The connection between (syntactic) processes and tree-posets can be extended to in-
creasing trees. Indeed, as observed e.g. in [KMPW14], the set of linear extensions of
size n tree-posets are in one-to-one correspondence with the set of increasing trees of
size n [BFS92, Drm09].

Definition 15. An increasing tree is a labelled plane rooted tree such that the set of
labels is {1, 2, . . . , size(T)} and the sequence of labels along any branch starting at the root
is increasing.

For example, to label the syntax tree of Figure 1, a must take the label 1, b thus takes
the label 2. Then the label of c must belong to {3, 4, 5, 6}, which then induces constraints
on the other node labellings. Finally, for our example, only 30 labelled trees are increasing
trees among the 7! = 5040 possible unconstrained labellings.

The class of increasing trees satisfies the following specification (using the classical
boxed product ? see [FS09, p. 139] for details):

G = Z� ? Seq(G).

It is easy to obtain the coefficients of the associated exponential generating function G(z)
(e.g. from [BFS92]). In fact, it satisfies a classical first order differential equation. Once
the differential equation is solved, the extraction of the coefficients is direct.

Fact 16. The number of increasing trees of size n is

n! · [zn]G(z) = 1 · 3 · · · (2n− 3) =
(2n− 2)!

2n−1(n− 1)!
.

From this fact, we obtain our first significant measure.

Theorem 17. The mean number of concurrent runs induced by syntax trees of size n is

W̄n =
n!

2n−1
∼n→∞ 2

√
2πn

(n
2e

)n
.

the electronic journal of combinatorics 23(1) (2016), #P1.11 10

Proof. This result is obtained from Facts 16 and 2. By dividing the number of increasing
trees of size n by the number of syntax trees of size n (i.e. the Catalan number Cn) we get
the stated value for W̄n. The asymptotic relation is derived from Stirling’s formula [FS09,
p. 37].

A further information that will prove particularly useful is the number of increasing la-
bellings for a given tree. This can be obtained by the famous hook-length formula [Knu98,
p. 60]. The relation between the hook-length formula and increasing trees belongs to the
folklore and is in fact an exercise of [Knu98, p. 67].

Fact 18 (Hook-length formula). The number `T of increasing trees induced by a plane
rooted tree structure T is

`T =
|T |!∏

S subtree of T |S|
,

where | · | corresponds to the tree size measure.

Corollary 19. The number of concurrent runs induced by a syntax tree T is the num-
ber `T .

We remark that the hook-length gives us “for free” a direct algorithm to compute the
number of linear extensions of a tree-poset in linear time (i.e. the number of arithmetic
operations is linear in the size of the tree). This is clearly an improvement if compared to
related algorithms, e.g. [Atk90]. In Section 6 we discuss a slightly more general and more
efficient algorithm that proves quite useful.

3.2 Analysis of growth

To analyse quantitatively the growth between the processes and their behaviours, we
measure the average number of concurrent runs induced by large syntax trees of size n.
The arithmetic mean given in Theorem 17 is the usual way to measure in average. Never-
theless, a small number of compact syntax trees (in the sense that internal nodes have a
large arity: e.g. a root followed by (n− 1) children) produces a huge number of runs and
unbalances the mean. So, a natural way to avoid such a bias is to compute the geometric
mean which is less sensitive to extremal data. This subsection is devoted to prove the
following theorem about the geometric mean number of concurrent runs.

Theorem 20. The geometric mean number, denoted by Γ̄n, of concurrent runs induced
by process trees of size n satisfies:

Γ̄n =
n−1∏
k=2

k1−
n−k+1

2

CkCn−k+1
Cn ∼n→∞

√
2π
e
√
πn+L(1/4)

n

(n

e1+2L(1/4)

)n
,

where L (1/4) =
∑

n>1 lnn · Cn · 4−n ≈ 0.57889.

the electronic journal of combinatorics 23(1) (2016), #P1.11 11

Although this geometric mean is exponentially smaller than the arithmetic mean and
both means are far smaller than the upper bound (worst case) (n− 1)!, we can point here
that the number of runs of a typical large syntax tree explodes almost like the factorial
function.

Proof. Let us recall a notation: for a node ν in a tree T , we denote by T (ν) the subtree
which root is ν. First we need to obtain a recurrence formula based on the hook-length
formula. Let us give the following observation:

∏
S subtree of T

|S| = |T | ·
∏

ν child of
the root of T

 ∏
S subtree of T (ν)

|S|

 .

Now, from the Fact 18 and a proof by induction, we deduce another equation for `T :

`T = (|T | − 1)!

 ∏
ν child of

the root of T

`T (ν)
|T (ν)|!

 .

Since the geometric mean of the numbers `T is related to the arithmetic mean of the
numbers ln(`T), we introduce the sequence hT = ln(`T/|T |!) and its generating function
H(z) =

∑
T hT z

|T |. Using the latter recursive formula for `T , we deduce

H(z) = −L(z) +
∑
T

∑
ν child of

the root of T

hT (ν)z
|T |,

where L(z) =
∑

T ln |T |z|T | =
∑

n>1Cn ln(n)zn and C(z) =
∑

nCnz
n enumerates syntax

trees.
By partitioning the trees according to their root arities and the child-subtrees attached
at their roots, we get

H(z) = −L(z) +
∑
r>1

∑
R1,...,Rr

(
r∑
i=1

hRi

)
z1+

∑r
j=1 |Rj |,

where the trees Ri’s are the child-subtrees attached at the root of each syntax tree. Let
us now focus on the second term of H(z). Set

Sr =
∑

R1,...,Rr

(
r∑
i=1

hRi

)
z1+

∑r
j=1 |Rj |.

We first partition the sums over the trees Ri’s according to their sizes (suppose r > 1,

the electronic journal of combinatorics 23(1) (2016), #P1.11 12

otherwise the computation is obvious):

Sr =
∑
s1,...,sr

∑
R1,...,Rr

|R1|=s1,...,|Rr|=sr

(
r∑
i=1

hRi

)
z1+

∑r
j=1 sj

= z ·
∑
s1,...,sr

 ∑
R1:|R1|=s1

hR1z
s1 ·

∑
R2,...,Rr

|R2|=s2,...,|Rr|=sr

z
∑r
j=2 sj + · · ·+

∑
Rr:|Rr|=sr

hRrz
sr ·

∑
R1,...,Rr−1

|R1|=s1,...,|Rr−1|=sr−1

z
∑r−1
j=1 sj

= z ·

∑
s1

∑
R1:|R1|=s1

hR1z
s1 · Cr−1(z) + · · ·+ z ·

∑
sr

∑
Rr:|Rr|=sr

hRrz
sr · Cr−1(z)

= zH(z) · rCr−1(z).

Thus, we get:

H(z) = −L(z) + z ·H(z)
∑
r>1

rCr−1(z).

By differentiating the formal equation
∑

r>0C
r(z) = 1/(1−C(z)), we get the next equa-

tion:
∑

r>1 rC
r−1(z) = (1− C(z))−2, and thus,

H(z) =
−L(z)

2

(
1 +

1√
1− 4z

)
.

We can compute the geometric mean

Γ̄n =

∏
T
|T |=n

`T

1/Cn

=

n!Cn
∏
T
|T |=n

`T
|T |!

1/Cn

= n! exp

(
1

Cn
· [zn]H(z)

)
.

It remains to extract the n-th coefficient of H(z).

[zn]H(z) = −1

2

n∑
k=1

[zk]L(z) · [zn−k]
(

1 +
1√

1− 4z

)
= −1

2

n∑
k=1

Ck ln(k) ·
(
1{k=n} + (n− k + 1)Cn−k+1

)
,

the electronic journal of combinatorics 23(1) (2016), #P1.11 13

where 1{k=n} is 1 when k = n and 0 otherwise. Thus,

Γ̄n = n! exp

(
− ln(n)− 1

2Cn
·
n−1∑
k=2

Ck ln(k) · (n− k + 1)Cn−k+1

)

= (n− 1)! ·
n−1∏
k=2

k−
n−k+1

2

CkCn−k+1
Cn =

n−1∏
k=2

k1−
n−k+1

2

CkCn−k+1
Cn .

To complete the proof, it remains to obtain the asymptotic approximation for Γ̄n.
First, let us approximate the coefficients Hn. The generating function L(z) has its

dominant singularity ρ = 1/4. In fact it cannot be larger than the one of the Catalan
generating function, and the L(1/4) is finite. Furthermore, L(z) is ∆-analytic. Let us
introduce the generating function A(z) that will be used to approximate L(z) near the
dominant singularity.

