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Abstract

We present a class of languages that have an interesting property: For each
language L in the class, both the classic greedy algorithm and the classic Lyndon
word (or necklace) concatenation algorithm provide the lexicographically smallest
universal cycle for L. The languages consist of length n strings over {1, 2, . . . , k}
that are closed under rotation with their subset of necklaces also being closed under
replacing any suffix of length i by i copies of k. Examples include all strings (in
which case universal cycles are commonly known as de Bruijn sequences), strings
that sum to at least s, strings with at most d cyclic descents for a fixed d > 0,
strings with at most d cyclic decrements for a fixed d > 0, and strings avoiding a
given period. Our class is also closed under both union and intersection, and our
results generalize results of several previous papers.

1 Introduction

1.1 Constructing de Bruijn Sequences

Let T(n, k) be the set of k-ary strings of length n. For example,

T(2, 3) = {11, 12, 13, 21, 22, 23, 31, 32, 33}.

A de Bruijn sequence for T(n, k) is a sequence of length kn that contains each string in
T(n, k) exactly once as a substring when the sequence is viewed circularly.
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Martin showed that a de Bruijn sequence for T(n, k) can be constructed by a simple
greedy algorithm in 1934 [23]. The algorithm starts with sequence kn−1 (where exponen-
tiation denotes repetition) and then repeatedly applies the following rule:

Append the smallest symbol in {1, 2, . . . , k} so that substrings of length n in
the resulting linear sequence are distinct.

As an example, let us illustrate one step of the algorithm when n = 2 and k = 3. After
applying the rule a handful of times, the partial sequence is 31121 . At this point, the
algorithm does not append 1 since 11 already appears in the sequence. Similarly, 2 is not
appended since 12 already appears. However, 3 can be appended and so the algorithm
continues with the sequence 311213 . Martin proved that the algorithm always terminates
with a sequence that has length kn + n− 1 and suffix kn, and that a de Bruijn sequence
is obtained by removing the initial kn−1 prefix. In particular, when n = 2 and k = 3,
the algorithm terminates with 3112132233 and so 112132233 is a de Bruijn sequence for
T(2, 3). We mention that the choice of the initial sequence is critical to the success of
Martin’s algorithm. For example, the greedy algorithm for n = 2 and k = 3 will get stuck
after generating 112131 if the initial sequence is the empty string ε or the single symbol
1. Knuth refers to Martin’s sequence as the grand-daddy de Bruijn sequence [19].

The general term for these sequences is named after de Bruijn who showed that there
are 22n−1−n such sequences for T(n, 2) in 1946 [6], and (k!)k

n−1
k−n for T(n, k) in joint

work with Aardenne-Ehrenfest in 1951 [35]. Later detective work by Stanley revealed
that Flye Sainte-Marie proved the same formula for k = 2 in 1894 [7, 29].

Martin’s greedy algorithm is easy to implement, but it is impractical when n is large
since it requires Ω(kn)-space. Fredricksen and Kessler [10, 11, 12] (for k = 2) and later
Fredricksen and Maiorana [13] (for k > 2) provided a beautiful alternative that generates
each character in O(1)-amortized time and uses only O(n) space. Their construction is
known as the FKM algorithm and can be summarized as follows:

Concatenate the aperiodic prefixes of the necklaces in T(n, k) in lexicographic
order.

A necklace is the lexicographically smallest string in an equivalence class of strings under
rotation, and its aperiodic prefix is the shortest prefix that can be repeated to create the
string. For example, the necklaces in T(2, 3) are 11, 12, 13, 23, 33 and thus the FKM
algorithm creates the following sequence

1 · 12 · 13 · 2 · 23 · 3 = 112132233,

where · denotes concatenation. Interestingly, the FKM algorithm always generates the
same sequence as Martin’s algorithm and this sequence is the lexicographically smallest
de Bruijn cycle for T(n, k) (see Knuth’s discussion in [19]). The efficiency of the FKM
algorithm was fully analyzed by Ruskey, Savage, and Wang [25].

We note that the FKM algorithm can also be described in a slightly different, but
equivalent manner. The period of a string is the length of its aperiodic prefix. A string
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is aperiodic if its period equals its length. An aperiodic necklace is a Lyndon word. The
FKM algorithm can be defined as the lexicographic concatenation of the k-ary Lyndon
words whose length divides n. We will use the necklace definition because it is better
suited for generalizations, as pointed out by Ruskey, Sawada, Williams [27].

1.2 Constructing Universal Cycles

Given a set of strings S ⊆ T(n, k), a universal cycle for S is a sequence of length |S|
that contains each string in S exactly once as a substring when the sequence is viewed
circularly. For example, the subset S1 ⊆ T(4, 3) of strings that have sum at least 10 is

S1 = {1333,2233,2323,2332,2333,3133,3223,3232,3233,3313,3322,3323,3331,3332,3333}

and the lexicographically smallest universal cycle for S1 is

133322332323333.

This natural generalization of de Bruijn sequences for T(n, k) to subsets of T(n, k) was
introduced by Chung, Diaconis, and Graham in 1992 [5]. Since that time universal cycles
have been proven to exist for subsets of T(n, k) that represent a variety of combinatorial
objects including permutations, partitions, subsets, multisets, labeled graphs, various
functions, and more [3, 4, 5, 15, 16, 17, 18, 19, 21, 28, 26, 32].

Given a specific set of strings S ⊆ T(n, k), the problem of finding an explicit construc-
tion (and generation algorithm) for a universal cycle for S is generally a more difficult
problem than proving that one exists. The approach considered in this article is to gener-
alize the greedy algorithm and the FKM algorithm. Previous results using this approach
include the following:

• Moreno proved that a generalized FKM algorithm creates universal cycles for the
set of rotations of the lexicographically largest i necklaces [24].

