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Abstract

We give a combinatorial proof that a random walk attains a unique maximum
with probability at least 1/2. For closed random walks with uniform step size, we re-
cover Dwass’s count of the number of length ` walks attaining the maximum exactly
k times. We also show that the probability that there is both a unique maximum
and a unique minimum is asymptotically equal to 1

4 and that the probability that
a Dyck word has a unique minimum is asymptotically 1

2 .
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1 Introduction

A length ` walk is a sequence w : {1, . . . , `} → {±1}. The trajectory of w is the sequence
w̄ : {0, . . . , `} → Z defined by w̄(j) =

∑j
i=1w(i). We define max(w) = sup{w̄(j) : 0 6

j 6 `}. The length ` walk w is closed if w̄(`) = 0. Let C(n) denote the set of length 2n
closed walks and letM(n) ⊂ C(n) denote the subset consisting of those walks w for which
there is a unique i ∈ {1, . . . , 2n} such that w̄(i) = max(w).

The paper centers around a combinatorial proof of the following theorem which was
first proven by Dwass in [5]:

Theorem 2.4. |M(n)| = 1
2
|C(n)| for each n > 1.

In [5], this is proven by a method that computes the probabilities of events in finite
random walks by relating them to events in infinite random walks for which probabilities
are more readily computed. This is a general analytic method used to compute a large
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number of quantities includingM(n) as well as the more generalM(n, r) which we discuss
in Section 3.

As is often the case, a combinatorial proof offers other intuition and insight. In this
case, we will see that our method generalizes to certain cases not amenable to Dwass’s
method.

In Section 2 we give a first proof of Dwass’s result, which uses a method we will employ
fundamentally in the text. A second more transparent proof is give in Section 6. This
second proof uses that the number of Dyck words is the corresponding Catalan number.
In Section 3 we recover Dwass’s stronger result that there are precisely

(
2n−r
r−1

)
length 2n

closed walks attaining their maximum exactly r times. In Section 4 we explain that the
combinatorial proof generalizes to show that more general types of finite random walks
have probability > 1

2
of attaining a unique maximum. This conclusion does not assume

that the walks are closed and allows an arbitrary distribution of step sizes. In Section 5
we show that the probability of having both a unique minimum and a unique maximum
approaches 1

4
as the length of a uniform closed walk increases. In Section 6 we show

that the probability that a length n Dyck word has a unique minimum approaches 1
2

as
n→∞.

2 Dyck Words and Leads

A Dyck word of length 2n is a closed walk w such that max(w) = 0. Let D(n) denote
the set of length 2n Dyck words. The number of Dyck words of a given length is the
corresponding Catalan number:

Theorem 2.1. |D(n)| = 1
n+1

(
2n
n

)
.

The lead of w ∈ C(k) is the number of values i ∈ {1, . . . , 2k} with both w(i) > 0
and w̄(i) > 0. For 0 6 e 6 k let L(k, e) ⊂ C(k) be the set of lead e walks (so that
L(k, 0) = D(k)). Thus C(k) = tke=0L(k, e).

Since |C(n)| =
(
2n
n

)
, Theorem 2.1 follows from the Chung-Feller Theorem which states

that |L(k, e)| is independent of e [2]. Among the many proofs of the Chung-Feller theorem
is a bijective explanation given in [1, 6] the former of which traced the explanation to [4].
We now recount the bijection:

Lemma 2.2. For each 1 6 e 6 k there is a bijection ψ : L(k, e− 1)→ L(k, e).

Proof. Let w ∈ L(k, e− 1). Let p > 0 be maximal such that w(p) = −1 and w̄(p) = −1.
Regard w as a string in {±1}, and express w as the concatenation axb where a is the
initial length p subpath and x is a single symbol (which is necessarily −1). Define ψ(w)
to be the sequence corresponding to bxa. This lies in L(k, e) since a, xb, bx are all closed
and the lead of bx is one greater than that of b.

The map ψ−1 is defined by recognizing the decomposition of w ∈ L(k, e) as a con-
catenation bxa by declaring b to be the length n subword where n is minimal such that
w(n+ 1) = −1 and w̄(n+ 1) = 0.
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Figure 1: Performing a swap

M(1,2)

M(1,1) M(2,3)

M(2,2) M(3,4)

M(2,1) M(3,3) M(4,5)

M(3,2) M(4,4) M(5,6)

M(3,1) M(4,3) M(5,5) M(6,7)

M(4,2) M(5,4) M(6,6) M(7,8)

M(4,1) M(5,3) M(6,5) M(7,7) M(8,9)

1

1 1

2 1

3 3 1

6 4 1

10 10 5 1

20 15 6 1

35 35 21 7 1

Figure 2: The base cases (1) are the entries 1, 3, 10, 35, . . . and the 1 at the top. The identity
(2) states that an entry in Pascal’s triangle is the sum of all the numbers in the diagonal path
above it, e.g. 15=10+4+1.

