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Abstract

For a regular 2n-gon there are (2n − 1)!! ways to match and glue the 2n sides.
The Harer-Zagier bivariate generating function enumerates the gluings by n and
the genus g of the attendant surface and leads to a recurrence equation for the
counts of gluings with parameters n and g. This formula was originally obtained
using multidimensional Gaussian integrals. Soon after, Jackson and later Zagier
found alternative proofs using symmetric group characters. In this note we give a
different, characters-based, proof. Its core is computing and marginally inverting the
Fourier transform of the underlying probability measure on S2n. A key ingredient is
the Murnaghan-Nakayama rule for the characters associated with one-hook Young
diagrams.

Keywords: Keywords: surfaces, chord diagrams, genus, random permutations,
Fourier transform, irreducible characters, Murnaghan-Nakayama, generating func-
tions

1 Introduction and main results

Consider a regular, oriented, 2n-gon. There are (2n−1)!! ways to match and glue 2n-sides
observing head-to-tail constraint in each glued pair. Each such gluing produces an one-
face map on an oriented surface. Let εg(n) denote the total number of gluings resulting
in a surface of genus g. Thirty years ago Harer and Zagier [9] discovered that

1 + 2xy + 2
∞∑
n=1

xn+1

(2n− 1)!!

∑
g

εg(n)yn+1−2g =

(
1 + x

1− x

)y
; (1.1)

here n+1−2g is the number of vertices in the map on the surface. Of course, εg(n)/(2n−
1)!! is the probability that the uniformly random gluing generates a surface of genus g.
So, introducing the random variable Gn, n > 1, genus of the random surface, so that

the electronic journal of combinatorics 23(1) (2016), #P1.21 1



Vn := n + 1 − Gn is the number of vertices on the surface map, and setting G0 = 0, we
rewrite (1.1) as

1 + 2
∞∑
n=0

xn+1E
[
yn+1−2Gn

]
=

(
1 + x

1− x

)y
. (1.2)

Their proof used a powerful technique based on multidimensional integrals with respect
to a Gaussian measure on Rk. The identity (1.1) implied a remarkable 3-term recurrence
for the counts εg(n). A year later Jackson [11] found a group characters-based derivation
of an explicit formula for those counts, expressed through Stirling numbers of both kinds,
and used it to prove the recurrence anew. Subsequently Itzykson and Zuber [10] reduced
the combinatorial calculations in [9]. In 1995 Zagier found another, shorter, proof of
(1.1) based on group characters, see [18] and also Zagier’s Appendix to the book [12] by
Lando and Zvonkin. In 2001 Lass [13] gave a combinatorial derivation based upon the
enumeration of arborescences and Euler circuits.

The Harer-Zagier formula was used by Linial and Nowik [14] to obtain a sharp asymp-
totic formula for E[Gn] and later by Chmutov and Pittel [1] to prove that Gn is asymptot-
ically Gaussian with mean (n − log n)/2 and variance (log n)/4. Pippenger and Schleich
[15], Gamburd [7], Fleming and Pippenger [6] studied the random surface obtained by
gluing together edge-wise n oriented polygonal disks, all with the same number of sides, 3
in [15], and k > 3 in [7], [6]; kn needs to be even, of course. In addition to the uniformity
of the “gluing” permutation α, Gamburd also assumed that those oriented k-gons were the
cycles of the permutation β chosen independently of α and uniformly at random among
all permutations with k-long cycles only, rather than the cycles of a fixed permutation β.
Fleming and Pippenger showed that the counts of cycles by size in the two resulting per-
mutations γ := αβ are equidistributed. Gamburd used a Fourier transform-based bound
for the total variation distance between two probability measures on a finite group, due to
Diaconis and Shahshahani [4], [5], to prove that, when 2 lcm{2, k} | kn, γ is asymptotically
uniform on the alternating subgroup Akn. Fleming and Pippenger used Gamburd’s result
to obtain very sharp approximations for the moments of Vn, confirming the conjectures
made in [15] for the case k = 3. Thus the number of vertices Vn in the surface obtained
by gluing the given discs and the number of cycles of γ are equidistributed. Chmutov
and Pittel [2] extended Gamburd’s result to the general case of n polygons with arbitrary
“circumferences”, adding up to an even N →∞: γ is asymptotically uniform on AN (on
AcN resp.) if N − n and N/2 are of the same (opposite resp.) parity.