• Au proved that generalized FKM and greedy algorithm create universal cycles for
the aperiodic strings in T(n, k) [2].

• The authors proved that generalized FKM and greedy algorithm create universal
cycles for the binary strings with sum at least s [31].

We will see that all three of these results can be explained using the same generalization
of the FKM algorithm and the same generalization of the greedy algorithm. To illustrate
how these unified generalizations work, let us reconsider the strings S1 in T(4, 3) with
sum at most 10. Let the necklaces of a set S be denoted by N(S). Then

N(S1) = {1333, 2233, 2323, 2333, 3333},

and the concatenation of their aperiodic prefixes in lexicographic order gives

1333 · 2233 · 23 · 2333 · 3.

This is identical to the lexicographically smallest universal cycle for S1 that we saw earlier.
More broadly, the generalized version of the FKM algorithm is stated below:
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Concatenate the aperiodic prefixes of the necklaces in S in lexicographic order.

Notice that the previous FKM results use S ⊆ T(n, k) that are closed under rotation,
meaning αβ ∈ S implies βα ∈ S. To understand this fact, let Rot(S) denote closure of S
under rotation. Note that the number of distinct rotations of an individual string is equal
to its period. For example, Rot({2233}) = {2233, 2332, 3322, 3223} and Rot({2323}) =
{2323, 3232}. In other words, the length of the aperiodic prefix of α ∈ T(n, k) is equal
to |Rot(α)|. Thus, the FKM algorithm creates sequences of the correct length for each S
that is closed under rotation.

Generalizing the greedy algorithm is a bit more subtle due to the choice of the initial
sequence. In this article we will be focused on S ⊆ T(n, k) that are guaranteed to have
kn ∈ S (or x kn−1 ∈ S for some x < k). Thus, kn−1 remains a reasonable choice for the
initial sequence. Martin’s algorithm is then generalized as follows

Append the smallest symbol in {1, 2, . . . , k} so that substrings of length n in
the resulting linear sequence are distinct and in S.

If we apply this greedy algorithm to S1, then it terminates with sequence

333133322332323333

and removing initial 333 results in the same universal cycle as generated by the generalized
FMK approach.

Universal cycles have also been constructed using alternate approaches. For example,
Ruskey and Williams [28] and later Holroyd, Ruskey, and Williams [15] provided an effi-
cient algorithm to construct universal cycles for T(n−1, n). The authors also constructed
universal cycles for binary strings of length n whose sum falls within a given range [30]
which extends [27] and Stevens and Williams [34].

1.3 New Results and Their Significance

We prove that the generalized FKM and greedy algorithms generate a wide variety of
natural universal cycles. A list of examples appear in Sections 3.3.1–3.3.11 and it includes
the aforementioned results by Moreno [24], Au [2], and the authors [31]. Furthermore,
each of our examples follows from a single general result.

Theorem 1. The greedy and FKM algorithms create the lexicographically smallest uni-
versal cycle for any S ⊆ T(n, k) that satisfies the following closure properties:

(C1) The set of strings S is closed under rotation.

(C2) Its subset of necklaces is closed under replacing any suffix of length i by ki.

We note that the first closure property is not sufficient for guaranteeing the existence
of universal cycles. For example, {11, 22} is closed under rotation and has no universal
cycle. Our second closure property is also insufficient for proving the existence. For
example, {11, 12, 22} ⊆ T(2, 2) does not have a universal cycle.
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To underscore the significance of our results, we note that the greedy algorithm, the
FKM algorithm, and the lexicographically smallest universal cycle do not always operate
in such harmony. For example, the subset S2 ⊂ T(3, 3) that does not have 13 as a cyclic
substring is

S2 = {111,112,121,122,123,211,212,221,222,223,231,232,233,312,322,323,332,333}.

In other words, S2 does not have strings in the form 13x, x13, or 3x1. Clearly S2 is closed
under rotation, so it satisfies our first condition. The necklaces in S2 are

N(S2) = {111, 112, 122, 123, 222, 223, 233, 333}.

Notice that N(S2) does not satisfy our second closure property since 111 is included but
113 is not. Thus, our results do not guarantee that the FKM algorithm will create a
universal cycle for S2. In fact, the FKM algorithm creates

1 · 112 · 122 · 123 · 2 · 223 · 233 · 3.

This is not a universal cycle for S2 since 211 and 312 do not appear, while 212 appears
twice and 311 appears when it should not. On the other hand, the greedy algorithm
applied to S2 creates

221112122231232233,

which is a universal cycle for S2. However, it is not the lexicographically smallest universal
cycle for S2 (when viewed linearly).

The previous example showed that the harmony produced the greedy algorithm, the
FKM algorithm, and the lexicographically smallest universal cycle does not hold for the
strings in T(3, 3) that avoid 13 as a cyclic substring. Notice that in this case the avoided
substring 13 contains the symbol k = 3. We will see in Section 3.3.6 that the three
interrelated results do hold when the avoided substring does not contain the symbol k.
This illustrates one way in which our result is ‘tight’.

One motivation for constructing universal cycles is so that they can be used in appli-
cations. Without an explicit construction it can be computationally infeasible to create
these sequences when n is large. Sample applications of de Bruijn sequences include dy-
namic connections in overlay networks [9], genomics [1], software calculation of the ruler
function in computer words [19], and indexing a 1 in a computer word [20]. Our two-
pronged results have an additional benefit: Those in need of one of our universal cycles
can start by implementing the simple greedy algorithm; if this proves to be infeasible
due to memory constraints, then they can implement the FKM algorithm. De Bruijn
sequences are also used as education tools (see Graham, Knuth, and Patashnik’s Con-
crete Mathematics [14]) and are involved in many interesting academic papers (for recent
examples, see Levine [22] and Ehrenborg, Kitaev, and Steingŕımmson [8]).