A(z) = L(1/4)−
√

1− 4z

2
ln

(
1

1− 4z

)
+

(γ + 2 ln 2− 2)
√

1− 4z

2
,

where γ is Euler’s constant. By using the two first terms in the development of Catalan
numbers (see Fact 2) and asymptotic formula for the coefficients of

√
1− z ln(1 − z)−1

(see e.g. [FS09, p. 388]), we obtain

An =n→∞ −4n

2

(
− 1√

πn3

(
1

2
lnn+

γ + 2 ln 2− 2

2

)
+O

(
n−

5
2 lnn

))
− (γ + 2 ln 2− 2)

4n−1√
πn3

(
1 +O

(
1

n

))
=n→∞

4n−1 lnn√
πn3

+O

(
4n lnn√

n5

)
.

Since, Ln = ln(n)Cn, thus there exists ᾱ, β̄ and n0, such that, for all n > n0,

4n−1 lnn√
πn3

·
(

1 +
ᾱ

n

)
6 Ln 6

4n−1 lnn√
πn3

·
(

1 +
β̄

n

)
.

For all i ∈ {2, . . . , n0 − 1}, let us define αi = i
(√

πi3Li
2 ln(i)4i−1 − 1

)
and βi = i

(
2
√
πi3Li

ln(i)4i−1 − 1
)

.

Thus we denote by α the minimal value among ᾱ and the set of αi’s and β, the maximal
value among β̄ and the set of βi’s. Finally we conclude, for all n > 1

4n−1 lnn√
πn3

·
(

1 +
α

n

)
6 Ln 6

4n−1 lnn√
πn3

·
(

1 +
β

n

)
.

Thus, by summing over n and by using Equation (25) in [FS09, p. 387], we conclude

L(z) =z→1/4 A(z) +O

(
(1− 4z)3/2 ln

(
1

1− 4z

))
.

the electronic journal of combinatorics 23(1) (2016), #P1.11 14

Consequently, by using Theorem VI [FS09, p. 394], we directly derive

Hn = −1

2

(
L(1/4)

4n√
πn
− 4n

2n
+

4n−1 lnn√
πn3

− L(1/4)
4n−1

2
√
πn3

+O

(
4n lnn

n5/2

))
.

Thus,

Hn

Cn
= Hn

√
πn3

4n−1

(
1− 3

8n
+O

(
1

n2

))
= −L(1/4) · 2n+

√
πn− lnn

2
+L(1/4) +O

(
1

n2

)
.

Finally with Stirling formula, we conclude

Γ̄n = (n− 1)! · exp

(
Hn

Cn

)
∼n→∞

√
2π
e
√
πn+L(1/4)

n

(n

e1+2L(1/4)

)n
.

Concerning the constant L(1/4), it has been obtained by using the Shanks transfor-
mation [Sha55] that consists in a nonlinear acceleration method for computing the limit
of a series. More precisely, we have used the first 500, 000 terms of the series L(1/4) and
then we applied 10 iterations of the Shanks transformation in order to obtain the stated
approximation for L(1/4).

3.3 The case of non-plane trees

In classical concurrency theory, the pure merge operator often comes with commutativity
laws, e.g. P ‖ Q ≡ Q ‖ P . From a combinatorial point of view, the idea is to consider
the syntax and computation trees as non-plane (or unordered) rooted trees.

The numbers of non-plane rooted trees, i.e. the analogue of the Catalan numbers, are
well known thanks to the work of Pólya [Pó37]. They are directly derived from the next
specification studied in [FS09, p. 475–477].

Fact 21. The specification of unlabelled non-plane rooted trees is T = Z×MSet T . The
number Tn of such trees of size n is:

Tn ∼n→∞
µ

2
√
πn3

η−n,

where η ∈ [1
4
, 1
e
] and, approximately, η ≈ 0.3383218 and µ ≈ 1.559490.

Compared to rooted plane trees, no known closed form exists to characterize the
symmetries involved in the non-plane case. One must indeed work with rather com-
plex approximations. The increasing variant of non-plane rooted trees has been studied,
too, in the model of increasing Cayley trees, or recursive trees, introduced by Meir and
Moon [MM78], and studied in details in [FS09, p. 526–527]:

Fact 22. The specification of increasing non-plane rooted trees is I = Z� ? Set(I). The
number In of such trees of size n is In = (n− 1)!.

the electronic journal of combinatorics 23(1) (2016), #P1.11 15

Theorem 23. The mean number of concurrent runs built on non-plane syntax trees of
size n is

V̄n ∼n→∞
2
√

2πn

µ

(nη
e

)n
,

where η and µ are the constants introduced in Fact 21.

Of course, we obtain different approximations for the plane vs. non-plane case. The
ratio W̄n/V̄n is equivalent to γ(2η)−n/

√
πn, which means that although the exponential

growths are not of the same order. However, the two asymptotic formulas follow a same
universal shape. This comparison between plane and non-plane combinatorial structures
is a recurring theme in combinatorics. It has often been pointed out that in most cases
the asymptotic formulas look very similar. Citing Flajolet and Sedgewick (cf. [FS09,
p. 71–72]):

“[. . .] (some) universal law governs the singularities of simple tree generating
functions, either plane or non-plane [. . .]”.

Our study echoes quite faithfully such an intuition.

4 Typical shape of process behaviours

Our goal in this section is to provide a more refined view of the process behaviours by
studying the typical shape of the computation trees. This study puts into light a new
– and, we think, interesting – combinatorial class: the model of increasing admissible
cuts (of plane rooted trees). In the first part we recall the notion of admissible cuts and
define their increasing variant. This naturally leads to a generalization of the hook-length
formula of Fact 18 that enables the decomposition of a computation tree by levels. Based
on this construction, we study experimentally the level decomposition of computation
trees corresponding to syntax trees of the given size 40 (which yields computation trees
with more than 1028 nodes). Finally, we discuss the mean number of nodes by level,
which is obtained by enumerating increasing admissible cuts. This provides a fairly precise
characterization for the typical shape of process behaviours.

4.1 Increasing admissible cuts

The notion of an admissible cut has been already studied in algebraic combinatorics, see
for example [CK98]. The novelty here is the consideration of the increasingly labelled
variant.

Definition 24. Let T be a syntax tree of size n. An admissible cut of T of size k = n−i
(0 6 i < n) is a tree obtained by starting with T and removing recursively i leaves from
it. An increasing admissible cut of T of size k is an admissible cut of size k of T that
is increasingly labelled.

the electronic journal of combinatorics 23(1) (2016), #P1.11 16

a

b

c d

fe g

a

b

c d

fe

a

b

c d

e g

a

b

c d

f g

a

b

d

fe g

a

b

c d

e

a

b

c d

f

a

b

d

fe

a

b

c d

g

a

b

d

e g

a

b

d

f g

a

b

c d

a

b

d

e

a

b

d

f

a

b

d

g

a

b

d

a

b

c

a

b

a

Figure 4: All admissible cuts of the syntax tree of Figure 1.

Figure 4 depicts all admissible cuts for the syntax tree T of Figure 1. We remark that
the tree T is itself an admissible cut of T .

To establish a link with increasing admissible cuts, we first make a simple albeit
important observation.

Proposition 25. Let T be a syntax tree of size n. Any run prefix of length k (1 6 k 6 n)
in Sem(T) is uniquely encoded by an admissible cut of T whose size is k.

Proof. We proceed by induction on k. For k = 1, there is a single run prefix of length
k = 1 and the corresponding admissible cut is the root. Now suppose that the property
holds for run prefixes of length k, 1 < k < n, let us show that it also holds for run prefixes
of length k + 1. By induction hypothesis, any run prefix σk of length k is encoded by
exactly one admissible cut of size k. Let us denote by C(σk) this admissible cut. Now,
any prefix σk+1 of length k + 1 is obtained by appending an action α to a prefix σk of
length k. For σk+1 to be a valid prefix, α must correspond to a node in T that is a child
of one of the nodes of C(σk). Thus we obtain a unique C(σk+1) as C(σk) completed by a
single leaf α.

For example the run prefixes 〈a, b, c, d〉 and 〈a, b, d, e〉 are encoded by the first two
admissible cuts of size 4 corresponding to the first two cuts of the third line of Figure 4.

This result leads to a fundamental connection with increasing admissible cuts.

Proposition 26. Let T be a syntax tree of size n. The number of run prefixes of length k
(1 6 k 6 n) in Sem(T) is the number of increasing labellings of the admissible cuts of T
of size k.

the electronic journal of combinatorics 23(1) (2016), #P1.11 17

Proof. This is obtained by a direct order-theoretic argument. Each admissible cut is a tree-
poset and thus the number of runs it encodes is the number of its linear extensions.