In this note we combine Gamburd’s ideas and the Fourier transform on SN to give
a new proof of the identity (1.2). Aside from Murnaghan-Nakayama rule, mostly for a
simple case of the one-hook diagrams, our relatively short argument is based on elementary
enumeration. We hope to apply analogous techniques to other models of random surfaces.

2 Derivation of Harer-Zagier formula

For an even N = 2n, consider a directed polygon with N sides labeled by elements of [N ],
and let α be a fixed-point free involution of [N ], i.e. a permutation of N ] with all cycles
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of length 2. We can view the polygon as a unicyclic permutation β of [N ]. Here is how
the pair (α, β) induces the corresponding surface. The first edge e1 is glued, head-to-tail,
to the edge β(e1); the edge β(e1) is followed by the edge e2 = α(β(e1)) = (αβ)(e1) in the
cycle β. Next e2 is glued to β(e2) followed by e3 = α(β(e2)) = (αβ)(e2) in the the cycle
β. This process produces a sequence of edges e1, e2, . . . , whose tails collapse into a single
vertex of the map. Since αβ is a permutation of [N ], the sequence of edges eventually
loops back on the starting edge e1, forming a cycle e1 → e2 → · · · → em → e1 of αβ.
Next, starting from the first edge not in this cycle, i.e. distinct from e1, . . . , em, we obtain
a cycle with a disjoint support, containing this edge, that determines another vertex of
the map. Proceeding in the same way, we will eventually partition the edge set [N ] into
disjoint subsets, each associated with its own vertex of the map. Clearly, the number
of those subsets, i.e. the number of vertices V , equals the number of cycles of γ = αβ.
Since the number of edges of the map is N/2 = n, and the number of faces is 1, the Euler
characteristic χ = V − N + 1, and the genus g = 1 − χ

2
, so that V = n + 1 − 2g. Thus

enumerating surfaces by the genus g is reduced to enumerating pairs (α, β) by the number
of cycles of αβ.

Casting the problem in the probabilistic light, let α and β be two independent random
permutations of [N ] chosen uniformly among the permutations with all cycles of length
2, and among all (N − 1)! unicyclic permutations respectively. Our goal is to determine
the generating function of Vn, the number of cycles of the random permutation γ := αβ,
in a form that allows to evaluate, rather directly, the bivariate generating function of the
number of cycles, i.e. to prove the Harer-Zagier formula anew.

The starting point is the Fourier inversion formula for a general probability measure
P on SN , Diaconis [5]:

P (s) =
1

N !

∑
λ`N

fλ tr
(
ρλ(s−1)P̂ (ρλ)

)
; s ∈ SN . (2.1)

Here λ is a generic partition of N , ρλ is the irreducible representation of SN associated
with λ, fλ = dim(ρλ), and P̂ (ρλ) is the matrix-valued Fourier transform of P (·) evaluated
at ρλ,

P̂ (ρλ) =
∑
s∈SN

ρλ(s)P (s),

and tr(A) is the trace of a square matrix A.
Let us evaluate the RHS of (2.1) for P = Pσ, the probability measure on SN induced by

σ =
∏k

j=1 σj, where σj is uniform on a conjugacy class Cj, and σ1, . . . , σk are independent
of each other. By independence of σj,

Pσ(s) =
∑
s1,...,sk

∏
j

Pσj(sj), (s1 · · · sk = s),

i.e. Pσ is the convolution of Pσ1 , . . . , Pσk . So, by multiplicativity of the Fourier transform
for convolutions,

P̂σ(ρλ) =
∏
j

P̂σj(ρ
λ).
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Since each Pσj is supported by the single conjugacy class Cj, we have

P̂σj(ρ
λ) =

χλ(Cj)

fλ
Ifλ ,

Im being an m×m identity matrix, see [5]. So

P̂σ(ρλ) =
k∏
j=1

P̂σj(ρ
λ) = (fλ)−k

k∏
j=1

χλ(Cj) Ifλ ,

and (2.1) becomes

Pσ(s) =
1

N !

