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Abstract

It is well known that a rank-r matroid M is uniquely determined by its circuits
of size at most r. This paper proves that if M is binary and r > 3, then M is
uniquely determined by its circuits of size at most r − 1 unless M is a binary spike
or a special restriction thereof. In the exceptional cases, M is determined up to
isomorphism.
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1 Introduction

A matroid M uses an element e or a set X if e ∈ E(M) or X ⊆ E(M). Suppose
M is non-binary. Bixby [2] showed that if M is 2-connected and and e ∈ E(M), then
M has a U2,4-minor using e. Later, Seymour [7] showed that if M is 3-connected and
e, f ∈ E(M), then M has a U2,4-minor using {e, f}. In addition, he conjectured that if
M is 4-connected and e, f, g ∈ E(M), then M has a U2,4-minor using {e, f, g}. Kahn [4]
and Coullard [3] gave counterexamples to this conjecture leaving open the problem of
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characterising all 4-connected non-binary matroids that have a 3-element set that is not
used by any U2,4-minor (see [6, Problem 15.9.7]).

A rich class of counterexamples to Seymour’s conjecture is provided by frame matroids
with at least three joints e, f , and g. It is readily checked that, in this case, no circuit
contains e, f , and g, and hence, such matroids have no U2,4-minor using {e, f, g}. A
refinement of Seymour’s conjecture is to conjecture that if a matroid M is 4-connected,
e, f, g ∈ E(M), and M has a circuit containing e, f , and g, then M has a U2,4-minor
using {e, f, g}. However, this conjecture is also false. Counterexamples are given by
Kahn [4] and Coullard [3]. Their counterexamples are obtained from binary matroids by
relaxing circuit-hyperplanes and, indeed, the only known counterexamples to the modified
version of Seymour’s conjecture are obtained from binary matroids by relaxing circuit-
hyperplanes; Kahn’s counterexample relaxes a single circuit-hyperplane; Coullard’s exam-
ple relaxes two circuit-hyperplanes. As a possible approach to solving the modified version
of Seymour’s conjecture, this paper considers the problem of whether a binary matroid M
is uniquely determined by a matroid obtained from M by a sequence of circuit-hyperplane
relaxations.

Let Jr and 1 be the r × r and r × 1 matrices of all ones. For r > 3, let Ar be
the r × (2r + 1) matrix [Ir|Jr − Ir|1] over GF (2) whose columns are labelled, in order,
x1, x2, . . . , xr, y1, y2, . . . , yr, t. The vector matroid M [Ar] of this matrix is called the rank-r
binary spike with tip t. For each i in {1, 2, . . . , r}, the set {t, xi, yi} is a triangle of M [Ar].
We call {t, x1, y1}, {t, x2, y2}, . . . , {t, xr, yr} the legs of M [Ar]. The matroid M [Ar]\t is
called the rank-r tipless binary spike. Its legs are the sets {x1, y1}, {x2, y2}, . . . , {xr, yr}.
Throughout this paper, we will use the term binary spike to include binary spikes with
tips as well as tipless binary spikes.

The following is the main result of the paper. As we shall see, most of the effort in
proving this result is devoted to verifying the last sentence.

Theorem 1. For r > 3, let M be a rank-r binary matroid on a given ground set, and
suppose that si(M) is not isomorphic to Ur−1,r ⊕ U1,1 or Ur,r+1. Then M is uniquely
determined by its circuits of size at most r − 1 unless si(M) is isomorphic to M(K3,2)
or can be obtained from a binary spike by deleting at most r − 1 elements no two of
which belong to the same leg. In the exceptional cases, M is uniquely determined up to
isomorphism.

Let M be a rank-r binary spike with r in {3, 4}. If r = 3 and M has a tip, then any
set of three lines through a common point can be chosen as the legs of the spike. If r = 4
and M is tipless, then M ∼= AG(3, 2) and again there are seven different choices for the
sets of legs. In these, the only two, cases where there are choices for the sets of legs, the
assertion in the theorem that the deleted elements can all be chosen from different legs
means that there is a choice of legs for which this is true rather than that this is true for
all choices of the legs.

For arbitrary r exceeding 2, consider M [Ar], the binary spike with tip. Let i be an
element of {1, 2, . . . , r} and let {ui, vi} = {xi, yi}. It is well known [5, p.66] and easily
checked that the dual of M [Ar]\ui, t is isomorphic to the rank-(r − 1) binary spike with
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tip vi. In each of M [Ar]\t, ui and M [Ar]\ui, we call vi the cotip. The last two matroids,
which are well known to be unique up to isomorphism, are called, respectively, the rank-r
binary spike with a cotip and no tip, and the rank-r binary spike with a tip and a cotip.