For example, there are four admissible cuts of size 4 in Figure 4 (the leftmost cuts of
the third line). The first one admits two increasing labellings and the other ones have a
single labelling. This gives 2 + 1 + 1 + 1 = 5 run prefixes of length 4 for the syntax tree
T of Figure 1. Now, we observe that this is also the number of nodes at level 3 in the
corresponding computation tree. And this of course can be generalized: the number of run
prefixes of length k corresponds to the number of nodes at level k− 1 in the computation
tree.

From this we can characterize precisely the number of nodes by level based on a
generalization of the hook-length formula.

Corollary 27. Let T be a process tree of size n. The number of nodes at level n− 1− i
(0 6 i < n) of Sem(T) is

niT =
∑

S admissible cut of T
|S|=n−i

`S,

where `S is the hook-length formula applied to the admissible cut S (cf. Fact 18).
Moreover, the total number of nodes of Sem(T) is

nT =
n−1∑
i=0

niT =
∑

S admissible cut of T

`S.

4.2 Level decomposition

Before deriving an exact formula for the mean number of nodes by level, we can take
advantage of Corollary 27 to compute the shape of some typical computation trees.

4.2.1 Experimental study

Our experiments consist in generating uniformly at random some syntax trees (using our
arbogen tool3) of size n for n not too small. Then we can compute nT as defined above
by first listing all the admissible cuts of T .

However we cannot take a syntax tree with a very large size n due to the following
result.

Proposition 28. The mean number m̄n of admissible cuts of trees of size n satisfies

M̄n ∼n→∞
4√
15

(
5

4

)2n

.

3https://github.com/fredokun/arbogen

the electronic journal of combinatorics 23(1) (2016), #P1.11 18

https://github.com/fredokun/arbogen

Proof. Let us denote by M(z) the ordinary generating function enumerating the multiset
of admissible cuts of all trees. More precisely, we get M(z) =

∑
n∈NMnz

n where Mn =∑
T ;|T |=n |{S adm. cut of T}|.

The specification ofM is Z ×Seq(M∪C), where the tag Z marks the nodes of the tree
carrying the admissible cut, and C is the class of syntax trees. In fact, an admissible cut
is a root and a sequence of trees that are either admissible cuts or trees. In that last case,
trees correspond to a branch of the original tree that has been entirely cut. Consequently,
M(z) satisfies the following equation that can be easily solved.

M(z) =
z

1−M(z)− C(z)
, thus M(z) =

1 +
√

1− 4z −
√

2− 20z + 2
√

1− 4z

4
.

The singularities of M(z) are 1/4 and 4/25: the latter one is the dominant. The generating
function is analytic in a ∆-domain around 4/25 because of the square-root type of the
dominant singularity. Since M(z) is algebraic, it admits a Puiseux development (e.g.
cf. [FS09, p. 498]) near its singularity 4

25
of the following form:

M(z) =z→ 4
25
−2

5
− 2√

15

√
1− 25

4
z +

2

15

(
1− 25

4
z

)
+O

((
1− 25

4
z

) 3
2

)
.

Thus, by using transfer lemmas [FS09, p. 501], we get the asymptotic behaviour:

Mn ∼n→∞
1√

15πn3

(
25

4

)n
.

By dividing by the number Cnof syntax trees of size n (cf. Fact 2), we obtain the stated
average value M̄n.

Proposition 29. The cumulative number of admissible cuts Mn satisfy the following
P-recurrence.

(−500n+ 2000n3)Mn + (120− 220n− 1380n2 − 920n3)Mn+1

−(1488 + 1626n+ 387n2 − 21n3)Mn+2 + (1104 + 1088n+ 351n2 + 37n3)Mn+3

−(168 + 146n+ 42n2 + 4n3)Mn+4 = 0,

with M0 = 0,M1 = 1,M2 = 2 and M3 = 7.

This sequence is registered in OEIS as A007852 and enumerates the number of an-
tichains in rooted trees [Kla97]. In fact the bijection between the admissible cuts and the
antichains is direct, since each antichain corresponds to the set of leaves of an admissible
cut. The previous Proposition 29 is already proved in [Kla97].

Proof. The algebraic generating function M(z) is solution of the equation

z2 − z ·M(z) + 3z ·M(z)2 −M(z)3 +M(z)4 = 0.

the electronic journal of combinatorics 23(1) (2016), #P1.11 19

Thus, by using the results of Comtet [Com64], we can derive a differential equation
satisfied by the generating function M(z)

30z − 12 + (−120z + 48) ·M(z)

+(1500z3 + 240z2 − 318z + 36) ·M ′(z)

+(6000z4 − 1380z3 − 450z2 + 129z − 6) ·M ′′(z)

+(2000z5 − 920z4 + 21z3 + 37z2 − 4z) ·M ′′′(z) = 0,

with M(0) = 0,= 1,M ′(0) = 4 and M ′′(0) = 4. And finally Stanley’s result about
holonomic functions (cf. [Sta80]) let derive the P-recurrence satisfied by the coefficients
of M(z). Note that the complete proof can be directly computed by using the package
Gfun [SZ94] in Maple.

Another proof would be obtained by using the Guess and Prove method (extensively
detailed in a more complex context in Section 5).

The result, given in Proposition 28, states that the average number of admissible cuts
of size n syntax trees is exponential in n. Thus, we must be particularly careful when
computing the shape of a computation tree in practice using the generalization of the
hook-length formula for increasing admissible cuts. For syntax trees of a size n 6 40
we are able to compute the level decomposition within a couple of days using a fast
computer4. This must be compared to the mean width of these trees: W̄ 0

40 > 1.48 · 1036 !

0 1013 10231036

0

7

15

23

31

39

Figure 5: Two trees of size 40 and their computation tree profile behind the average
profile.

Consider the two syntax trees, uniformly sampled among all trees of size 40, depicted
on the left of Figure 5. The shapes of the corresponding computation trees are depicted
on the right of the Figure. We use a logarithmic scale of the horizontal axis so that the

4The computer used for the experiment is a bi-Xeon 5420 machine with 8 cores running at 2.5Ghz
each, equipped with 20GB of RAM and running linux.

the electronic journal of combinatorics 23(1) (2016), #P1.11 20

exponential fringes become lines. The computation trees are of size larger than 8.74 · 1028

for the one corresponding to the left process tree and 2.66 ·1035 for the second one. These
correspond to the two plain lines in the Figure. The dashed lines correspond to the exact
computation of the mean as explained in the next section. We can see that it is almost
reached by the shape of the second tree. To analyse this peculiarity, we have sampled
more than fifty typical process trees of size 40 (with uniform probability among all trees
of size 40). The results are fairly interesting. All the shapes that we computed follow the
same kind of curve as the average. However, almost all process trees (49 among 50) have
a computation tree size that is much smaller than the average (≈ 4.06 · 1036). Indeed,
most of them have a size that belong to [1028, 1035], and a single one has a size larger than
the average (it is approximately twice as large).

This observation let us conjecture that only a very few special syntax trees accounts
for the largest part of the average semantic tree size. These are undoubtedly process
trees whose internal nodes have a large arity. The simplest one is the process tree with
a single internal node. In the case of size 40, its semantic correspondence has size larger
than 2.03 · 1046. In fact, the combinatorial explosion in the worst case increases like a
factorial function. Since the Catalan numbers (that count syntax trees) do not increase
that quickly, the “worst” syntax trees (those whose computation tree sizes are the largest)
do really influence the average measures.

4.2.2 Mean number of nodes by level

We may now describe one of the fundamental results of this paper: an exact formula for
the mean number of nodes at each level of a computation tree.

Theorem 30. The mean number of nodes at level n − i − 1, for i ∈ {0, . . . , n − 1} in a
computation tree corresponding to a syntax tree of size n is:

W̄ i
n =

2i (2n− 2i− 1)! (n− 1)!

(2n− i− 1)! (n− i− 1)!
· n!

2n−1 i!
.