∑
λ

(fλ)−k+1

(
k∏
j=1

χλ(Cj)

)
tr
(
ρλ(s−1)Ifλ

)
=

1

N !

∑
λ

(fλ)−k+1χλ(s)
k∏
j=1

χλ(Cj).

(2.2)

For a special case s = id (2.2) becomes

Pσ(id) =
1

N !

∑
λ

(fλ)−k+2

k∏
j=1

χλ(Cj),

and since the LHS is the ratio of N (C1, . . . , Ck), the number of ways to write the identity
permutation as the product of elements of C1, . . . , Ck, to

∏k
j=1 |Cj|, we obtain the SN -

version of Frobenius’s identity

N (C1, . . . , Ck) =

∏k
j=1 |Cj|
N !

∑
λ

(fλ)−k+2

k∏
j=1

χλ(Cj). (2.3)

Zagier’s proof in [18] used (2.3) for k = 3. In our argument we use (2.2) for k = 2, heavily
relying on arbitrariness of s ∈ SN . For σ1 = α, σ2 = β and σ = γ = αβ, this equation
becomes

Pγ(s) =
1

N !

∑
λ

(fλ)−1χλ(s)χλ(C2)χλ(CN); (2.4)

C2 (CN resp.) consists of all (N−1)!! permutations with cycles of length 2 only (all (N−1)!
unicyclic permutations resp.).

Let C~ν be a generic conjugacy class comprising all permutations with given counts
νj of cycles of length j ∈ [1, N ]. Define J = J(~ν) = {j ∈ [1, N ] : νj > 0}. Let
α = (α1, α2, . . . ) be an arbitrary composition of N containing νj components equal j,
(j ∈ J). By Murnaghan-Nakayama rule, Stanley [16] (Section 7.17, Equation (7.75)),

χλ(C~ν) =
∑
T

(−1)ht(T ), (2.5)
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where the sum is over all rim hook diagrams T of shape λ and type α, i. e. over all ways
to empty the diagram λ by successive deletions of the rim hooks, one hook at a time, of
lengths α1, α2, . . . . Further ht(T ) is the sum of heights of the individual hooks (number
of rows minus 1) in the hook diagram T .

This remarkable formula implies that χλ(CN) = 0 unless the diagram λ is a single hook
λ∗, with one row of length λ1 and one column of height λ1, λ1 + λ1 = N + 1, in which
case

χλ(CN) = (−1)λ
1−1. (2.6)

Consider χλ
∗
(C2). If λ1 is even, then λ1 is odd, so that for each T the rim hook deleted

last consists of two first cells in the row. So ht(T ) = (λ1 − 1)/2 for every T , and the
number of T ’s is the number of ways to intersperse first (λ1− 2)/2 deletions, from left to
right, of domino tiles in the row with (λ1 − 1)/2 deletions of domino tiles, from bottom
to top, in the column, and this number is(λ1−2+λ1−1

2
λ1−2
2

)
=

(N−2
2

λ1−2
2

)
=⇒ χλ

∗
(C2) = (−1)(λ

1−1)/2
(N−2

2
λ1−2
2

)
. (2.7)

Analogously, if λ1 is odd then

χλ
∗
(C2) = (−1)λ

1/2

(N−2
2

λ1−1
2

)
. (2.8)

Combining (2.6)-(2.8), we have

χλ
∗
(C2)χλ

∗
(CN) = (−1)(λ

1−1)/2
(N−2

2
λ1−2
2

)
, if λ1 is even;

χλ
∗
(C2)χλ

∗
(CN) = (−1)(λ

1+2)/2

(N−2
2

λ1−1
2

)
, if λ1 is odd.

(2.9)

As for fλ
∗
, applying the hook length formula we obtain

fλ
∗

=
N !

N
∏λ1−1

r=1 r
∏λ1−1

s=1 s
=

(
N − 1

λ1 − 1

)
. (2.10)

Introducing

F (N, λ1) := (−1)(λ
1−1)/2

(N−2
2

λ1−2
2

)
/

(
N − 1

λ1 − 1

)
if λ1 is even;

F (N, λ1) := (−1)(λ
1+2)/2

(N−2
2

λ1−1
2

)
/

(
N − 1

λ1 − 1

)
if λ1 is odd,

(2.11)

we transform (2.1) into

Pγ(s) =
1

N !