To conclude our introduction we mention that our second closure property can be
slightly relaxed to allow kn /∈ S. For example, the constructions for S1 still work when
kn is omitted from S1 and the final k is omitted from the universal cycles generated. We
use this minor generalization when considering periodic and aperiodic strings.
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Corollary 1. Theorem 1 holds if S ∪ {kn} ⊆ T(n, k) satisfies (C1) and (C2).

The main results of this paper are also found in Wong’s PhD thesis [36].

1.4 Outline

The remainder of this paper is organized as follows. Section 2 investigates our second
closure property under the name k-suffix languages. Section 3 proves that the universal
cycles discussed in Theorem 1 exist, and gives a list of specific universal cycles that are
constructed by it. Section 4 proves our result on the FKM algorithm. Section 5 proves our
result on the greedy algorithm and proves that our universal cycles are lexicographically
smallest. Section 6 concludes the paper with open problems and remarks.

2 k-suffix languages and the k-suffix poset

In this section we investigate our second closure property from Theorem 1 in more detail.
First we define the k-suffix property and prove that set of all necklaces satisfies it. Then we
formulate k-suffix languages as partially ordered sets, which provides helpful visualizations
and closure properties at the end of the section.

Definition 1. A k-suffix language S is a subset of T(n, k) that satisfies the following
closure property:

If a1a2 · · · an ∈ S then a1a2 · · · an−iki ∈ S for all 1 6 i 6 n.

As an example, let N(n, k) denote the set of necklaces in T(n, k). It is straightforward
to observe that necklaces are a k-suffix language.

Lemma 1. The set of necklaces N(n, k) is a k-suffix language.

Proof. Let a1a2 · · · an = a1a2 · · · an−jkj ∈ N(n, k) where j > 0. By the definition of
a necklace it is easy to see that a1a2 · · · an−j−1kkj ∈ N(n, k). Thus it follows that
a1a2 · · · an−iki ∈ N(n, k) for all 1 6 i 6 n.

Note that this definition of a k-suffix language implies closure under replacing any
suffix of length i by ki. Equivalently, k-suffix languages can be defined as closed under
replacing the rightmost value that is less than k by k. We next formulate this idea using
a partially ordered set over T(n, k). Consider the following definition,

τk(α) =

{
kn if α = kn;

βkkj if α = βxkj for some x < k.

In other words, kn is terminal, and otherwise τ(α) is obtained by replacing the rightmost
value in α that is less than k with k. When the context is clear we use τ instead of τk.
For example, when k = 3,

τ(1122) = 1123 and τ(2313) = 2333 and τ(3333) = 3333.
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Figure 1: The Hasse diagram of Poset(4, 2) and Poset(2, 3) respectively. In both cases
the necklaces form the ideal in bold.

This provides our cover relation, and our partial order ≺k is the non-reflexive transitive
closure of τk. Again we use ≺ instead of ≺k when the context allows. For example, when
k = 3,

1123 ≺ 1122 and 1333 ≺ 1122 whereas 2313 ⊀ 2113 and 2113 ⊀ 2113.

Our partially ordered set is formally defined below.

Definition 2. The k-suffix poset Poset(n, k) has ground set T(n, k) and partial order
≺k.

Figure 1 illustrates the Hasse diagram of Poset(4, 2) and Poset(2, 3), in which each
cover relation β = τ(α) is shown as an edge from α down to β. It is easy to see that
Poset(n, k) is a tree poset with unique minimum element kn.

An ideal (also known as a lower set) of Poset(n, k) is a subset I ⊆ Poset(n, k) such
that x ∈ I and y ≺ x implies y ∈ I. Figure 1 illustrates an ideal of necklaces in both of
its posets. The following theorem proves that every k-suffix language can be visualized in
this way.

Theorem 2. A set S ⊆ T(n, k) is a k-suffix language if and only if S is an ideal of
Poset(n, k).

Proof. Suppose S is a k-suffix language. If s ∈ S and s 6= kn, then s = αxkj for some
x < k. By the definition of k-suffix language, αkkj ∈ S. Therefore, τk(s) ∈ S, and thus
S is an ideal of Poset(n, k). The other direction is similar.

Ideals of a given poset are closed under union and intersection, so Theorem 2 imme-
diately gives the following corollary.

Corollary 2. If SA,SB ⊆ T(n, k) are k-suffix languages, then SA ∪ SB and SA ∩ SB are
also k-suffix languages.
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3 Existence and Examples

In this section we ground our construction results with a simple existence proof. We also
give a list of interesting universal cycles constructed by our results.

3.1 Class of Strings

The class of strings covered by Theorem 1 is defined below. Recall that N(S) denotes the
necklaces in S ⊆ T(n, k). That is, N(S) = S ∩N(n, k).

Definition 3. Let C(n, k) be the set that contains precisely all S ⊆ T(n, k) that are closed
under rotation, and whose necklaces N(S) form a k-suffix language.

To prove that S ∈ C(n, k) we need to prove that S is closed under rotation and its
subset of necklaces N(S) is a k-suffix language. Sometimes it is more convenient to prove
that the entire set S is a k-suffix language rather than its necklace subset N(S). The
following lemma proves that this approach is also sufficient.

Lemma 2. Let S ⊆ T(n, k). If S is closed under rotation and S is a k-suffix language,
then S ∈ C(n, k).