Proof. Let n, i be two integers such that 0 6 i < n. A direct consequence of Corollary 27

a

b

c d

Figure 6: An admissible cut and the places where it can be enriched.

gives the cumulated number W i
n of nodes at level n− i− 1 in computation trees issued of

syntax trees of size n to be equal to the sum on all increasingly labelled admissible cuts

the electronic journal of combinatorics 23(1) (2016), #P1.11 21

of size n− i induced by size n syntax trees. As in the previous section, let us denote by G
the combinatorial class of increasing trees and thus Gn−i the number of increasing trees of
size n− i. An admissible cut is obtained from a tree by pruning some of its subtrees. By
the reverse process, i.e. by plugging sequences of trees to a fixed tree (that corresponds
to an admissible cut), we obtain the set of trees which admit that admissible cut. In
Figure 6, the fixed admissible cut is the tree with nodes a, b, c, d and the places where
sequences of trees can be plugged are depicted by the grey triangles. For every node of
arity η, exactly η + 1 sequences of trees can be plugged near its children. So for a fixed
admissible cut of size n− i, the number of places is obviously 2n− 2i− 1. Thus, by using
Definition 1 and Fact 16, we conclude:

W i
n = [zn]Gn−iz

n−i
(

1

1− C(z)

)2n−2i−1

=
(2n− 2i− 2)!

2n−i−1(n− i− 1)!
[zi]

(
C(z)

z

)2n−2i−1

.

Results of [PS70, Part 3, Chapter 5] on powers of the Catalan generating function give:

[zn]

(
C(z)

z

)k
=
k

n

(
k + 2n− 1

n− 1

)
.

The former result is obtained by using Bürmann’s form of Lagrange inversion. An anal-
ogous expression is given in [FS09, p. 66–68]. Thus,

W i
n =

(2n− 2i− 1)!

i · 2n−i−1 · (n− i− 1)!

(
2n− 2

i− 1

)
.

By taking the average, i.e. by dividing by Cn, we obtain the stated value for W̄ i
n.

Given this result, we can complete the analysis of the shapes depicted in Figure 5.
Let us first determine the limiting curve for the average shape of a computation tree. We
renormalise the values W̄ i

n in the following way: f(c, n) = ln(W̄
bcnc
n). We thus obtain an

asymptotic evaluation of f(c, n) when n tends to infinity. When 1
n

= o(c) and 1−c = o(1
n
),

we have f(c, n) equal to

(1− c)n ln(n) +

(
c− 1 + ln

(
(2− 2 c)1−c

cc (2− c)2−c

))
n+ ln

(√
4− 2c√
c

)
+O

(
1

c(1− c)n

)
.

In particular, on every compact [a, b] such 0 < a < b < 1, the function in c 7→
f(c, n)/(n ln(n)) tends uniformly to (1 − c) when n tends to infinity. Moreover, if we
keep the second order terms, we then obtain a curve which is totally relevant with the
Figure 5 near levels 0 and 40.

We can study the asymptotic behaviour of W̄ i
n and W̄ n−i

n for fixed constant i. A
straightforward calculation shows that

W̄ i
n ∼n→∞

n!

2n−1i!
and W̄ n−i

n ∼n→∞
(2i− 1)!

2k−1
.

Both give an interpretation to the inflexion of the curve near the boundary points.

the electronic journal of combinatorics 23(1) (2016), #P1.11 22

5 Expected size of process behaviours

In this section we study the average size of computation trees (i.e. the mean total number
of nodes). In a first part we provide a first approximation based on the Theorem 30 of the
previous section. Then, we make a conjecture regarding the non-plane case, which proof
requires a deeper study that goes beyond the scope of this paper. Finally, we characterize
the average size in a more precise way, through a P-recurrence that is obtained by various
ways. We describe three different techniques of analytic combinatorics to obtain this
recurrence relation: each technique has its pros and cons, as will be discussed below.
Finally, we reach our goal of providing the precise asymptotic behaviour of the size of
computation trees.

5.1 First approximation of mean size

Our initial approximation of the mean size of the computation trees is based on the level
decomposition of Section 4, where we have given an exact formula for the mean number
of nodes W̄ i

n at level (n − i − 1) for computation trees corresponding to syntax trees of
size n. We first give, as a technical lemma, inequalities about W̄ i

n.

Lemma 31.

1 6
2n−1 i!

n!
· W̄ i

n 6
1

1− i2

2n

.

Proof. We first deal with some normalized expression of Theorem 30:

2n−1 i!

n!
· W̄ i

n = 2i · (2n− 2i− 1)!

(2n− i− 1)!
· (n− 1)!

(n− i− 1)!
=

∏i−1
j=0(n− i+ j)∏i−1
j=0(n− i+ j

2
)
.

Obviously, we get the stated lower bound 1. Let us go on with some simplifications. The
di/2e first factors of the numerator can be simplified with those of the denominator when
j is even:

2n−1 i!

n!
· W̄ i

n =

∏bi/2c−1
j=0 (n− b i

2
c+ j)∏bi/2c−1

j=0 (n− i+ 1
2

+ j)
=

∏bi/2c−1
j=0 (1− bi/2c−j

n
)∏bi/2c−1

j=0 (1− i−1/2−j
n

)
.

But, the numerator is smaller than 1 and the denominator satisfies:

bi/2c−1∏
j=0

(
1− i− 1/2− j

n

)
> 1−

bi/2c−1∑
j=0

i− 1/2− j
n

> 1− i2

2n
.

So we obtain the stated upper bound.

Theorem 32. The mean size S̄n of a computation tree induced by a process tree of size n
admits the following asymptotic formula

S̄n =
n−1∑
i=0

W̄ i
n ∼n→∞ e · n!

2n−1
.

the electronic journal of combinatorics 23(1) (2016), #P1.11 23

Proof. Using Lemma 31 and taking a large enough n, we get:

n−1∑
i=0

n!

2n−1 i!
6 S̄n 6

n−1∑
i=0

n!

2n−1 i!
· 1

1− i2

2n

6
n−1∑
i=0

n!

2n−1 i!
·
(

1 +
i2

n

)
.

First let us take the lower bound into account. Using an upper bound of the tail of the
series associated to the exponential function, we obtain the following inequalities

n!

2n−1

(
e− e

n!

)
6

n−1∑
i=0

n!

2n−1 i!
6 e · n!

2n−1
.

Both bounds tend to e · n!/2n−1. It remains to prove that n−1 ·
∑n−1

i=0 i
2/i! = o(1) to

complete the proof.

n−1∑
i=0

i2

i!
=

n−2∑
i=0

i+ 1

i!
=

n−3∑
i=0

1

i!
+

n−2∑
i=0

1

i!
→n→∞ 2e.

Finally, we get the asymptotic behaviour of the mean size of the computation trees induced
by size n syntax trees

S̄n =∼n→∞ e · n!

2n−1
.

Corollary 33. Let f be a function in n that tends to infinity with n. Let an be the average
number of nodes of the computation trees induced by all the syntax tree of size n and `n
the average number of nodes belonging to the f(n) last levels of the computation trees.
Then, `n/an tends to 1 when n tends to infinity.

The proof is analogous as the previous one using bounds on the tail of the series from
the exponential function. The unique constraint for f is that it tends to infinity, but it
can grow as slow as we want. Thus, for example, asymptotically almost all nodes of the
average computation tree belong to the log(. . . (log n) . . .) last levels.

5.2 The case of non-plane trees

In order to compute the average size in the context of non-plane trees, we need one more
result that is the analogue of powers of the Catalan generating function (see proof of
Theorem 30). Here, in the case of non-plane trees, this corresponds to the powers of
unlabelled non-plane rooted trees. Although many results about forests of unlabelled
non-plane trees have been studied in [PS79], it seems that the case of finite sequences of
unlabelled non-plane trees has not been thoroughly investigated.

Conjecture 34. The mean size Ūn of a computation tree induced by a process (unlabelled
non-plane rooted) tree of size n admits the following asymptotics:

Ūn ∼n→∞ e · V̄n ∼
2
√

2eπn

γ

(nη
e

)n
,

where η and γ are introduced in Fact 21.

the electronic journal of combinatorics 23(1) (2016), #P1.11 24

5.3 The mean size defined by a P-recurrence

In this section, we focus on the asymptotic behaviour of the average size S̄n of the com-
putation trees induced by syntax trees of size n. Our goal is to obtain more precise
approximations than Theorem 32 using different analytic combinatorics techniques. In-
deed, we present three distinct ways to establish our main result: a P-recurrence that
precisely captures the desired quantity. These results are deeply related to the holonomy
property of the generating functions into consideration.

Theorem 35. The mean size S̄n of a computation tree induced by a tree of size n satisfies
the P-recurrence:

(2n4 + 12n3 + 22n2 + 12n)S̄n − (4n4 + 32n3 + 87n2 + 87n+ 18)S̄n+1

+ (2n4 + 24n3 + 85n2 + 106n+ 39)S̄n+2 − (4n3 + 20n2 + 31n+ 15)S̄n+3 = 0,

with the initial conditions: S̄0 = 0, S̄1 = 1 and S̄2 = 2.