N∑
λ1=1

F (N, λ1)χ
λ∗(s); (2.12)
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here λ∗ is a hook of size N , with the row of length λ1, and the column of height λ1 =
N + 1− λ1.

Turn to χλ
∗
(s). Let s ∈ C~ν . Introduce ` = `(~ν) := min J = min{j : νj > 0}, the size

of the smallest positive component of α.
Case λ1 6 `. Here, for every α, there is only one rim hook tableau T , since the arm

of the hook deleted last must be the whole row of λ∗, and, denoting ν =
∑

j νj,

ht(T ) = λ1 − ν ≡ (λ1 + ν) (mod 2) =⇒ χλ
∗
(s) = (−1)λ

1+ν . (2.13)

Case λ1 > `. Since in (2.5) the composition α can be chosen arbitrarily, let us
assume that components of α are non-increasing. So the composition α consists of the
segment formed by all components of the largest size, followed by the segment formed by
all components of the second largest size, and so on, all the way to the terminal segment
formed by all components of the smallest size `. Therefore in a generic tableau T the
last rim hook is a diagram µ∗ comprising one row and one column of sizes µ1 and µ1,
µ1 +µ1 = `+1. All the other rim hooks in T are either horizontal or vertical, successively
deleted from the row and from the column of λ∗ respectively. Let hr be the number of
those horizontal hooks of size r ∈ J ; so hr ∈ [0, νr] for r > `, and h` ∈ [0, ν` − 1]. The
admissible h = {hr} must meet the additional constraint∑

r∈J

hrr + µ1 = λ1. (2.14)

The total number of the tableaux T , with parameters µ1, µ
1, h, is(

ν` − 1

h`

) ∏
r∈J\{`}

(
νr
hr

)
=
∏
r∈J

(
νr − δ`,r
hr

)
, δ`,r := 1{r=`}.

Further, the µ1-long leg of the last hook contributes µ1− 1 to the height ht(T ), while the
total contribution to ht(T ) of those vertical rim hooks is (λ1−µ1), the sum of their sizes,
minus

∑
r(νr − δ`,r − hr), their total number. So

ht(T ) = (µ1 − 1) + (λ1 − µ1)−
∑
r∈J

(νr − δ`,r − hr)

≡ λ1 − 1 +
∑
r∈J

(νr − δ`,r − hr) (mod 2).

Therefore the total contribution to χλ
∗
(s) of the rim hook tableaux T with the last rim

hook µ∗ is

(−1)λ
1−1

∑
h meets (2.14)

∏
r∈J

(−1)νr−δ`,r−hr
(
νr − δ`,r
hr

)

= (−1)λ
1−1[ξλ1−µ1 ]

∏
r∈J

∑
hr

(−1)νr−δ`,r−hr(ξr)hr
(
ν` − δ`,r
hr

)
= (−1)λ

1−1[ξλ1−µ1 ]
∏
r∈J

(ξr − 1)νr−δ`,r .
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To get χλ
∗
(s) we need to sum this expression for all 1 6 µ1 6 min{`, λ1},

i.e. for 1 6 µ1 6 `, because λ1 > `. Since λ1 − µ1 ∈ [λ1 − `, λ1 − 1],

χλ
∗
(s) = (−1)λ

1−1
λ1−1∑
t=λ1−`

[ξt]
∏
r∈J

(ξr − 1)νr−δ`,r

= (−1)λ
1−1 [ξλ1−1]

(
`−1∑
τ=0

ξτ

)∏
r∈J

(ξr − 1)νr−δ`,r

= (−1)λ
1−1 [ξλ1−1]

ξ` − 1

ξ − 1

∏
r∈J

(ξr − 1)νr−δ`,r

= (−1)λ
1−1 [ξλ1−1] (ξ − 1)−1

∏
r∈J

(ξr − 1)νr

= (−1)λ
1+ν [ξλ1 ]

ξ

1− ξ
∏
r∈J

(1− ξr)νr .