Proof. Recall that N(n, k) is a k-suffix language by Lemma 1. Therefore, if S is a k-suffix
language, then so is N(S) = S ∩N(n, k). Therefore, if S is also closed under rotation,
then S is a k-suffix language by Definition 3.

We note that Lemma 2 does not cover all sets in C(n, k). For example,

S3 = {1111,1112,1121,1211,2111,1122,1221,2211,2112,1222,2122,2212,2221,2222},

is in C(4, 2). However, since 1211 ∈ S3 and 1212 /∈ S3, the set S3 is not a k-suffix language
by itself.

3.2 Existence

Stevens and Williams [33] characterized the existence of universal cycles for subsets of
T(n, k) that are closed under rotation. We now use one of their results to prove that
every set in C(n, k) has a universal cycle. First we recount a definition from [33]. A set
S ⊆ T(n, k) is increasable if the following is true:

If α ∈ S and α is not equal to kn, then there exists a symbol in α that can be
increased and the resulting string is also in S.

More precisely, S is increasable if a1a2 · · · an ∈ S and a1a2 · · · an 6= kn, then there exist i
and b > ai such that a1 a2 · · · ai−1 b ai+1 ai+2 · · · an ∈ S.

Theorem 3 ([33]). If S ⊆ T(n, k) is increasable and closed under rotation, then S has a
universal cycle.
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Corollary 3. Every S ∈ C(n, k) has a universal cycle.

Proof. By Definition 3, each S ∈ C(n, k) is closed under rotation. Consider an arbitrary
α ∈ S with α 6= kn, and let β ∈ S be its smallest rotation in lexicographic order. By
Definition 3, there is at least one symbol in β that is less than k that can be increased
to k so that the resulting string is also in S. Since S is closed under rotation, the
same statement is true for α. Thus, S is increasable. Hence, S has a universal cycle by
Theorem 3.

3.3 Examples

In Sections 3.3.1–3.3.11 we describe interesting members of C(n, k), including the sets of
strings considered by Moreno [24], Au [2], and the authors [31]. Figure 2 illustrates the
lexicographically smallest universal cycles for each example over T(4, 4). When consid-
ering periodic and aperiodic strings we prove that S ∪ {kn} ∈ C(n, k); our constructive
results from Theorem 1 will still apply in these cases by Corollary 1.

3.3.1 Minimum Sum

Let S ⊆ T(n, k) contain the strings with sum at least s. This set is closed under rotation
since rotation does not change a string’s sum. Also, S is a k-suffix language by Theorem
2 since replacing any symbol x < k with k increases the sum of the string. Therefore,
S ∈ C(n, k) by Lemma 2. The authors previously considered sets of this type when n = 2
[31].

3.3.2 At most d > 0 cyclic descents

A descent in a string a1a2 · · · an is a pair of consecutive elements ai, ai+1 such that
ai > ai+1. A cyclic descent is a descent or the pair an, a1 where an > a1. Let S ⊆ T(n, k)
contain the strings with at most d cyclic descents for some fixed d > 0. This set is clearly
closed under rotation. Also, N(S) is a k-suffix language since replacing any suffix of length
i by ki will increase the number of descents only in the special case where a necklace is
of the form xn for x < k. For these strings the number of descents increases from 0 to 1,
which does not violate the upperbound since d > 0. Therefore, S ∈ C(n, k).

3.3.3 At most d > 0 cyclic decrements

A decrement in a string a1a2 · · · an is a pair of consecutive elements ai, ai+1 such that
ai = ai+1 +1. A cyclic decrement is a decrement or the pair an, a1 where an = a1 +1. Let
S ⊆ T(n, k) contain the strings with at most d cyclic decrements for some fixed d > 0.
This set is clearly closed under rotation. Also, N(S) is a k-suffix language since replacing
any suffix of length i by ki will only increase the number of decrements in the special case
of the necklace (k−1)n. For this string the number of decrements increases from 0 to 1,
which does not violate the upperbound since d > 0. Therefore, S ∈ C(n, k).
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Figure 2: The lexicographically smallest universal cycles for a variety of 4-ary strings of
length four. Each set S is in C(4, 4) (or S∪{4444} ∈ C(4, 4)) and hence can be generated
by the generalized FKM and greedy algorithms. The outermost ring is a universal cycle for
all strings T(n, k). The remaining rings from outer-to-inner are for subsets that (i) have
sum at least 5, 6, . . . , 15; (ii) have at most 2, 1 cyclic descents; (iii) have at most 2, 1 cyclic
decrements; (iv) have frequency for symbol k = 4 at least 1, 2, 3; (v) have frequency for
symbol 1 at most 3, 2, 1; (vi) do not have 11, 22, 33 as a cyclic substring; (vii) are rotations
of the largest 50, 30, 10 necklaces; (viii) are not rotations of the periodic necklace 1212,
3434; (ix) are in the intersection of the previous two universal cycles (i.e. not rotations of
1212 or 3434); (x) are aperiodic; (xi) have period in {1, 4}, {1, 2}. Each universal cycle
starts from 12 o’clock and proceeds in clockwise order, with a gap between the examples
of each type. For example, the fourth ring from the outside gives the universal cycle
1114 1123 1124 · · · 3444 4 which contains all strings in T(4, 4) with sum at least 7.
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3.3.4 Frequency of k

Let S ⊆ T(n, k) contain the strings with at least `k copies of k. This set is closed under
rotation since rotation does not change a string’s symbol frequencies. Also, S is a k-suffix
language by Theorem 2 since replacing any symbol x < k with k increases the frequency
of k in the string. Therefore, S ∈ C(n, k) by Lemma 2.