We have stored the non-normalized version of this sequence in OEIS, as A216234. It
deals with the sequence (Sn)n, associated to the cumulated sizes of computation trees
issued of process trees of size n.

Proof. A first approach to prove this theorem is based on creative telescoping. See ref-
erences [PWZ96, Zei90] for a detailed explanation of the method. This proof is a direct
consequence of the level decomposition detailed in Section 4. It is technically simple from
two points of view: in terms of the technical mathematics necessitated and in terms of
the computer assistance required. In particular, all the steps are totally automatized in
classical computer algebra systems (such as Maple or Mathematica). The level decompo-
sition is really a peculiarity of the combinatorial structure we investigate, and it is hardly
a common situation.

From the exact formula for the mean number of nodes each level, W̄ i
n, by summing on

all levels, we get the mean number S̄n of nodes

S̄n =
n−1∑
i=0

2i (2n− 2i− 1)! (n− 1)!

(2n− i− 1)! (n− i− 1)!
· n!

2n−1 i!
.

This sum can be expressed in terms of hypergeometric functions (see e.g. [PWZ96]):

S̄n =
n!

2n−1
1F1(−2n+ 1; −n+ 1/2; 1/2)− 2F2(1,−n+ 1; 1/2, n+ 1; 1/2). (1)

Now, by using the package Mgfun in Maple [Chy98], we extract, by creative telescop-
ing, the stated P-recurrence for S̄n.

Furthermore, we can prove Theorem 35 with two other distinct approaches.

• The first one is based on the multivariate holonomy theory. It is our original proof,
that can be found in [BGP12], and it is clearly the proof that conveys the most
combinatorial informations about the structures we study.

the electronic journal of combinatorics 23(1) (2016), #P1.11 25

• The last approach is based on the concept Guess-and-Proof. Once again this ap-
proach lies on the fundamental property of holonomy of the generating function
(c.f. [Was02]). We calculate the first values for Sn, guess a differential equation
verified by S(z) and prove that it is corrected. This proof style is both powerful
and clever since it is almost entirely automated. However, it does not convey much
information about the combinatorial structures under study.

5.4 Precise asymptotics of the size

Now that we have a P-recurrence for the mean size, we can obtain precise asymptotic
behaviour in a relatively effortless way.

Theorem 36. The mean size S̄n of a computation tree induced by a tree of size n admits
the following precise asymptotic relation:

S̄n = e
√

2πn
(n

2e

)n(
2 +

2

3n
+

49

36n2
+

27449

6480n3
+O

(
1

n4

))
.

Proof. We can derive this result from the hypergeometric expression (1). First, let us
observe that 2F2(1,−n+ 1; 1/2, n+ 1; 1/2) tends to a constant when n tends to infinity.
So, we essentially need to analyse the part n!

2n−1 · 1F1(−2n+ 1; −n+ 1/2; 1/2). Let us
observe that the next hypergeometric function 1F1(−2n+ 1; −n+ 1/2; x) admits the
following expansion:

1F1(−2n+ 1; −n+ 1/2; x) = e2x + x2e2x
1

n
+

x2e2x
(

3

2
+ 2x+

1

2
x2
)

1

n2
+

1

12
x2e2x

(
27 + 96 x+ 84x2 + 24x3 + 2x4

) 1

n3
+

x2e2x
(

27

8
+

49

2
x+

349

8
x2 + 29x3 +

33

4
x4 + x5 +

1

24
x6
)

1

n4
+O

(
1

n5

)
.

Thus the asymptotic behaviour of S̄n follows directly.
Let us remark that it is also possible to reach this asymptotic behaviour by using the

P-recurrence. We introduce a new auxiliary generating function which is more tractable
than S(z). For that purpose, recall that the total number of leaves in the computation
trees induced by process trees of size n (which is also the number of increasing trees of
size n) is equal to n!/2n−1. So, it is natural to study the series R(z) with general terms
S̄n · 2n−1/n! which is also holonomic and satisfies

− 2
(
10z2 + 7z + 3

)
R(z) +

(
−16z4 + 32z3 + 18z2 + 7z

)
R′(z)+

4
(
4z4 − 6z3 − z2

)
R′′(z) + 4

(
−z4 + z3

)
R′′′(z) = 4z2 + z,

with the initial conditions R(0) = 0, R′(0) = 1, R′′(0) = 4. The coefficients Rn satisfy the
P-recurrence:

− 16nRn + 4(4n2 + 12n+ 3)Rn+1 − 2(2n3 + 18n2 + 31n+ 13)Rn+2+

(4n3 + 20n2 + 31n+ 15)Rn+3 = 0,

the electronic journal of combinatorics 23(1) (2016), #P1.11 26

with R0 = 0, R1 = 1 and R2 = 2. Now, we can easily prove that this solution of this
recurrence is convergent. Indeed, the it is non-negative and asymptotically decreasing,
just by observing that Rn+3 − Rn+2 =

(
4
n

+O(1
n2)
)

(Rn+2 −Rn+1) + O
(

1
n2

)
Rn implies

that for n sufficiently large the difference is always negative.
Theorem 32 shows that the series converges to exp(1). Now, a deeper analysis of

this recurrence can be done using the tools described in [FS09, p. 519–522]. Indeed,
the singularities are regular. Let us remark that another way to conclude consists of
guessing that the asymptotic expansion of R(z), as z tends to infinity, can be expressed
as exp(2z + a ln (z) + bz−1 + cz−2 + dz−3 + O(z−4)) and to use saddle point analysis (its
hypotheses being validated by Wasow’s theory [Was02]) to prove the result.

6 Applications

We describe in this section two practical outcomes of our quantitative study of the pure
merge operator. First, we present an algorithm to efficiently compute the probability of a
concurrent run prefix induced by the uniform probability distribution of runs. The second
application is a uniform random sampler of concurrent runs. These algorithms work
directly on the syntax trees without requiring the explicit construction of the computation
trees. An important remark is that these algorithms apply no matter whether the syntax
trees are plane or not. In these distinct models, only the average quantities are impacted
because the syntax trees do not follow the same distribution.

6.1 Probability of a run prefix

We first describe an algorithm to determinate the probability of a concurrent run prefix
(i.e. the prefix of a branch in a computation tree). In practice, this algorithm can be
used to guide a search in the state space of process behaviours, e.g. for statistical model
checking or (uniform) random testing.

Definition 37. Let T be a process tree and σ = 〈α1, . . . , αp〉 a prefix of a run in Sem(T).
The suspended tree Tσ has root αp and its children are all children of the nodes α1, . . . , αp
not already in σ and ordered according to the preorder traversal of T .

For example, the suspended tree T〈a,b,d〉 of the syntax tree T in Figure 1 has root d
and children (from left to right) are reduced to the leaves c, e, f and g.

Let T be a process tree and σp = 〈α1, . . . , αp〉 a run prefix of length p. We are interested
in the probability of choosing αp+1 to form the prefix run σp+1 = 〈α1, . . . , αp, αp+1〉. To
obtain this probability, we need to count how many runs in Tσp are first running αp+1.

Proposition 38.

P(σp+1 | σp) =
`Tσp+1

`Tσp
=

(|T | − p)!∏
S subtree of Tσp+1

|S|
·

∏
S subtree of Tσp+1

|S|
(|T | − p+ 1)!

=
|T (αp+1)|
|T | − p+ 1

.

the electronic journal of combinatorics 23(1) (2016), #P1.11 27

The proof directly derives from the hook-length formula (cf. Fact 18).

Corollary 39. Let T be a process tree and σ = 〈α1, . . . , αp〉 be a prefix of a run in
Sem(T). For the uniform probability distribution on the set of all concurrent runs, the
induced probability on prefixes satisfies P(σ) = `Tσ/`T .

Corollary 40. Let T be a process tree. The probability of a prefix run σ = 〈α1, . . . , αp〉
in the computation tree of T is equal to

∏p
k=1 |T (αk)|/(|T | − k + 1).

Algorithm 1: probability of a run prefix.

Data: T : a weighted process tree of size n
Data: σ := 〈α1, . . . , αp〉: a run prefix of length p 6 n
Result: ρσ: the probability of σ in the comput. tree of T
ρσ := 1
i := 1
for i from 1 to p− 1 do

ρσ := ρσ × |T (αi+1)|
n−i

i := i+ 1
return ρσ

From Corollaries 39 and 40 we derive, as Algorithm 1, the computation of the prob-
ability ρσ of a concurrent run prefix σ. While measuring the probability in terms of a
computation tree, the latter need not be constructed explicitly. The algorithm indeed
requires only the syntax tree T with added weights, and a few extra memory cells. It
trivially performs in linear-time.