(2.15)

Observe that, for λ1 6 `, we have r > λ1− 1 for all r ∈ J ; so the bottom RHS in (2.15) is

(−1)λ
1+ν [ξλ1−1] (1− ξ)−1

∏
r∈J

(1− ξr)νr

=(−1)λ
1+ν [ξλ1−1] (1− ξ)−1 = (−1)λ

1+ν ,

which is the value of χλ
∗
(s) for λ1 < `, see (2.13). Therefore, the bottom line expression

in (2.15) for χλ
∗
(s) holds for all λ1.

The seemingly unwieldy formula (2.12) for Pγ(s) together with (2.15) instantly lead
to a promising expression for the marginal distribution of Vn, the number of cycles of γ.

Theorem 1. For N = 2n, ν ∈ [1, N ],

P(Vn = ν) = [xNyν ]
N∑

λ1=1

(−1)λ
1

F (N, λ1) [ξλ1 ]

[
ξ

1− ξ

(
1− x
1− xξ

)y]
, (2.16)

or equivalently

E [yVn ] =
N∑

λ1=1

(−1)λ
1

F (N, λ1) [ξλ1xN ]

[
ξ

1− ξ

(
1− x
1− xξ

)y]
. (2.17)

Proof. By (2.12),

P(Vn = ν) =
1

N !

∑
λ1

F (N, λ1)
∑

s : ν(s)=ν

χλ
∗
(s),

and by (2.15) and Cauchy formula

|C~ν | = N !
∏
r

1

rνrνr!
,
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we have ∑
s:ν(s)=~ν

χλ
∗
(s) = (−1)λ

1

N ! [ξλ1 ]
ξ

1− ξ
∑

∑
r νr=ν,∑
r rνr=N

∏
r>1

(
− (1− ξr)

r

)νr/
νr!

= (−1)λ
1

N ! [ξλ1 ]
ξ

1− ξ
[xNyν ]

∏
r>1

[∑
νr>0

(
− yxr(1− ξr)

r

)νr/
νr!

]

= (−1)λ
1

N ! [ξλ1 ]
ξ

1− ξ
[xNyν ] exp

(
−
∑
r>1

yxr(1− ξr)
r

)

= (−1)λ
1

N ! [ξλ1 ]
ξ

1− ξ
[xNyν ] exp

(
−y log

1

1− x
+ y log

1

1− xξ

)
= (−1)λ

1

N ! [ξλ1 ]
ξ

1− ξ
[xNyν ]

(
1− x
1− xξ

)y
.

The proof is complete.

Note. The reader may wish to compare (2.17) with a formula obtained by Stanley [17]
for the univariate generating function of the number of cycles in the product of a fixed cy-
cle 1→ 2→ · · · → n→ 1 and a permutation ranging over a general conjugacy class of Sn.

Let us use (2.17) to get an explicit formula for P(Vn = ν). To begin, from (2.11) it
follows that, both for λ1 = 2m, (0 < m 6 n) and λ1 = 2m+ 1, (0 6 m < n− 1),

(−1)λ
1

F (N, λ1) = (−1)n−m+1

(
n−1
m−1

)(
2n−1
2m−1

) = (−1)n−m+1Q(n,m),

Q(n,m) :=
(2m− 1)!!

(
2(n−m)− 1

)
!!

(2n− 1)!!
,

(2.18)

with (−1)!! := 1. Next we evaluate A(n, ν, λ1), the coefficient of xNyνξλ1 in the expansion

of ξ
1−ξ

(
1−x
1−xξ

)y
. It is well known, Comtet [3] (Section 5.5), that

1

ν!

(
log

1

1− η

)ν
=
∑
`>ν

η`
s(`, ν)

`!
, (2.19)

where s(`, ν) is the (un-signed) Stirling number of permutations of [`] with ν cycles. So,
setting

1− x
1− xξ

=
1

1− η
⇐⇒ η =

x(ξ − 1)

1− x
,

we have

[yν ]

(
1− x
1− xξ

)y
=

1

ν!

(
log

1

1− η

)ν
=
∑
`>ν

s(`, ν)

`!