3.3.5 Frequency of i < k

Let S ⊆ T(n, k) contain the strings with at most ui copies of i < k. This set is closed
under rotation since rotation does not change a string’s symbol frequencies. Also, S is a
k-suffix language by Theorem 2 since replacing any symbol x < k with k does not increase
the frequency of i in the string. Therefore, S ∈ C(n, k) by Lemma 2.

3.3.6 Avoiding a Substring

Let S ⊆ T(n, k) contain the strings that do not contain β ∈ T(m, k−1), for some m > 1,
as a cyclic substring. This set is closed under rotation since rotation does not change a
string’s cyclic substrings. Also, S is a k-suffix language by Theorem 2 since replacing any
symbol x < k with k cannot create a new cyclic substring in T(m, k − 1). Therefore,
S ∈ C(n, k) by Lemma 2.

3.3.7 Rotations of Large Necklaces

Let S ⊆ T(n, k) contain the strings that are rotations of the largest i necklaces in N(n, k)
in lexicographic order. This set is closed under rotation by its definition. If α ∈ N(S),
then replacing its rightmost symbol x < k with k will create another necklace by Lemma
1, and this necklace is larger in lexicographic order. Therefore, N(S) is a k-suffix language.
Hence, S ∈ C(n, k). Moreno previously considered sets of this type [24].

3.3.8 Avoiding the Rotations of a Periodic Necklace

Let S ⊆ T(n, k) contain the strings that are not rotations of a fixed periodic necklace
β ∈ N(n, k). That is, S = T(n, k) − Rot({β}). This set is closed under rotation by its
definition. If β = kn, then S∪{kn} = T(n, k) ∈ C(n, k). Otherwise, consider β 6= kn. Let
αxkj ∈ N(S) with x < k be an arbitrary necklace in S that is not equal to β (where j = 0
is possible). We know that αkkj is a necklace by Lemma 1. Suppose that αkkj = β. Since
β is periodic and β 6= kn, we can write β as β = (γkj+1)t where γ 6= ε and t > 1. Observe
that αxkj = (γkj+1)t−1γxkj is not a necklace since x < k, which contradicts αxkj being
a necklace. Thus αkkj 6= β and N(S) is a k-suffix language. Therefore S ∈ C(n, k).

3.3.9 Unions and Intersections

If SA and SB are closed under rotation, then both SA ∪SB and SA ∩SB are closed under
rotation. Thus, Corollary 2 gives the following.

Lemma 3. If SA,SB ∈ C(n, k), then SA ∪ SB ∈ C(n, k) and SA ∩ SB ∈ C(n, k).
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Lemma 3 allows us to combine the previous results in interesting ways, as illustrated
in Sections 3.3.10 and 3.3.11.

3.3.10 Aperiodic Strings

Let S ⊆ T(n, k) contain the aperiodic strings. Let the periodic necklaces in N(n, k) be
β1, β2, . . . , βt. Notice that

S = T(n, k)− Rot({β1, β2, . . . , βt})
=
(
T(n, k)− Rot({β1})

)
∩
(
T(n, k)− Rot({β2})

)
∩ · · · ∩

(
T(n, k)− Rot({βt})

)
.

Therefore, S ∪ {kn} ∈ C(n, k) by Section 3.3.8 and Lemma 3. Au previously considered
sets of this type [2].

3.3.11 Strings with Given Periods

Let S ⊆ T(n, k) be the strings with period in P ⊆ {1, 2, . . . , n} with n ∈ P . We can
prove that S ∪ {kn} ∈ C(n, k) by using the same approach as in Section 3.3.10. More
specifically, replace β1, β2, . . . , βt by the necklaces whose period is not in P . This provides
a nice generalization of Au’s result [2].

4 The generalized FKM construction

In this section, we prove the FKM portion of Theorem 1 and Corollary 1.
Let S ∈ C(n, k) where |S| > 1 and let α1, α2, . . . , αm be the lexicographic ordering of

necklaces in N(S). Let ap(α) be the aperiodic prefix of α. Let FKM(S) be the sequence
created by the generalized FKM algorithm applied to S. That is,

FKM(S) = ap(α1) · ap(α2) · · · · · ap(αm)

where · denotes concatenation. We first prove the following results:

1. m > 1 and kn ∈ N(S),

2. there are no consecutive periodic necklaces in the lexicographic ordering of N(S),

3. if αi = a1a2 · · · an−j−1 xkj for some x < k and 1 6 i < m, then αi+1 has prefix
a1a2 · · · an−j−1,

4. α1 is a prefix of FKM(S),

5. xkn is a suffix of FKM(S) where x is the maximum value less than k such that
xkn−1 ∈ N(S), and

6. if αi = a1a2 · · · an = a1a2 · · · an−j−1 xkj for some x < k and 1 6 i < m, then
FKM(S) contains the substring a1a2 · · · an · a1a2 · · · a|ap(α)|−j−1.
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Lemma 4. If S ∈ C(n, k) and |S| > 1, then |N(S)| > 1 and kn ∈ N(S).

Proof. Since |S| > 1, there exists a string α in S such that α 6= kn. Since S is closed under
rotation, it also contains a necklace β such that β 6= kn and β ∈ Rot(α). Also, since N(S)
is a k-suffix language, kn must also be in N(S). Thus N(S) > 1 and kn ∈ N(S).

Lemma 5. If S ∈ C(n, k) and |S| > 1, then there are no consecutive periodic necklaces
in the lexicographic order of N(S).

Proof. Let α and β be consecutive necklaces in the lexicographic order of N(S) with
α < β. Since α < β we have α 6= kn, and so α contains a rightmost symbol x that is less
that k. That is, α = a1a2 · · · an−j−1xkj where x < k and j > 0.