Proposition 41. Algorithm 1 computes the probability ρσ of a length p run prefix, in
(p− 1) steps, and Θ(p) arithmetic operations.

If the run prefix σ we consider is a full run (i.e. a complete traversal of a syntax
tree T), then we obtain the uniform probability of a run in general (since all runs have
equal probability in the computation tree). Then we have the following result.

Proposition 42. The number of concurrent runs of a process tree T is 1/ρσ when σ is
any complete traversal of T .

From an order-theoretic point of view, we thus obtain as a by-product a linear-time
algorithm to compute the number of linear extensions of a tree-like partial order.

Corollary 43. Let T a tree-like partial order of size n. The number of its linear extensions
can be computed in O(n).

Since any full run has length the size n of the syntax tree, the upper-bound O(n)
is trivially obtained. Moreover, we conjecture that the problem has Ω(n) lower-bound
also. Note that the hook length formula also yields a linear-time algorithm but with more

the electronic journal of combinatorics 23(1) (2016), #P1.11 28

arithmetic operations. To put into a broader perspective this result, we remind the reader
that the problem of counting linear extensions of partial orders is #P -complete [BW91]
in the general case. Moreover, the proposed solution (obtained thanks to the very fruitful
isomorphism with increasing trees) is clearly an improvement if compared to the quadratic
algorithm proposed in [Atk90].

6.2 Random generation of concurrent runs

The uniform random generation of concurrent runs is of great practical interest in the
realm of automated testing and statistical model-checking [GS05]. The problem has a
trivial solution if we work on a computation tree. Since all runs have equal probability,
we may simply select a leaf at random, and reconstruct the full run by climbing the unique
branch from the selected leaf to the root of the tree. Of course, this naive algorithm is
highly impractical given the exponential size of the computation tree. The challenge, thus,
is to find a solution which does not require the explicit construction of the computation
tree. A possible way would be to rely on a Markov Chain Monte Carlo (MCMC) approach,
e.g. based on [Hub06]. We describe here a simpler, more direct approach that yields a
more efficient almost linear algorithm.

The main idea is to sample in a multiset containing the nodes of the syntax trees as
elements, each one associated to a weight corresponding to the size of the subtree rooted
at this node. A particularly efficient way to implement the required multiset structure is
to use a partial sum tree, i.e. a balanced binary search tree in which all operations (adding
or removing a node) are done in logarithmic time. The details of this implementation can
be found in Appendix A.

Algorithm 2: uniform random generation of concurrent runs

Data: T : a weighted process tree of size n
Result: σ: a run (a list of nodes)
σ := 〈〉
M := {{a|T |}} # initialize a multiset with the root a with its weight
for p from 1 to |T | − 1 do

α := sample(M) # sample an action α according to its weight in the multiset
σ := σ.α # append the sampled action to the sequence
M := update(M,α, 0) # α cannot be sampled anymore
for β ∈ child(Tσ) do

M := update(M,β, |T (β)|) # insert the children of α in the multiset

return σ

Let T be a process tree. First by one traversal, we add a label to all nodes of T
that corresponds to the size of the subtree rooted in that node. We say that this size
corresponds to the weight of each node. We build a list σ, at the end of size n, such that
at each step i, we add one action to σ that corresponds to the i-th action in our random
run. To choose this i-th action, we sample in the multiset of all possible actions available

the electronic journal of combinatorics 23(1) (2016), #P1.11 29

in the considered step. Initially only the root is available. Then it is added to σ and
removed from the multiset. Finally its children are enabled with their weights. And we
proceed until all actions have been sampled.

Let T a syntax tree, we denote by child(T) the nodes at level one of T .
The following loop invariant derives easily from Algorithm 2.

Invariant 44. At the p-th step of the algorithm, we have:

|Mp| = |T | − p+ 1 with Mp = {αp+1 | αp+1 ∈ child(Tσp)}.

Proposition 45. Let σp the prefix obtained at the p-th step in Algorithm 2. The next
action αp+1 is chosen with probability |T (αp+1)|/(|T | − p+ 1). Consequently the complete
run σ is generated with uniform probability.

Proof. Let Mp the multiset obtained at step p in Algorithm 2. We select the next action

αp+1 with probability Mp(αp+1)

|Mp| (cf. Appendix A for a more detailed explanation). By

Invariant 44 we have |Mp| = |T | − p+ 1. Moreover, in the Algorithm we insert αp+1 with
weight Mp(αp+1) = |T (αp+1)|. Thus by Proposition 38 the prefix σp+1 is obtained with
the correct probability so that when completed the full run σ is generated with uniform
probability.

In the case of the partial sum tree implementation (cf. Appendix A), we have directly
the following complexity results.

Proposition 46. Let n be the size of the weighted process tree T . To obtain a random
execution, we need n random choices of integers and the operations on the multiset are of
order Θ(n log n) (for the worst case).

7 Conclusion and perspectives

The quantitative study of the pure merge operator represents a preliminary step towards
our goal of investigating concurrency theory from the analysis of algorithms point of view.
The special case of binary merge operator (which is classical in concurrency theory) has
been investigated in [BGPR15]. Unsurprisingly the results are very similar, although
from an analytic combinatorics points of view, the details are indeed interesting. In a
complementary work, we addressed the case of non-deterministic choice [BGP13]. More
recently we started to investigate the principle of synchronization [AI07]. Other operators,
such as hiding, also deserve further investigations. We also wish to further investigate the
case of non-plane process trees. Although the nature of the operators does not seem to be
really impacted (confirming the intuition of Flajolet and Sedgewick), the technical aspects
in terms of analytic combinatorics are quite interesting. Another interesting continuation
of the work would be to study the compaction of computation trees by identifying common
subtrees. This would amount to study the interleaving of process trees up-to bisimilarity,
the natural notion of equivalence for concurrent processes. Note that our algorithmic

the electronic journal of combinatorics 23(1) (2016), #P1.11 30

framework would not be affected by such studies, since they do not require the explicit
construction of the computation trees (whether compacted or not, plane or non-plane).

Perhaps the most significant outcome of our study is the emergence of a deep connec-
tion between concurrent processes and increasing labelling of combinatorial structures.
We indeed connected the pure merge operator with increasing trees to measure the num-
ber of concurrent runs. We also define the notion of increasing admissible cuts to study
the number of nodes by level in computation trees. We expect the discovery of similar
increasingly labelled structures when we go deeper into concurrency theory.

From a broader perspective, we definitely see an interest in reinterpreting semantic
objects (from logic, programming language theory, concurrency theory, etc.) under the
lights of analytic combinatorics tools. Such objects (like computation trees) may be quite
intricate when considered as combinatorial classes, thus requiring non-trivial techniques.
This is highlighted here e.g. by the generalized hook-length formula characterizing the ex-
pected size of computation trees. Conversely, we think it is interesting to know – precisely,
not just by intuition – the high-level of sharing and symmetry within computation trees.
This naturally leads to practical algorithms, making us confident that real-world appli-
cations (in our case, especially related to random testing and statistical model-checking)
might result from such a study.

Acknowledgements

Thanks to Matthieu Dien and Olivier Roussel for fruitful remarks about the algorithms.
The authors thank an anonymous referee for the careful reading of the manuscript and
several suggestions improving the clarity of the presentation.

References

[AI07] L. Aceto and A. Ingólfsdóttir. The saga of the axiomatization of parallel com-
position. In CONCUR, volume 4703 of Lecture Notes in Computer Science,
pages 2–16. Springer, 2007.

[Atk90] M. D. Atkinson. On computing the number of linear extensions of a tree.
Order, 7:23–25, 1990.

[BFLR11] A. Boussicault, V. Féray, A. Lascoux, and V. Reiner. Linear extension sums
as valuations of cones. Journal of Algebraic Combinatorics, 35(4):573–610,
2011.

[BFS92] F. Bergeron, P. Flajolet, and B. Salvy. Varieties of increasing trees. In J.-C.
Raoult, editor, CAAP, volume 581 of Lecture Notes in Computer Science,
pages 24–48. Springer, 1992.

[BGP12] O. Bodini, A. Genitrini, and F. Peschanski. Enumeration and random genera-
tion of concurrent computations. In 23rd International Meeting on Probabilis-

the electronic journal of combinatorics 23(1) (2016), #P1.11 31

tic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms,
(AofA), pages 83–96, Montreal, Canada, June 2012.