Remark 2.3. We utilize ψ : L(k, 0) → L(k, 1) whose crucial property is that ψ(w) ∈
M(k) for w ∈ L(k, 0).

Theorem 2.4. |M(n)| = 1
2
|C(n)| for each n > 1.

Proof. We describe a bijection Ψ : C(n) −M(n) → M(n). Let w ∈ C(n) −M(n). As
rank(w) > 2, we let a be the nontrivial subsequence of w with domain {p, . . . , q} ⊂ N
where p − 1, q are the minimal and maximal values of w̄−1(max(w)). Note that a ∈
L(q− p+ 1, 0) and let ψ(a) ∈ L(q− p+ 1, 1) be as provided by Lemma 2.2. Define Ψ(w)
to be the sequence obtained from w by substituting ψ(a) for a as in Figure 1. Note that
Ψ(w) ∈M(n) by Remark 2.3.

An alternate proof is given in Section 6.

3 Counting walks of arbitrary rank

The rank of a walk w is |w̄−1(max(w))|. For r > 1 let M(n, r) ⊂ C(n) denote the
subset of rank r length 2n closed walks. As M(n, 1) = M(n), Theorem 2.4 states that
|M(n, 1)| = 1

2

(
2n
n

)
=
(
2n−1
n−1

)
. We now extend this result and count each M(n, r):

Theorem 3.1. For n, r > 1 we have |M(n, r)| =
(
2n−r
n−1

)
.

Proof. Let M(n, r) =
(
2n−r
n−1

)
. We first observe that the numbers M(n, r) satisfy the

following recursive definition (see Figure 2).
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Figure 3: Inserting a peak at the third maximal peak from the right

The base cases are:

M(n, 1) =

(
2n− 1

n− 1

)
and M(1, 2) = 1 (1)

The inductive step for n, r > 2 follows by iterating Pascal’s identity:

M(n, r) =
n∑

j=r−1

M(n− 1, j) (2)

We will show that Equations (1) and (2) are satisfied withM(a, b) replaced by |M(a, b)|,
from which it follows that |M(n, r)| = M(n, r) for all n, r > 1 as desired.

Equation (1) is easy as Theorem 2.4 asserts that |M(n, 1)| =
(
2n−1
n−1

)
and obviously

|M(1, 2)| = 1.
To verify Equation (2), for each n, r > 2, we describe a bijection χr between

⋃n
j=r−1M(n−

1, j) andM(n, r). Let w ∈
⋃n

j=r−1M(n−1, j). As rank(w) > r−1, we may consider the
(r− 1)th maximal peak of w, counted from the right. As in Figure 3, we insert a peak at
this point to obtain a path ŵ ∈M(n). We then apply the map Ψ−1 :M(n)→ C(n)\M(n)
to ŵ to obtain χr(w).

We must show that χr is injective and that its image is M(n, r). The former holds
since a left-inverse to χr is obtained by first applying Ψ and then removing the single
maximal peak. The latter holds by Lemma 3.2.

Lemma 3.2. Let n, r > 2, let w ∈M(n, r) and let w′ be obtained by removing the single
maximal peak from Ψ(w). Then rank(w′) > r − 1.

Proof. The general case follows from the case where w ∈ D(m) ∩M(m, r) so that w′ ∈
D(m− 1). We express w as axb where the length i of a is maximal such that i < m and
w̄(i) = 0. Then Ψ(w) = bxa by definition. As rank(w) = r, we have rank(a) = r − 1.
Hence rank(w′) > r − 1 as desired.

4 Variable step lengths

In this section we provide a different generalization of Theorem 2.4: we prove that for a
random closed walk of variable step size, and with a nonzero fixed number of each type
of step, the probability of attaining a unique maximum is at least 1

2
.