Let y be the smallest value such that a1a2 · · · an−j−1ykj ∈ N(S) and x < y 6
k; the value y exists because N(S) is a k-suffix language. Notice that β must have
a1a2 · · · an−j−1y as a prefix.

Now suppose that α is periodic. Therefore, α = (γxkj)t for some γ and t > 1.
Therefore, β has (γxkj)t−1γy as a prefix. However, (γxkj)t−1γy is not the prefix of any
periodic necklace of length n. Therefore, β is not periodic.

Lemma 6. Suppose S ∈ C(n, k) and |S| > 1. Let α and β denote consecutive necklaces
in the lexicographical ordering of N(S) such that α < β. If α = a1a2 · · · an−j−1 xkj for
some x < k, then β has prefix a1a2 · · · an−j−1.

Proof. Since α is a necklace, clearly a1a2 · · · an−j−1 ykj is a necklace for all x < y 6 k.
There exists some smallest value of y such that a1a2 · · · an−j−1 ykj ∈ N(S) since N(S) is a
k-suffix langauge. Since β is lexicographically smaller or equal to a1a2 · · · an−j−1 ykj but
lexicographically larger than α, clearly β has prefix a1a2 · · · an−j−1.

Lemma 7. If S ∈ C(n, k) and |S| > 1, then the lexicographically smallest necklace in
N(S) is a prefix of FKM(S).

Proof. Let α = a1a2 · · · an−j−1 xkj be the lexicographically smallest necklace in N(S) for
some x < k. Such a value of x exists since α 6= kn by Lemma 4. If α is aperiodic, then
clearly FKM(S) has prefix α. Otherwise if α is periodic, then α = (ap(α))t for some
t > 1. Let β be the necklace that is after α in the lexicographic ordering of N(S). Such
a necklace exists since |N(S)| > 1 by Lemma 4. By Lemma 5, β is aperiodic. Also
by Lemma 6, β has prefix a1a2 · · · an−j−1 = (ap(α))t−1a(t−1)|ap(α)|+1a(t−1)|ap(α)|+2 · · · an−j−1.
Therefore, ap(α) · ap(β) has prefix ap(α) · (ap(α))t−1 = α.

Lemma 8. If S ∈ C(n, k) and |S| > 1, then FKM(S) has suffix xkn, where x is the
maximum value such that x < k and xkn−1 ∈ N(S).

Proof. Let α and β denote the two lexicographically largest necklace in N(S) such that
α < β. By Lemma 4, β = kn and α exists since |N(S)| > 1. There exists a maximum
value x < k such that xkn−1 ∈ N(S) since N(S) is a k-suffix language. Observe that
α = xkn−1 since there can be no necklace between it and β in the lexicographical ordering
of N(S). Therefore, FKM(S) has suffix ap(α) · ap(β) = xkn−1 · k = xkn.
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Lemma 9. Suppose S ∈ C(n, k) and |S| > 1. If α = a1a2 · · · an = a1a2 · · · an−j−1 xkj ∈
N(S) for some x < k, then FKM(S) contains the substring a1a2 · · · an ·a1a2 · · · a|ap(α)|−j−1.

Proof. Let p = |ap(α)| and let β denote the necklace that is after α in the lexicographic
ordering N(S). Clearly α 6= kn and β exists by Lemma 4. By Lemma 6 β has prefix
a1a2 · · · an−j−1. By Lemma 5 at most one of these necklaces is periodic and we proceed
in three cases.

1. If both α and β are aperiodic, then ap(α) · ap(β) = α · β is a substring of FKM(S)
which has prefix a1a2 · · · an · a1a2 · · · an−j−1 = a1a2 · · · an · a1a2 · · · ap−j−1.

2. If α is periodic and β is aperiodic, then ap(α) · ap(β) = ap(α) · β is a substring of
FKM(S) which has prefix ap(α) · a1a2 · · · an−j−1. Let α = (ap(α))t for some t > 1.
Observe that

ap(α) · a1a2 · · · an−j−1 = ap(α) · (ap(α))t−1a(t−1)p+1a(t−1)p+2 · · · an−j−1
= α · a(t−1)p+1a(t−1)p+2 · · · an−j−1
= a1a2 · · · an · a1a2 · · · ap−j−1.

3. If α is aperiodic and β is periodic, then there are two subcases. If β = kn, the
substring a1a2 · · · an · a1a2 · · · ap−j−1 is simply equal to a1a2 · · · an due to the fact
that α has suffix kn−1. The desired substring is found in the length n + 1 suffix of
FKM(S) by Lemma 8. Otherwise if β 6= kn, then let γ be the necklace that is after
β in the lexicographic ordering of N(S). Such a necklace exists since β 6= kn. Notice
that γ is aperiodic by Lemma 5. Therefore, by the arguments in the previous case,
ap(β) · ap(γ) has prefix β. Therefore, ap(α) · ap(β) · ap(γ) is a substring of FKM(S)
which has prefix α ·β. The prefix α ·β contains the prefix a1a2 · · · an ·a1a2 · · · ap−j−1.

Thus FKM(S) contains the substring a1a2 · · · an · a1a2 · · · a|ap(α)|−j−1.

We now prove the FKM portion of Theorem 1.

Theorem 4. If S ∈ C(n, k), then FKM(S) is a universal cycle for S.

Proof. Since S is closed under rotation by the definition of C(n, k) and its strings all have
length n, the definition of FKM(S) implies |FKM(S)| = |S|. Therefore, to prove FKM(S)
is a universal cycle for S, we only need to show that FKM(S) contains each string in S
as a substring when the sequence is considered circularly.

When |N(S)| = 1, S = N(S) = {kn}. In this case, FKM(S) is the single character k
which is a universal cycle for S. For the remainder of the proof we assume |N(S)| > 1.