Theorem 1 is a strengthening, for binary matroids, of the well-known fact that an
arbitrary matroid is uniquely determined by its non-spanning circuits. Observe that,
unless n = 1 or n = 2, an n-element rank-1 or rank-2 binary matroid is not uniquely
determined by its set of circuits of size zero or size at most one, respectively. Also, for
r > 3, the sets of circuits of size at most r − 1 are the same in Ur,r+1 and Ur−1,r ⊕
U1,1. Moreover, for all r > 4, no rank-r binary spike is uniquely determined by its
circuits of size at most r − 1. To see this, fix r > 4, and let M1 and M2 be two rank-r
binary spikes with tip t and legs {t, x1, y1}, {t, x2, y2}, . . . , {t, xr, yr} with the property
that {x1, x2, . . . , xr} is a basis of M1 and {x1, x2, . . . , xr−1, yr} is a basis of M2. Since M1

and M2 are binary, {x1, x2, . . . , xr−1, yr} is a circuit-hyperplane of M1, and {x1, x2, . . . , xr}
is a circuit-hyperplane of M2. Hence M1 6= M2, but M1 and M2 have the same sets of
circuits of size at most r− 1. Note that, for all r > 4, we see the same phenomenon when
M1 and M2 are both spikes without tips, or are both spikes with tips and cotips, or are
both tipless spikes with cotips. However, these exceptions can be eliminated when r > 5
if we know at least one circuit of size r or r + 1.

Theorem 2. For r > 5, let M be a rank-r binary matroid on a given ground set. Let C+

be a fixed circuit of M choosing |C+| > r if possible. Then M is uniquely determined by
the collection

{C : C ∈ C(M) and |C| 6 r − 1} ∪ {C+}.

Note that M(K4) and M(K3,2) show that Theorem 2 cannot be extended to allow r
to be in {3, 4}. Neither matroid is uniquely determined by any one of its 4-circuits.

The proofs of Theorems 1 and 2 are constructive and rely on the preliminary results in
the next section. Indeed, the proof of Theorem 1 is essentially no more than a packaging
of these results. Section 3 consists of the proofs of the two theorems. Throughout the
paper, notation and terminology follows [6]. We shall also freely use the properties of
spikes noted there (see, in particular, pp. 41, 73, 74, and 111) as well as the well-known
fact that if C1 and C2 are circuits of a binary matroid, then their symmetric difference,
C14C2, is a disjoint union of circuits. For convenience, whenever we write “determined”,
we mean “uniquely determined”.

2 Preliminaries

This section consists of five preliminary results. The first, due to Acketa [1], lists all
binary paving matroids. We denote by M(K−4 ) the cycle matroid of the graph obtained
from K4 by deleting an edge.

Theorem 3. An n-element binary matroid is paving if and only if it is isomorphic to one
of the following matroids: a loopless rank-2 matroid with at most three parallel classes,
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U0,n, U1,n, Un,n, Un−1,n, Un−2,n−1 ⊕U1,1, M(K−4 ), M(K4), M(K3,2), F7, F
∗
7 , or AG(3, 2).

Observe that each of the matroids M(K−4 ), M(K4), F7, F ∗7 , and AG(3, 2) can be
obtained from either a rank-3 or rank-4 binary spike by deleting at most two elements
not belonging to the same leg.

Lemma 4. For r > 4, let M be a matroid that is obtained from a rank-r binary spike
by deleting at most r − 1 elements no two of which belong to the same leg. Then M can
be obtained from a binary spike with a cotip by adding elements in series with the cotip.
Thus M is unique up to isomorphism.

Proof. We prove the lemma when M has a tip t. The case when M has no
tip is proved similarly. Let N be the rank-r binary spike with tip t and legs
{t, x1, y1}, {t, x2, y2}, . . . , {t, xr, yr}. By symmetry, we may assume that M = N\Z, where
Z = {z1, z2, . . . , zq} and zi ∈ {xi, yi} for all i in {1, 2, . . . , q}. Now N has {xj, yj, xk, yk}
as a cocircuit for all distinct j and k in {1, 2, . . . , r}. Thus, for all distinct j and k in
{1, 2, . . . , q}, the set {xj, yj, xk, yk} − Z is a disjoint union of cocircuits and hence is a
cocircuit. Hence the elements of {x1, y1, x2, y2, . . . , xq, yq} − Z are in series in M . By
orthogonality, it follows that the last set is a series class in M . Contracting all but one
element of this series class gives a rank-(r − q + 1) binary spike with a tip and a cotip.
Hence M is uniquely determined up to isomorphism.