Definition 4.1. Let S be a finite set. A length ` S-walk w is a sequence {1, . . . , `} → S.
Let WS(n) denote the set of length n S-walks. Let v : S → R. The v-trajectory of w is
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w̄v(j) =
∑j

i=1 v(w(i)). The v-maximum of w is maxv(w) = max{w̄v(j) : 0 6 j 6 `}. Let
Mv(n) ⊂ WS(n) denote the subset consisting of those walks w for which there is a unique
i ∈ {1, . . . , n} such that w̄(i) = max(w). The length ` S-walk w is v-closed if w̄v(`) = 0.
Let Dv(n) ⊂ WS(n) denote the set of length N v-closed S-walks with v-maximum 0.

The proof of Lemma 2.2 can be carried over to this more general context:

Lemma 4.2. There is an injection ψv : Dv(n)→Mv(n)

Proof. Let w ∈ Dv(n). Let p < n be maximal such that w̄v(p) = 0. Regard w as a string
in S, and express w as the concatenation axb where a is the initial length p subpath and x
is a single symbol (which necessarily satisfies v(x) < 0). Define ψv(w) to be the sequence
corresponding to bxa. This lies in Mv(n) since a has v-maximum 0 and b̄v obtains its
unique maximum at the end.

To see that ψv is injective, we describe its (left-)inverse. Any walk w in the image of
ψv has the form bxa, where maxv(a) = 0, b has length q, w̄v(q) > 0, and w̄v(q + 1) = 0.
Moreover there can clearly be at most one such representation of w. The unique pre-image
of w under ψv is then axb.

Theorem 4.3. Let S be a finite set and let v : S → R. Then |Mv(n)| > 1
2
|WS(n)|.

Proof. The proof is the same as that of Theorem 2.4; we use ψv in the same way to define
a map Ψv :WS(n)−Mv(n)→Mv(n) and this is an injection.

Remark 4.4. Let X ⊂ WS(n) be any Ψv-invariant subset. Then by restricting Ψv to
X ∩ (WS(n)−Mv(n)), we see that |X ∩Mv(n)| > 1

2
|X|. For example, we could take X

to be the set of v-closed walks, since Ψv takes v-closed walks to v-closed walks. Also, note
that Ψv preserves the cardinality of S-fibers in the sense that |w−1(s)| = |(Ψvw)−1(s)| for
each s ∈ S. Hence, we could take X to be the set of walks whose S-fibers have some
prescribed cardinalities.

Remark 4.5. We can also consider weighted random walks. That is, we let µ be a
probability measure on S, and consider the induced measure µ on W(n) that assigns to
a walk w the probability 1

n

∑
s∈S |w−1(s)|µ(s). Theorem 4.3 also generalizes to this case:

with respect to this measure, the measure ofMv(n) is at least 1
2
. This works because the

measure is Ψv-invariant, so

µv(WS(n)−Mv(n)) =
∑

w∈WS(n)−Mv(n)

µ(w) =
∑

w∈WS(n)−Mv(n)

µ(Ψ(w)) 6
∑

w∈Mv(n)

µ(Ψ(w)) = µv(Mv(n))

5 Estimating the probability of a unique max and a unique min

The goal of this section is to prove Theorem 5.9 which gives a 1
4

asymptotic probability
that a random walk with uniform step size has both a unique minimum and a unique
maximum. The strategy of the proof is to show that there is a dense subset having a
partition into four equal cardinality parts lying in:

M∩−M Mc ∩ −M M∩ (−M)c Mc ∩ (−M)c
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Definition 5.1. Let w ∈ C(n). If w /∈ M(n), we define the max-interval of w to be
the largest subsequence {p, . . . , q} of {1, . . . , 2n} such that w̄(p − 1) = max(w) = w̄(q).
For w ∈ M(n), we define the max-interval of w to be the max-interval of Ψ−1(w). Note
that the max-interval subtends the part of w which is modified by Ψ (or Ψ−1). We define
the min-interval of w to be the max-interval of −w. The size of the max-interval is its
cardinality and likewise for the min-interval.

The max-interval and min-interval are generically small in the following sense:

Lemma 5.2. Let U+(n, k) ⊂ C(n) be the set of walks whose max-interval has size 2k.
Similarly, U−(n, k) denotes the walks with a size 2k min-interval. For any ε > 0, there
exists N such that for all n > N we have:

1

|C(n)|

∣∣∣∣∣
n⋃

k=N

U+(n, k)

∣∣∣∣∣ =
n∑

k=N

|U+(n, k)|
|C(n)|

< ε

and similarly for U−.