Now consider a rotation β = aiai+1 · · · ana1a2 · · · ai−1 of an arbitrary necklace α =
a1a2 . . . an in N(S). By Lemma 8 we can assume that α 6= kn since the only rotation of
kn is found at the end of FKM(S). Therefore, without loss of generality, we suppose α
has suffix xkj for some x < k. Let p = |ap(α)|. We show that all p distinct rotations of
α exist in FKM(S). There are two cases depending on the value of i.
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Case 1: 0 < i 6 p − j − 1 By Lemma 9, a1a2 · · · an · a1a2 · · · ap−j−1 is a substring of
FKM(S). Observe that β is a substring of a1a2 · · · an · a1a2 · · · ap−j−1 when 0 < i 6
p− j − 1.

Case 2: p − j − 1 < i 6 p Observe that β = kn−ia1a2 · · · ai−1 when p− j − 1 < i 6 p.
Let γ be the lexicographically smallest necklace in N(S) such that it has prefix
a1a2 · · · ai−1. If γ is not the lexicographically smallest necklace in N(S), then the
previous necklace of γ has the suffix kn−i due to the fact that N(S) is a k-suffix
language. On the other hand, if γ is the lexicographically smallest necklace in N(S),
then the previous n−i symbols in FKM(S) are kn−i by Lemma 8 when the sequence
is considered circularly. Thus, β is a substring of FKM(S).

Therefore, FKM(S) contains each string in S as a substring and is a universal cycle for S
since |FKM(S)| = |S|.

We now extend this result to the FKM portion of Corollary 1.

Corollary 4. If S ∪ {kn} ∈ C(n, k), then FKM(S) is a universal cycle for S.

Proof. If S ∈ C(n, k), then by Theorem 4, FKM(S) is a universal cycle for S. Otherwise
if S /∈ C(n, k) but S ∪ {kn} ∈ C(n, k), then observe that FKM(S) · k = FKM(S ∪ kn). By
Theorem 4 FKM(S) ·k is a universal cycle for S∪kn. By Lemma 8, FKM(S) ·k ends with
the suffix kn. Hence, removing the last k in FKM(S) · k only removes its substring kn

when considered circularly. Thus, all other strings in S ∪ {kn} \ {kn} = S are preserved.
Therefore, FKM(S) is a universal cycle for S since FKM(S) has length |S|.

The proof of Theorem 4 explicitly states where the rotations of each necklace are found.
To specify the position of a substring in a universal cycle we introduce the following
notation. Suppose FKM(S) = u0u1 · · ·u|S|−1 is a universal cycle for S ⊆ T(n, k) and
α ∈ S. Let last(α) be the last position of the substring α in FKM(S). In other words, if
ui−n+1ui−n+2 · · ·ui = α, then last(α) = i because i is the last position of the substring α,
where 0 6 i < |S| and the other index expressions are taken modulo |S|.

Corollary 5. If S ∈ C(n, k), α ∈ N(S) has suffix xkj for some x < k, and β is a rotation
of α, then last(β) 6 last(α) + |ap(α)|−j−1.

Proof. Let α = a1a2 · · · an. By Lemma 9, the rotations of α starting from ai where
1 6 i 6 |ap(α)| − j are all found in succession starting from α itself. In particular, the
last of these rotations β has last(β) = last(α)+ |ap(α)|−j−1. The remaining rotations of
α end within the first necklace in the lexicographic ordering of N(S) with prefix a1a2 · · · ai
for some i satisfying 1 6 i 6 |ap(α)| − j − 1. None of these necklaces appear after α in
the lexicographic ordering of N(S), thus last(β) < last(α) for any such rotation of β.

This information will be crucial for the greedy algorithm in Section 5.
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5 The generalized greedy approach

In this section we prove the greedy portion of Theorem 1 and Corollary 1, and that the
generated universal cycles are all lexicographically smallest.

Let Greedy(S) denote the sequence generated by the greedy algorithm after removing
the initial kn−1. We need to prove that Greedy(S) = FKM(S) and this is the lexicograph-
ically smallest universal cycle when S ∈ C(n, k).

Lemma 10. If S ∈ C(n, k) and |S| > 1, then the lexicographically smallest necklace in
N(S) is a prefix of Greedy(S).

Proof. By contradiction. Let α = a1a2 · · · an be the lexicographically smallest necklace
in N(S). The string α is also the lexicographically smallest string in S since S is closed
under rotation. Suppose Greedy(S) starts with prefix a1a2 · · · aiz for some i < n and
z 6= ai+1. Observe that z < ai+1 by the definition of the greedy algorithm. Furthermore,
since the greedy algorithm starts with the initial seed kn−1, after i + 1 iterations of the
greedy algorithm the length n suffix of the sequence is β = kn−i−1a1a2 · · · aiz. Notice that
if β ∈ S, then its rotation a1a2 · · · aizkn−i−1 must also be in S since S is closed under
rotation. However, a1a2 · · · aizkn−i−1 is strictly less than α, a contradiction to α being
the lexicographically smallest string in S.

Theorem 5. If S ∈ C(n, k), then Greedy(S) is equivalent to FKM(S).

Proof. Let α1, α2, . . . , αm denote the lexicographic ordering of necklaces in N(S). Let
Lt = ap(α1)ap(α2)
· · · ap(αt) for 1 6 t 6 m. When m = 1, S = {kn} and the greedy algorithm terminates
with the correct sequence of length one, namely Greedy(S) = FKM(S) = k.

