Doubled patterns are 3-avoidable
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Abstract

In combinatorics on words, a word w over an alphabet ¥ is said to avoid a
pattern p over an alphabet A if there is no factor f of w such that f = h(p) where
h : A* — ¥* is a non-erasing morphism. A pattern p is said to be k-avoidable if
there exists an infinite word over a k-letter alphabet that avoids p. A pattern is
said to be doubled if no variable occurs only once. Doubled patterns with at most
3 variables and doubled patterns with at least 6 variables are 3-avoidable. We show
that doubled patterns with 4 and 5 variables are also 3-avoidable.

Keywords: Word; Pattern avoidance.

1 Introduction

A pattern p is a non-empty word over an alphabet A = {A, B,C, ...} of capital letters
called variables. An occurrence of p in a word w is a non-erasing morphism h : A* — »*
such that h(p) is a factor of w. The avoidability index A(p) of a pattern p is the size
of the smallest alphabet ¥ such that there exists an infinite word w over Y containing
no occurrence of p. Bean, Ehrenfeucht, and McNulty [2] and Zimin [14] characterized
unavoidable patterns, i.e., such that A(p) = oco. We say that a pattern p is t-avoidable
if A(p) < t. For more informations on pattern avoidability, we refer to Chapter 3 of
Lothaire’s book [8].

It follows from their characterization that every unavoidable pattern contains a vari-
able that occurs once. Equivalently, every doubled pattern is avoidable. Our result is
that:

Theorem 1. Fvery doubled pattern is 3-avoidable.

Let v(p) be the number of distinct variables of the pattern p. For v(p) < 3, Cas-
saigne [5] began and I [10] finished the determination of the avoidability index of every
pattern with at most 3 variables. It implies in particular that every avoidable pattern
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with at most 3 variables is 3-avoidable. Moreover, Bell and Goh [3] obtained that every
doubled pattern p such that v(p) > 6 is 3-avoidable.

Therefore, as noticed in the conclusion of [11], there remains to prove Theorem 1 for
every pattern p such that 4 < v(p) < 5. In this paper, we use both constructions of
infinite words and a non-constructive method to settle the cases 4 < v(p) < 5.

Recently, Blanchet-Sadri and Woodhouse [4] and Ochem and Pinlou [11] independently
obtained the following.

Theorem 2 ([4, 11]). Let p be a pattern.
(a) If p has length at least 3 x 2°®P)~1 then \(p) < 2.
(b) If p has length at least 2°®) then \(p) < 3.

As noticed in these papers, if p has length at least 2°®) then p contains a doubled
pattern as a factor. Thus, Theorem 1 implies Theorem 2.(b).

2 Extending the power series method

In this section, we borrow an idea from the entropy compression method to extend the
power series method as used by Bell and Goh [3], Rampersad [13], and Blanchet-Sadri
and Woodhouse [4].

Let us describe the method. Let L C X be a factorial language defined by a set
F' of forbidden factors of length at least 2. We denote the factor complexity of L by
n; = |LNX¢ |. We define L' as the set of words w such that w is not in L and the prefix
of length |w| — 1 of w is in L. For every forbidden factor f € F, we choose a number
1 < sp < |f|. Then, for every i > 1, we define an integer a; such that

aiEIBEaLXHUEEin]quL', uv =0bf, f €F, Sf:i}’.

We consider the formal power series P(x) = 1 —mx + Y ,., a;z’. If P(x) has a positive
real root g, then n;, > z, i for every ¢ > 0.
Let us rewrite that P(z9) =1 —mxo + ), a;zh =0 as

m— Y axht=1x5" (1)
i>1

1

ng
ni—1

in order to obtain that n; > x5’

for every 7 > 0. By using (1), we obtain the base case: Z—; =n=m > ;"

every length ¢ > 1, there are:

Since ng = 1, we will prove by induction that >z

Now, for
e m' words in X! .
e n,; words in L,

e at most >, ni—ja; words in L/,
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e m(m~! —n,; ;) words in 3¢ \ {LUL'}.

. . i—1 : .
This gives nH’ZKjgi nja;—j+m(m'~' —n;_y) = m’, that is, n; > mn;_, —ZK].@. Ni—ja;.

_ni — Mg
n;—1 Z m Zlgjgi a; ;1
> m-—>, a;z)"" by induction
Z 1<j<i 40 Y
i
Z m : Zj>1 a;Ty
= Ty by (1)

The power series method used in previous papers [3, 4, 13] corresponds to the special
case such that sy = | f| for every forbidden factor. Our condition is that P(z) = 0 for some
x > 0 whereas the condition in these papers is that every coefficient of the series expansion
of % is positive. The two conditions are actually equivalent (Miller [9] uses a similar

criterion). The result in [12] concerns series of the form S(z) = 1+ a1z + asz? +azx® +. ..
with real coefficients such that a; < 0 and a; > 0 for every ¢ > 2. It states that every
coefficient of the series 1/S(z) = by + by + bax? + bz + . . . is positive if and only if S(z)
has a positive real root zy. Moreover, we have b; > x * for every i > 0.