Proof. We will prove the claim for U+ as the proof for U− is identical.
For 1 6 k 6 n, let U∗+(n, k) = U+(n, k) \ M(n). From the definitions we have∣∣U∗+(n, k)

∣∣ = 1
2
|U+(n, k)| so it suffices to prove the claim with U+ replaced by U∗+.

Let ε > 0. For any 1 6 k 6 n,∣∣U∗+(n, k)
∣∣ = |D(k)| · |M(n− k)| =

1

k + 1

(
2k

k

)
· 1

2

(
2(n− k)

n− k

)
Indeed, each w ∈ U∗+(n, k) corresponds to a pair (d,m) with d ∈ D(k) andm ∈ M(n− k).
The correspondence arises by inserting d at the maximum of m.

We now have the following inequality which proves the claim. Its first part holds since⋃n
k=1 U∗+(n, k) = C(n) \ M(n) and |M(n)| = 1

2
|C(n)| by Theorem 2.4. Its second part

holds by Lemma 5.3 and its last part holds for N sufficiently large by Lemma 5.4.

n∑
k=N

∣∣U∗+(n, k)
∣∣

|C(n)|
=

1

2
−

N−1∑
k=1

∣∣U∗+(n, k)
∣∣

|C(n)|
6

1

2
−

N−1∑
k=1

1

2

1

k + 1

(
2k

k

)
4−k < ε

Lemma 5.3.
(
2(n−k)
n−k

)
/
(
2n
n

)
> 4−k for 0 6 k 6 n.

Proof. For each fixed n, we prove this by induction on k.
Base case: (

2(n− 0)

n− 0

)
/

(
2n

n

)
= 1 > 40

Inductive step: For 0 6 k < n(
2(n−(k+1))
n−(k+1)

)
/
(
2n
n

)(
2(n−k)
n−k

)
/
(
2n
n

) =

(
2(n−k)−2
(n−k)−1

)(
2(n−k)
n−k

) =
(n− k)2

(2(n− k)− 1)(2(n− k))
> 4−1
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Lemma 5.4.
∑∞

k=1
1
2

1
k+1

(
2k
k

)
4−k = 1

2
.

Proof. The well-known generating function for the Catalan numbers is

∞∑
k=0

1

k + 1

(
2k

k

)
xk =

1−
√

1− 4x

2x

where this equality holds for |x| < 1/4. Setting x = 1/4, the left-hand side converges by

the elementary estimate
(
2k
k

)
6 4k√

3k+1
of the central binomial coefficient. We thus obtain

the following by applying limx↗ 1
4

to each side, and note that Abel’s theorem ensures the
convergence of this limit on the left.

∞∑
k=0

1

k + 1

(
2k

k

)
4−k = 2

The conclusion follows since the 0-th term of this series is 1.

Lemma 5.5. If the max-interval and min-interval of w intersect and have size s1 and s2,
then:

max(w)−min(w) 6
1

2
sup(s1, s2)

Proof. Let {a, . . . , b} be the max-interval of w. By hypothesis, there is c ∈ {a, . . . , b}
with w̄(c) = min(w). Clearly, the difference between the maximum and minimum on a
size s interval is at most s. Since max(w) and min(w) are both attained on {a, . . . , c}
and on {c, . . . , b}, and since one of these intervals is of size at most s1

2
, it follows that

max(w)−min(w) 6 s1
2

. Similarly, max(w)−min(w) 6 s2
2

.

The following is a classical fact about random walks, and we refer to [7] for an account
of its history:

Lemma 5.6 (Reflection principle). For h > 0, the number of walks w ∈ C(n) with
maxw > h is equal to

(
2n
n+h

)
.

Proof. For any w ∈ C(n) with max(w) > h, define Rw by

(Rw)(i) =

{
w(i); i 6 I(w)

−w(i) i > I(w)

where I(w) is minimal such that w̄(i) = h. Then R is an injection onto the set of walks
w ∈ W(2n) such that w̄(2n) = 2h. The cardinality of the latter set is

(
2n
n+h

)
.