For m > 1, we prove that Greedy(S) = FKM(S) = Lm by contradiction. Suppose t is
the smallest value such that Lt+1 is not a prefix of Greedy(S), where αt = a1a2 · · · an =
a1a2 · · · an−jkj and an−j < k. From Lemma 10 we know that 1 6 t < m. Let αt+1 =
b1b2 · · · bn and p = |ap(αt+1)|. Let i be the smallest value such that 0 < i 6 p and
Lt · b1b2 · · · bi is not a prefix of Greedy(S). Let β denote the length n − 1 suffix of
Lt · b1b2 · · · bi−1. Such a suffix exists since both Greedy(S) and FKM(S) begin with α1 by
Lemma 7 and Lemma 10 when m > 1. There are two cases depending on the value of i.

Case 1: 0 < i 6 p − j − 1 By Lemma 6, b1b2 · · · bn−j−1 = a1a2 · · · an−j−1. Therefore
by Lemma 9, β = ai+1ai+2 · · · an · a1a2 · · · ai−1 since ap(αt) is prior to b1b2 · · · bi−1.
Since Lt ·b1b2 · · · bi is not a prefix of Greedy(S), the greedy algorithm appends z to β
where z < bi. By Corollary 5, βz is not a rotation of the necklaces α1, α2, . . . , αt−1.
However, a rotation of βz is equal to a1a2 · · · ai−1zai+1ai+2 · · · an and is strictly less
than αt. Therefore, βz is a rotation of some necklace that is between αt−1 and αt
in lexicographic order, a contradiction to αt being the necklace after αt−1 in the
lexicographic ordering of N(S). Thus z must be equal to bi = ai.

Case 2: p − j − 1 < i 6 p By Lemma 9, β = ai+1ai+2 · · · anb1b2 · · · bi−1 which is equal
to ai+1ai+2 · · ·
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ana1a2 · · · ap−j−1 · bp−jbp−j+1 · · · bi−1 since ap(αt) is prior to b1b2 · · · bi−1. Since Lt ·
b1b2 · · · bi is not a prefix of Greedy(S), the greedy algorithm appends z to β where
z < bi. By Corollary 5, βz is not a rotation of the necklaces α1, α2, . . . , αt. However,
a rotation of βz is equal to a1a2 · · · ap−j−1 · bp−jbp−j+1 · · · bi−1zai+1ai+2 · · · an and is
strictly less than αt+1. Therefore, βz is a rotation of some necklace that is between
αt and αt+1 in lexicographic order, a contradiction to αt+1 being the necklace after
αt in the lexicographic ordering of N(S). Thus z must be equal to bi.

Thus by proof of contradiction, Greedy(S) = FKM(S) = Lm as claimed.

Corollary 6. FKM(S) and Greedy(S) produce the lexicographically smallest universal
cycle among all universal cycles for S ∈ C(n, k).

Proof. The greedy algorithm always starts with the lexicographically smallest necklace
in N(S) by Lemma 10, which is also the lexicographically smallest string in S. It then
greedily appends the lexicographically smallest possible symbol such that the length n
suffix is unique and in S. By the definition of the greedy algorithm, appending any
smaller symbol results in either a duplicate string, or a string not in S. Thus Greedy(S)
must be the lexicographically smallest universal cycle. Also by Theorem 5, FKM(S) and
Greedy(S) produce the same universal cycle. Therefore, both FKM(S) and Greedy(S)
produce the lexicographically smallest universal cycle for S.

6 Final Remarks

Although the language C(n, k) includes a broad class of combinatorial objects, there are
still sets that are not in C(n, k) while their universal cycles can be constructed by the FKM
algorithm. As an example, consider the set S4 ⊆ T(4, 3) which contains the following
length 4 strings:

1112, 1121, 1122, 1212, 1211, 1221, 1222, 1322, 2111,
2112, 2121, 2122, 2132, 2211, 2212, 2213, 2221, 3221.

The set S4 is closed under rotation, but N(S4) = {1112, 1122, 1212, 1222, 1322} is not a
k-suffix language. However, FKM(S4) = 1112 ·1122 ·12 ·1222 ·1322 is a universal cycle for
S4. Naturally, we would like to characterize the sets of strings S in which FKM(S) is a
universal cycle. Similarly, we are interested in characterizing when the greedy algorithm
works.

Acknowledgements

Joe Sawada’s research is supported by NSERC grant number 214599.

the electronic journal of combinatorics 23(1) (2016), #P1.24 17



References

[1] M. A. Alekseyev and P. A. Pevzner. Colored de Bruijn graphs and the genome halving
problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), 4(1):98–107, 2007.

[2] Y. H. Au. Generalized de Bruijn words for primitive words and powers. Discrete
Mathematics, 338(12):2320–2331, 2015.

[3] A. Bechel, B. LaBounty-Lay, and A. Godbole. Universal cycles of discrete func-
tions. In Proceedings of the Thirty-Ninth Southeastern International Conference on
Combinatorics, Graph Theory and Computing. Congressus Numerantium 189, pages
121–128, 2008.

[4] G. Brockman, B. Kay, and E. Snively. On universal cycles of labeled graphs. Elec-
tronic Journal of Combinatorics, 17(1):9 pp, 2010.

[5] F. Chung, P. Diaconis, and R. Graham. Universal cycles for combinatorial structures.
Discrete Mathematics, 110:43–59, December 1992.

[6] N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen, 49:758–764, 1946.

[7] N. G. de Bruijn. Acknowledgement of priority to C. Flye Sainte-Marie on the counting
of circular arrangements of 2n zeros and ones that show each n-letter word exactly
once. T.H. Report 75-WSK-06, page 13, 1975.

[8] R. Ehrenborg, S. Kitaev, and E. Steingŕımsson. Number of cycles in the graph of
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