The entropy compression method as developed by Gongalves, Montassier, and Pin-
lou [6] uses a condition equivalent to P(z) = 0. The benefit of the present method is that
we get an exponential lower bound on the factor complexity. It is not clear whether it is
possible to get such a lower bound when using entropy compression for graph coloring,
since words have a simpler structure than graphs.

3 Applying the method

In this section, we show that some doubled patterns on 4 and 5 variables are 3-avoidable.
Given a pattern p, every occurrence f of p is a forbidden factor. With an abuse of notation,
we denote by |A| the length of the image of the variable A of p in the occurrence f. This
notation is used to define the length sy.

Let us first consider doubled patterns with 4 variables. We begin with patterns of
length 9, so that one variable, say A, appears 3 times. We set sy = |f|. Using the obvious
upper bound on the number of pattern occurrences, we obtain

P(ZL’) = 1—3z¢ + Za,b,c,d}l 3a+b+c+dx3a+2b+20+2d
= 1804 Y00 (307" (30%) (32)° (322)°
= 1= 304 (L0 (309)%) (Lot (309)') (T 30%)) (Lo (322)7)
= 1=30+ (= — ) (2 — ) (e — V) (e — 1)
= 1-30+ (2 — 1) (= — 1)

1—3z—922+2423+362* —542° — 10825424328 +1622° — 243210
(1—3z3)(1—322)3 ’

Then P(z) admits xy = 0.3400. .. as its smallest positive real root. So, every doubled
pattern p with 4 variables and length 9 is 3-avoidable and there exist at least x5" > 2.941"
ternary words avoiding p. Notice that for patterns with 4 variables and length at least
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10, every term of 3~ , ., 3¢tbretdydet2bt2et2d iy P(z) gets multiplied by some positive
power of x. Since 0 <z < 1, every term is now smaller than in the previous case. So P(x)
admits a smallest positive real root that is smaller than 0.3400... Thus, these patterns
are also 3-avoidable.

Now, we consider patterns with length 8, so that every Varlable appears exactly twice.

If such a pattern has ABCD as a prefix, then we set sy = %1 = |A| +|B| + |C| + |D|. So
we obtain P(z) =13z 4 >, 4oq 277 =130 + (— — 1) Then P(x) admits
0.3819... as its smallest positive real root, so that this pattern is 3-avoidable.

Among the remaining patterns, we rule out patterns containing an occurrence of
a doubled pattern with at most 3 variables. Also, if one pattern is the reverse of an-
other, then they have the same avoidability index and we consider only one of the two.
Thus, there remain the following patterns: ABACBDCD, ABACDBDC, ABACDCBD,
ABCADBDC, ABCADCBD, ABCADCDB, and ABCBDADC.

Now we consider doubled patterns with 5 variables. Similarly, we rule out every
pattern of length at least 11 with the method by setting s; = |f|. Then we check that
P(z)=1-3z+ Zabcde>1 Jatbtetdte,3at2bt2c+2di2e — | _ 34 4 (1 —_ 1) (ﬁ _ 1>4
has a positive real root.

We also rule out every pattern of length 10 having ABC as a prefix. We set s; =
|f| = |ABC| = |A| + |B| + |C| + 2|D| + 2|E|. Then we check that P(z) = 1 — 3z +
D abedest STepetbreradiie — 1 34 4 ({ — 1) (2 — 1)2 has a positive real root.

Again, we rule out patterns containing an occurrence of a doubled pattern with at most

4 variables and patterns whose reversed pattern is already considered. Thus, there remain
the following patterns: ABACBDCEDE, ABACDBCEDE, and ABACDBDECE.

4 Sporadic doubled patterns

In this section, we consider the 10 doubled patterns on 4 and 5 variables whose 3-
avoidability has not been obtained in the previous section.

We define the avoidability exponent AE(p) of a pattern p as the largest real o such
that every a-free word avoids p. This notion is not pertinent e.g. for the pattern
ABWBAXACYCAZBC studied by Baker, McNulty, and Taylor [1], since for every
e > 0, there exists a (1 + €)-free word containing an occurrence of that pattern. However,
AE(p) > 1 for every doubled pattern. To see that, consider a factor A... A of p. If
an a-free word contains an occurrence of p, then the image of this factor is a repetition
such that the image of A cannot be too large compared to the images of the variables
occurring between the As in p. We have similar constraints for every variable and this
set of constraints becomes unsatisfiable as a decreases towards 1. We present one way of
obtaining a lower bound on the avoidability exponent for a doubled pattern p of length
2v(p). We construct the v(p) x v(p) matrix M such that M;; is the number of occur-
rences of the Variable X, between the two occurrences of the variable X;. Let us show
that AE(p) > 1+ -~ where 3 is the largest eigenvalue of M. We consider an occurrence

5—1—1
of p and we note ¢; = |A4;|. In an a-free word, the image of the factor X;...X; of p
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2£i+21<j<11(p) Mingj
G2 1< <o(p) Migli

implies that
4
: ] must satisfy V < g;lM V. This implies that the largest eigenvalue 3 of M