Lemma 5.7 (Generically Disjoint). Let J (n) ⊂ C(n) be the subset of walks whose max-

interval and min-interval are disjoint. Then limn→∞
|J (n)|
|C(n)| = 1.
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Proof. Fix ε > 0. Let N be as in Lemma 5.2 and let n > N . Let O(n) = C(n) \ J (n)
consist of those walks whose max-interval and min-interval overlap. Let

K1(n) = O(n) ∩

(
n⋃

k=N

U+(n, k) ∪
n⋃

k=N

U−(n, k)

)

(so that |K1(n)|
|C(n)| 6 2ε by Lemma 5.2) and let

K2(n) = O(n) ∩

(
N−1⋃
k=1

U+(n, k) ∩
N−1⋃
k=1

U−(n, k)

)

By Lemma 5.5, for any w ∈ K2(n) we have max(w) < N . Hence, by Lemma 5.6, we have

|K2(n)|
|C(n)|

6

(
2n
n

)
−
(

2n
n+N

)(
2n
n

) = 1− (n−N + 1) · · · (n−N +N)

(n+ 1) · · · (n+N)

n→∞−−−→ 0

and so

lim
n→∞

|O(n)|
|C(n)|

= lim
n→∞

|K1(n)|
|C(n)|

+ lim
n→∞

|K2(n)|
|C(n)|

< 2ε+ lim
n→∞

|K2(n)|
|C(n)|

= 2ε.

Hence, |J (n)|
|C(n)| > 1− 2ε for every ε > 0, which proves the claim.

Lemma 5.8. J (n) is partitioned into 4 subsets of equal cardinality according to whether
there is a unique max and/or unique min.

Proof. Since the max-interval and min-interval of elements of J (n) are disjoint, it is easily
seen that the restrictions of the map Ψ to J (n) leaves J (n)∩−M(n) invariant and hence
provides bijections

(J (n) ∩ −M(n)) \M(n)→ (J (n) ∩ −M(n)) ∩M(n)

and
(J (n) \ −M(n)) \M(n)→ (J (n) \ −M(n)) ∩M(n).

Similarly, the map w 7→ −Ψ(−w) provides bijections

(J (n) \ −M(n)) ∩M(n)→ (J (n) ∩ −M(n)) ∩M(n)

and
(J (n) \ −M(n)) \M(n)→ (J (n) ∩ −M(n)) \M(n).

Combining these gives the desired one-to-one-to-one-to-one correspondence.

Theorem 5.9. limn→∞
|M(n)∩−M(n)|

|C(n)| = 1
4
.

Proof. Combine Lemma 5.7 and Lemma 5.8.
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Remark 5.10. The first few terms of the sequence |M(n) ∩ −M(n)| are:

0, 2, 4, 18, 64, 230, 852, 3206, 12144, 46188, . . .

The convergent sequence |M(n) ∩ −M(n)| / |C(n)| has the following initial terms, where
d = 29099070:

0

d
,
9699690

d
,
5819814

d
,
7482618

d
,
7390240

d
,
7243275

d
,
7223895

d
,
7248766

d
,
7268184

d
,
7274610

d
, . . .

It is not monotonic, but we have verified that its terms are > 1/4 for all n > 1.

6 Dyck words with a unique maximum

In this section we show that, asymptotically, one half of all Dyck words have a unique
maximum. We refer to [3] for a variety of other elegant counts of frequencies of various
configurations within Dyck words.

We begin by describing a second, more straightforward, proof of Theorem 2.4.

Cyclic Permutation Proof. We describe a mapM(n)→ D(n−1). We cyclically permute
so that the maximum appears at the beginning and end. This yields a (2n−1)-to-(1) map
to length 2n Dyck words whose trajectories are negative except at the endpoints. After
removing the first and last edges, we obtain a (2n−1)-to-(1) map fromM(n)→ D(n−1).
Since |D(n− 1)| = 1

n

(
2n−2
n−1

)
by Theorem 2.1, we have: M(n) = 2n−1

n

(
2n−2
n−1

)
= 1

2

(
2n
n

)
.

Theorem 6.1. limn→∞
|D(n)∩−M(n)|

|D(n)| = 1
2
.

Proof. We employ the (2n − 1)-to-1 map M(n) → D(n − 1) from the above proof of
Theorem 2.4. Observe that an element of D(n− 1) has a unique minimum if and only if
(2n− 2) of its (2n− 1) pre-images have a unique minimum.

Thus:

|D(n− 1) ∩ −M(n− 1)| = 1

2n− 2
|M(n) ∩ −M(n)|

and hence

lim
n→∞

|D(n− 1) ∩M(n− 1)|
|D(n− 1)|

= lim
n→∞

1
2n−2 |M(n) ∩ −M(n)|

1
2n−1 |M(n)|

=
1

2

where the last equality is by Theorem 5.9.

Remark 6.2. As in Remark 5.10, we note that |D(n)∩−M(n)|
|D(n)| > 1

2
for all n.
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