(
x(ξ − 1)

1− x

)`
.
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Next, for ` 6 2n,

[x2n]

(
x(ξ − 1)

1− x

)`
= [x2n−`]

(
ξ − 1

1− x

)`
= (ξ − 1)`

(
−`

2n− `

)
(−1)2n−`,

and finally

[ξλ1 ]
ξ

1− ξ
(ξ − 1)` = −[ξλ1−1](ξ − 1)`−1 = (−1)`−λ1+1

(
`− 1

λ1 − 1

)
.

Collecting the pieces we arrive at

A(n, ν, λ1) = (−1)λ1−1
∑
`>ν

s(`, ν)

`!

(
−`

2n− `

)(
`− 1

λ1 − 1

)
= (−1)λ1−1

(
2n− 1

2n− λ1

)∑
`>ν

(−1)`
s(`, ν)

`!

(
2n− λ1
2n− `

)
.

(2.20)

Let Pe(Vn = ν) and Po(Vn = ν) denote, respectively, the contribution of even λ1 and odd
λ1 to the RHS of (2.16). To compute Pe(Vn = ν) and Po(Vn = ν) we will need two simple
identities

a∑
j=0

(−1)j
(
a

j

)(
2j

b

)
= (−1)a

(
a

b− a

)
22a−b,

a∑
j=0

(−1)j
(
a

j

)(
2j + 1

b

)
= (−1)a

[(
a

b− a

)
22a−b +

(
a

b− a− 1

)
22a+1−b

]
,

directly implied by the respective identities∑
b>0

xb
a∑
j=0

(−1)j
(
a

j

)(
2j

b

)
= [1− (1 + x)2]a = (−1)axa(2 + x)a,

∑
b>0

xb
a∑
j=0

(−1)j
(
a

j

)(
2j + 1

b

)
= (−1)a

(
xa + xa+1

)
(2 + x)a.

(see and compare Gould [8] or www.math.wvu.edu/gould/, Vol.4.PDF, (1.62)). By (2.20),
and (2.18),

Pe(Vn = ν) =
n∑

m=1

(−1)n−mQ(n,m)

(
2n− 1

2(n−m)

)
×
∑
`>ν

(−1)`
s(`, ν)

`!

(
2(n−m)

2n− `

)

=
∑
`>ν

(−1)`
s(`, ν)

`!

n∑
j=0

(−1)j
(
n− 1

j

)(
2j

2n− `

)
=
∑
`>ν

(−1)`+n−12`−2
s(`, ν)

`!

(
n− 1

`− 2

)
.

(2.21)
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Similarly

Po(Vn = ν) =
∑
`>ν

(−1)`
s(`, ν)

`!

n−1∑
j=0

(−1)j
(
n− 1

j

)(
2j + 1

2n− `

)
=
∑
`>ν

(−1)`+n−1
s(`, ν)

`!

[
2`−2

(
n− 1

`− 2

)
+ 2`−1

(
n− 1

`− 1

)]
.

(2.22)

Combining (2.21) and (2.22) we have

P(Vn = ν) =
∑
`>ν

(−1)`+n−12`−1
s(`, ν)

`!

[(
n− 1

`− 2

)
+

(
n− 1

`− 1

)]
=
∑
`>ν

(−1)`+n−12`−1
s(`, ν)

`!

(
n

`− 1

)
.

(2.23)

Therefore

P(Vn = ν) =
1

2

∑
`>ν

2`
s(`, ν)

`!
[xn+1−`](1 + x)−`

=
1

2
[xn+1]

∑
`>ν

s(`, ν)

`!

(
2x

1 + x

)`
=

1

2
[xn+1]

1

ν!

(
log

1 + x

1− x

)ν
,

by (2.19), as 2x
1+x

= 1− 1−x
1+x

. Consequently

E[yVn ] =
1

2
[xn+1]

∑
ν>1

1

ν!

(
log

1 + x

1− x

)ν
=

1

2
[xn+1]

[(
1 + x

1− x

)y
− 1

]
,

whence, setting V0 = 1, we get the Harer-Zagier formula (1.2):∑
n>0

xn+1E[yVn ] =
1

2

[(
1 + x

1− x

)y
− 1

]
↔ 1 + 2

∑
n>0

xn+1E[yVn ] =

(
1 + x

1− x

)y
.
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