< a, that is, [; < 2= Zlgj@(p) M, ;¢;. Thus, the vector

2—«

V= —«

Evip)
satisfies 5 > %7 that is, a > 1 + ﬁ Hence, if o < 1+ ﬁ, then every a-free word

avoids p. So AE(p) > 1+ 515

0

AE(p) 2 1+ ﬁ = 1.3400.... The avoidability exponents of the 10 patterns considered
in this section range from AE(ABCADBDC') > 1.292893219 to AE(ABACBDCD) >

1.381966011. For each pattern p among the 10, we give a uniform morphism m : 37 — 333
such that for every (?f)-free word w € X%, we have that m(w) avoids p. The proof that

0100
For example if p = ABACDCBD, then we get M = {688%], g =1.9403..., and
110

p is avoided follows the method in [10]. Since there exist exponentially many (%Jr)—free

words over Y5 [7], there exist exponentially many binary words avoiding p.
o AE(ABACBDCD) > 1.381966011, 17-uniform morphism

0 — 00000111101010110
1+ 00000110100100110
2+ 00000011100110111
3 — 00000011010101111
4+ 00000011001001011

e AE(ABACDBDC) > 5 = 1.333333333, 33-uniform morphism

0 — 000000101101000111111011001010111
1~ 000000100110100001111101001010111
2+ 000000010110100001111111010010111
3 — 000000010011010100011111010010111
4+ 000000010011001000001111010010111

o AE(ABACDCBD) > 1.340090632, 28-uniform morphism

0 — 0000101010001110010000111111
1+~ 0000001111010001101001111111
2+ 0000001101000011110100100111
3 — 0000001011110000110100111111
4 — 0000001010111100100001111111

e AE(ABCADBDC) > 1.292893219, 21-uniform morphism

0 — 000011101101011111010
1~ 000010110100100111101
2+ 000001101110100101111
3+ 000001101011001111111
4 — 000000110111010111111
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AE(ABCADCBD) > 1.295597743, 22-uniform morphism

0 — 0000011011010100011111
1+~ 0000011010101001001111
2 +—0000001101100100111111
3 — 0000001010110000111111
4 — 0000000110101001110111

AE(ABCADCDB) > 1.327621756, 26-uniform morphism

0 — 00000011110010101011000111
1~ 00000011010111111001011011
2+~ 00000010011111101001110111
3 +— 00000001001111110001010111
4 — 00000001000111111001010111

AE(ABCBDADC) > 1.302775638, 33-uniform morphism

0 — 000000101111110011000110011111101
1~ 000000101111001000001100111111101
2 +—000000011011111001100000100111101
3 +— 000000011010101011000001001111101
4 +— 000000010111110010101010011111011

AE(ABACBDCEDE) > 1.366025404, 15-uniform morphism

0 — 001011011110000
1~ 001010100111111
2 — 000110010011000
3+ 000011111111100
4+ 000011010101110

e AE(ABACDBCEDEFE) > 1.302775638, 18-uniform morphism

0 — 000010110100100111
1+~ 000010100111111111
2+ 000000110110011111
3+ 000000101010101111
4+ 000000000111100111

e AE(ABACDBDECE) > 1.320416579, 22-uniform morphism

0 — 0000001111110001011011
1~ 0000001111100100110101
2+ 0000001111100001101101
3+ 0000001111001001011100
4+ 0000001111000010101100
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5 Simultaneous avoidance of doubled patterns

Bell and Goh [3] have also considered the avoidance of multiple patterns simultaneously
and ask (question 3) whether there exist an infinite word over a finite alphabet that avoids
every doubled pattern. We give a negative answer.

A word w is n-splitted if |w| = 0 (mod n) and every factor w; such that w =
wywsy ... w, and |w;| = h:—' for 1 < @ < n contains every letter in w. An n-splitted
pattern is defined similarly. Let us prove by induction on k that every word w € E}gk
contains an n-splitted factor. The assertion is true for £ = 1. Now, if the word w € E’,;‘k is
not itself n-splitted, then by definition it must contain a factor w; that does not contain
every letter of w. So we have w; € 225_11. By induction, w; contains an n-splitted factor,
and so does w.

This implies that for every fixed n, every infinite word over a finite alphabet contains
n-splitted factors. Moreover, an n-splitted word is an occurrence of an n-splitted pattern
such that every variable has a distinct image of length 1. So, for every fixed n, the set of
all n-splitted patterns is not avoidable by an infinite word over a finite alphabet.

Notice that if n > 2, then an n-splitted word (resp. pattern) contains a 2-splitted
word (resp. pattern) and a 2-splitted word (resp. pattern) is doubled.

6 Conclusion

Our results answer to the first of two questions of our previous paper [11]. The second
question is whether there exists a finite k& such that every doubled pattern with at least
k variables is 2-avoidable. As already noticed [11], such a k is at least 5 since, e.g.,
ABCCBADD is not 2-avoidable.
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