[BGP13] O. Bodini, A. Genitrini, and F. Peschanski. The combinatorics of non-
determinism. In FSTTCS’13, volume 24 of LIPIcs, pages 425–436. Schloss
Dagstuhl, 2013.

[BGPR15] O. Bodini, A. Genitrini, F. Peschanski, and N. Rolin. Associativity for binary
parallel processes: A quantitative study. In Algorithms and Discrete Applied
Mathematics - First International Conference, CALDAM 2015, Kanpur, In-
dia, February 8-10, 2015. Proceedings, pages 217–228, 2015.

[Bli89] W. D. Blizard. Multiset theory. Notre Dame Journal of Formal Logic,
30(1):36–66, 1989.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University
Press, 1990.

[BW91] G. Brightwell and P. Winkler. Counting linear extensions is]P-Complete.
In C. Koutsougeras and J. S. Vitter, editors, STOC, pages 175–181. ACM,
1991.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.

[Chy98] F. Chyzak. An extension of zeilberger’s fast algorithm to general holonomic
functions. In Formal Power Series and Algebraic Combinatorics, pages 172–
183, 1998.

[CK98] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommu-
tative geometry. Comm. Math. Phys., 199(1):203–242, 1998.

[Com64] L. Comtet. Calcul pratique des coefficients de Taylor d’une fonction
algébrique. Enseignement Math., 10:267–270, 1964.

[Com74] L. Comtet. Advanced Combinatorics: The Art of Finite and Infinite Expan-
sions. Reidel, 1974.

[DHNT11] G. Duchamp, F. Hivert, J.-C. Novelli, and J.-Y. Thibon. Noncommutative
symmetric functions vii: Free quasi-symmetric functions revisited. Annals of
Combinatorics, 15:655–673, 2011.

[Die89] P. F. Dietz. Optimal algorithms for list indexing and subset rank. In
F. Dehne, J.-R. Sack, and N. Santoro, editors, Algorithms and Data Struc-
tures, volume 382 of Lecture Notes in Computer Science, pages 39–46.
Springer Berlin Heidelberg, 1989.

[DPRS12] A. Darrasse, K. Panagiotou, O. Roussel, and M. Soria. Biased Boltzmann
samplers and generation of extended linear languages with shuffle. In 23rd In-
ternational Meeting on Probabilistic, Combinatorial and Asymptotic Methods

the electronic journal of combinatorics 23(1) (2016), #P1.11 32

for the Analysis of Algorithms, (AofA), pages 125–140, Montreal, Canada,
June 2012.

[Drm09] M. Drmota. Random trees. Springer, Vienna-New York, 2009.

[FGT92] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon collec-
tors, caching algorithms and self-organizing search. Discrete Applied Mathe-
matics, 39(3):207–229, 1992.

[FS09] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009.

[FS13] P. Flajolet and R. Sedgewick. An Introduction to the Analysis of Algorithms
(2nd Edition). Addison Wesley, 2013.

[GDG+08] M.-C. Gaudel, A. Denise, S.-D. Gouraud, R. Lassaigne, J. Oudinet, and
S. Peyronnet. Coverage-biased random exploration of models. Electronic
Notes in Theoretical Computer Science, 220(1):3 – 14, 2008. Proceedings of
the Fourth Workshop on Model Based Testing (MBT 2008).

[GS05] R. Grosu and S. A. Smolka. Monte carlo model checking. In TACAS’05,
volume 3440 of LNCS, pages 271–286. Springer, 2005.

[Hub06] M. Huber. Fast perfect sampling from linear extensions. Discrete Mathemat-
ics, 306(4):420–428, 2006.

[Kla97] M. Klazar. Twelve countings with rooted plane trees. European Journal of
Combinatorics, 18(2):195–210, 1997.

[KMPW14] J. S. Kim, K. Mészáros, G. Panova, and D. B. Wilson. Dyck tilings, increasing
trees, descents, and inversions. J. Comb. Theory, Ser. A, 122:9–27, 2014.

[Knu98] D. E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting
and searching. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1998.

[MM78] A. Meir and J. W. Moon. On the altitude of nodes in random trees. Canad.
J. Math., 30:997–1015, 1978.

[MZ08] M. Mishna and M. Zabrocki. Analytic aspects of the shuffle product. In
STACS, pages 561–572, 2008.

[OR95] F. Olken and D. Rotem. Random sampling from databases: a survey. Statis-
tics and Computing, 5:25–42, 1995.

[PS70] G. Pólya and G. Szegö. Aufgaben und Lehrsätze aus der Analysis I. (4th ed.).
Springer, 1970.

[PS79] E.M. Palmer and A.J. Schwenk. On the number of trees in a random forest.
Journal of Combinatorial Theory, Series B, 27(2):109 – 121, 1979.

[PWZ96] M. Petkovsek, H. S. Wilf, and D. Zeilberger. A=B. A. K. Peters, Wellesley,
MA, 1996.

[Pó37] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und
chemische Verbindungen. Acta Mathematica, 68(1):145–254, 1937.

the electronic journal of combinatorics 23(1) (2016), #P1.11 33

[Sha55] D. Shanks. Nonlinear transformations of divergent and slowly convergent
sequences. Journal of Mathematics and Physics, 34:1–42, 1955.

[Sta80] R. P. Stanley. Differentiably finite power series. European Journal of Com-
binatorics, 1(2):175 – 188, 1980.

[SZ94] B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation
of generating and holonomic functions in one variable. ACM Transactions
on Mathematical Software, 20(2):163–177, 1994.

[Was02] W. Wasow. Asymptotic Expansions for Ordinary Differential Equations.
Dover phoenix editions. Dover, 2002.

[WE80] C. K. Wong and M. C. Easton. An efficient method for weighted sampling
without replacement. SIAM J. Comput., 9(1):111–113, 1980.

[Zei90] D. Zeilberger. A holonomic systems approach to special functions identities.
Journal of Computational and Applied Mathematics, 32(3):321–368, 1990.

the electronic journal of combinatorics 23(1) (2016), #P1.11 34

A Weighted random sampling in dynamic multisets

This appendix discusses the problem of random sampling elements according to their
respective weight in a multiset. Moreover, the multiset must be dynamic in that the
cardinality of elements can be changed on-the-fly. This problem represents a basic algo-
rithmic component in the random generation of concurrent runs (cf. Section 6). To our
knowledge, this has not been addressed precisely in the literature (some basic information
can be found in [WE80, OR95]).

A.1 Dynamic multiset basics

In this section we recall a few concepts and basic notations of multisets, the reader may
consult e.g. [Bli89] for a more thorough treatment. A finite multiset (or bag) M can be
defined formally as a function from a carrier set M to positive integers, more precisely an
injective function M ⊂M → N. As an example we consider a multiset M0 = {{a2, b3, c1}}
with carrier set M0 = {a, b, c}. In the common functional notation, we would denote
M0 = {(a, 2), (b, 3), (c, 1)}. Each positive integer associated to an element is called its
weight (i.e. number of “occurrences”) in the multiset. The weight of and element α ∈M
is denoted M(α). And by a slight abuse of notation we write α ∈ M iff M(α) > 1.
For example, the element a has weight 2in M0, thus M0(a) = 2 and of course a ∈ M0.
The notation α /∈ M may either denote α /∈ M or M(α) = 0. This slight ambiguity has
interesting algorithmic implications.

The cardinal or total weight of M is |M | =
∑

α∈M M(α), for example |M0| = 2+3+1 =

6 whereas for the carrier set we have |M0| = 3.
Given a multiset M the two operations we are interested in are:

• a random sampler sample(M) that generates an element α ∈ M at random with

probability M(α)
|M | .

• an update operation update(M,α, k) that produces a multiset M ′ such that ∀β ∈
M,β 6= α =⇒ M ′(β) = M(β) and M ′(α) = k.

Remark that if M ′ = update(M,α, 0) we do have M ′(α) = 0 hence α /∈ M ′ but it is
left unspecified whether α ∈M ′ or not.

A.2 A naive random sampler

Probably the fastest way to implement the sample operation is to represent a multiset M
with an array of length n = |M |. Formally, this defines a finite sequence, i.e. a function
σM : [1..n] → |M |. Consider M = {{ak11 , . . . , aknn }} an arbitrary multiset. The cardinality
of M is |M | =

∑n
j=1 kj and its carrier set is M = {α1, . . . , αn}. For the sake of simplicity

and without any loss of generality, we assume an implicit strict order α1 < . . . < αn. Now

we define σM such that ∀i ∈ [1..n], ∀j ∈
[∑i−1

p=1 kp + 1..
∑i−1

p=1 kp + ki

]
, σM(j) = αi, and

everywhere else σM is undefined. For example σM0 is {1 7→ a, 2 7→ a, 3 7→ b, 4 7→ b, 5 7→
b, 6 7→ c} which we may also denote 〈a, a, b, b, b, c〉.

the electronic journal of combinatorics 23(1) (2016), #P1.11 35

Algorithm 3: naive random sampler for dynamic multisets.

Data: M = {{ak11 , . . . , aknn }}
Result: β an element of M taken with probability M(β)

|M |

ρ := a uniform random integer taken in range [1..n];
return β = σM(ρ);

9 | a8 | 17

4 | b4 | 1

d4 f 1

8 | c9 | 0

e8

Figure 7: A partial sum tree for multiset M2 = {{a8, b4, c9, d4, f 1, e8}}.

The naive random sampler is described by Algorithm 3. For a multiset M , we first pick
a uniform random integer in range [1..|M |]. This way, we select the ρ-th position in the
sequence σM with probability 1

|M | . Now let i such that β = σM(ρ) = αi ∈M . By definition

of σM we have |{j | σM(j) = β}| =
∑i−1

p=1 kp + ki −
∑i−1

p=1 kp − 1 + 1 = ki = M(αi). Thus

the probability of picking element β = σM(ρ) is 1
|M | ×M(β) = M(β)

|M | which is as required.
The complexity of the sampling algorithm corresponds to the uniform random sam-

pling of an integer in range |1..n| for a multiset of total weight n, plus a single access to
the array σM which is in general performed in constant time. The space complexity is
linear in n since we must record σM with its |M | elements, which is not very good since
the weight of a given element can be arbitrarily high. Moreover, the update operation is
not very efficient for the same reason.

A.3 A more efficient random sampler based on partial sum trees

We now describe a random sampler that has far better space requirements – in the order
of |M | – and also enjoys a much more efficient update operation. The main idea is to
exploit a representation based on partial sum trees [Die89].

In Figure 7 we give a possible partial sum tree (PST) representation of the multiset
M2 = {{a8, b4, c9, d4, f 1, e8}}. The idea is to represent a multiset M as a binary tree with
nodes labelled with three informations: the total weight of the left and right subtrees as
well as a unique element α of M together with its weight M(α).

the electronic journal of combinatorics 23(1) (2016), #P1.11 36

Algorithm 4: partial sum tree (PST) based random sampler for dynamic multisets.

Data: TM a PST for a multiset M = {{ak11 , . . . , aknn }}
Result: β an element of M taken with probability M(β)

|M |

ρ := a uniform random integer taken in range [1..|M |];
return β = dispatch(TM , ρ);

where:

dispatch(
[
L | αk | R

]
, ρ) is

if ρ 6 |L| then
return dispatch(TL, ρ)

else if ρ− |L| 6 k then
return α

else
return dispatch(TR, ρ− (|L|+ k))

The random sampler based on the PST representation is described by Algorithm 4.
The first step is the same as in the naive algorithm: pick an integer ρ uniformly at random
in the range [1..|M |]. The second part is a simple recursive dispatch within the tree TM
depending only on the value of ρ. If ρ is less than the total weight |L| of the left-subtree,
denoted TL, of TM then we pick the element in this left-subtree. If otherwise ρ is in the
range [|L|..|L| + k] then we pick-up the root element α. Otherwise, we pick the element
in the right-subtree TR without forgetting to update ρ as ρ − (|L| + k) in the recursive
calls.

Proposition 47. If we assume the tree TM to be well-balanced, the worst-case time com-
plexity of the PST-based random sampler is O(log |M |). The update operation inherits
the same worst-case complexity. Moreover the PST itself occupies space of order Θ(|M |)
in memory.

The well-balanced assumption is easy to obtain in practice, either by relying on im-
plicitly well-balanced tree models e.g. AVL or red-black trees, or by simply constructing
the PST in a deterministically well-balanced way (e.g. with a bit flag in each node, flipped
after each insertion). So if compared to the naive algorithm and its constant-time sam-
pling, the PST algorithm is far better in terms of memory usage. The most prominent
advantage is a now very efficient update operation: we just need to update the left and
right sums in the nodes from the updated node to the root of the tree (trivially also in
order O(log n) for a well-balanced tree).

The proof for the correctness property is now slightly more involved.

Proposition 48. Let M a multiset. The PST random sampler returns an element α ∈M
with probability M(α)

|M | .

the electronic journal of combinatorics 23(1) (2016), #P1.11 37

|L| αkii |R|

α1 . . . αi−1 αi . . . αi αi+1 . . . αn

1 ... |L| |L|+1 ... |L|+ki |L|+ki+|R|

|L|=
∑i−1
j=1 kj ki |R|=

∑n
j=i+1 kj

Figure 8: Mapping from a node of the partial sum tree to its corresponding inorder
sequence.

Proof. Let M = {{αk11 , . . . , αnn}} a multiset and let denote by TM the its partial sum tree
representation. If we assume an implicit order α1 < . . . < αi < . . . < αn then the
inorder sequence5 of M is exactly σM as defined previously. More generally, a given
node N = (L, αkii , R) of the representation corresponds to a multiset N , and we denote
σN its inorder sequence. The tree TL is the left subtree corresponding to a multiset
L with inorder sequence σL of elements from σN(1) to σN(

∑i−1
j=1 kj). The root node

of TN represents the element αi with cardinality ki which maps to the sub-sequence
σαi of elements from σN(

∑i−1
j=1 kj + 1) to σN(

∑i
j=1 kj). Finally TR is the right subtree

corresponding to multiset R with inorder sequence σR of elements from σN(
∑i

j=1 kj + 1)
to σN(

∑n
j=1 kj). This mapping is depicted on Figure 8. Thus the left subtree TL represents

the multiset L = {{αk11 , . . . , α
ki−1

i−1 }} and TR represents the multiset R = {{αki+1

i+1 , . . . , α
kn
n }}.

Now we demonstrate the property that at node N = (L, αkii , R) the call dispatch(TN ,ρ)

with ρ taken randomly in [1..|N |] yields an element α ∈ N with probability N(α)
|N | . We

proceed by induction on the tree structure (or size). Suppose ρ ∈ [1..|L|] then :

• if TN is a leaf (∅, αk, ∅) then ρ ∈ [1..k] with k = N(α) and σN = [α, . . . , α] (i.e.

ran(σ) = {α}). Then the probability of choosing α is N(α)
|N | = k

k
= 1.

• if TN = (L, αkii , R) is an internal node, i.e. L∪R 6= ∅ then we show the property to
hold for TN if we assume it holds for the subtrees TL and TR :

– if 1 6 ρ 6 |L| then dispatch(TN ,ρ)=dispatch(TL,ρ) and the property holds by
hypothesis of induction.

– if |L|+ 1 6 ρ 6 |L|+ ki then we select element αi with probability ki
|L|+ki+|R| =

N(αi)
|N |

– if |L|+ ki 6 ρ 6 |N | then dispatch(TN ,ρ)=dispatch(TR,ρ′) with ρ′ = ρ− (|L|+
ki) and since ρ′ ∈ [1..|R|] the property holds by hypothesis of induction.

5The inorder sequence of a binary tree is the sequence of its elements ordered according to the inorder
traversal of the tree.

the electronic journal of combinatorics 23(1) (2016), #P1.11 38

In consequence, if ρ ∈ [1..|M |] then dispatch(TM ,ρ) yields an element α with proba-

bility M(α)
|M | .

Note that the proof exploits the fact that the mapping from a multiset M to its
representative sequence σM is deterministic. While imposing a total order on the elements
αi’s provides a simpler solution – the representative being the inorder - ordered sequence
– it is by no means a strict requirement. The proof can easily - albeit uninterestingly -
adapt to any permutation in the selected order.

the electronic journal of combinatorics 23(1) (2016), #P1.11 39

	Introduction
	A tree model for process semantics
	Syntax trees
	Computation trees

	Enumeration of concurrent runs
	An isomorphism with increasing trees
	Analysis of growth
	The case of non-plane trees

	Typical shape of process behaviours
	Increasing admissible cuts
	Level decomposition
	Experimental study
	Mean number of nodes by level

	Expected size of process behaviours
	First approximation of mean size
	The case of non-plane trees
	The mean size defined by a P-recurrence
	Precise asymptotics of the size

	Applications
	Probability of a run prefix
	Random generation of concurrent runs

	Conclusion and perspectives
	Weighted random sampling in dynamic multisets
	Dynamic multiset basics
	A naive random sampler
	A more efficient random sampler based on partial sum trees