The next two lemmas deal with Theorem 1 when the rank-r binary matroid cannot be
obtained from a binary spike by deleting at most r − 1 elements no two of which belong
to the same leg. In particular, they enable us to determine which r-element subsets of
E(M) are bases of M .

Lemma 5. For r > 3, let M be a rank-r binary matroid, and let B be a basis of M .
Suppose that M is not a restriction of a rank-r binary spike with tip. Then there is a
circuit C such that |C| 6 r − 1 and |C −B| = 1.

Proof. Let B = {e1, e2, . . . , er}, and construct a binary representation [Ir|D] of M with
columns labelled, in order, e1, e2, . . . , er, er+1, . . . , en. If there is a k in {r+ 1, r+ 2, . . . , n}
such that the fundamental circuit C(ek, B) has size at most r − 1, then choose C to be
C(ek, B). Otherwise each of the columns in D has either r − 1 ones or r ones. Since M
is simple, it follows that M is a restriction of a rank-r binary spike with tip.

Lemma 6. For r > 3, let M be a simple rank-r binary matroid. Let B be an r-element
subset of E(M), and let C be a circuit of M with |C| 6 r and |C −B| = 1. Then B is a
basis of M if and only if neither B nor B 4 C contains a circuit of size at most r − 1.

Proof. First suppose B is a basis of M . If B 4 C contains a circuit C ′, then C ′ contains
the element, f say, in C −B. But then, as f ∈ C ∩C ′, the set (C ∪C ′)− {f} contains a
circuit, a contradiction as (C ∪ C ′)− {f} ⊆ B.

Now suppose neither B nor B 4 C contains a circuit of size at most r − 1. It suffices
to show that B is not a circuit. Assume the contrary. Then B 4 C contains a circuit,
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which must have size r or r + 1. But, as M is simple, |C| > 3 so |B 4 C| 6 r − 1; a
contradiction.

We now use the circuits of size at most r − 1 to determine whether a simple rank-r
binary matroid is a certain restriction of a rank-r binary spike.

Lemma 7. For r > 4, let M be a simple rank-r binary matroid, and suppose that M is
not paving. Then M can be obtained from a rank-r binary spike by deleting at most r− 1
elements no two of which belong to the same leg if and only if, for some non-empty subset
K of {1, 2, . . . , r}, the ground set of M can be partitioned into parts X = {x1, x2, . . . , xr},
Y = {yk : k ∈ K}, and Z, where |Z| 6 1, such that the collection of circuits of M of size
at most r − 1 consists of

(I) when |Z| = 1, all 3-element sets of the form {t, xk, yk} with t ∈ Z and k ∈ K;

(II) when r > 5, all 4-element sets of the form {xk, yk, xl, yl} with k, l ∈ K; and

(III) when r > 6, no sets D with 5 6 |D| 6 r − 1.

Proof. The proof is based on [6, Proposition 1.5.17], which identifies the set of circuits
of a spike. It follows immediately from that result that if M can be obtained from a
rank-r binary spike by deleting at most r−1 elements no two of which belong to the same
leg, then E(M) can be partitioned as described in the lemma. For the converse, suppose
that E(M) has such a partition. To show that M can be obtained from a binary spike
as asserted, first note that, for distinct r-element circuits C and C ′ of M , since C 4 C ′

contains a circuit, |C ∩ C ′| 6 r − 2.
We break the rest of the argument into two cases depending on whether r > 5 or r = 4.

Suppose first that r > 5. Assume that C is not in
{
{z1, z2, . . . , zr} : zi ∈ {xi, yi} for all i

}
.

Suppose C ⊆ X ∪ Y . Then, as |C| > 5, there is a k in K with xk, yk in C. If |Z| = 1,
then, as {t, xk, yk} is a circuit, C4{t, xk, yk}, which equals (C −{xk, yk})∪{t}, contains
a circuit containing t. But |(C − {xk, yk}) ∪ {t}| 6 r − 1, so there are no such circuits
otherwise C contains a 4-element circuit of the form in (II). Thus Z = ∅.

If |Y | = 1, then M is paving, so |Y | > 2. Suppose there is an l in K − {k} such that
xl ∈ C or yl ∈ C. Then, as M is binary, C 4 {xk, yk, xl, yl} contains a circuit of size at
most r − 2. But neither (C − {xk, yk, xl}) ∪ {yl} nor (C − {xk, yk, yl}) ∪ {xl} contains
a 3-element or a 4-element circuit of the form in (I) or (II); a contradiction. Thus, for
all l in K − {k}, the set {xl, yl} avoids C. Hence |Y | = 2 and, letting K = {k, l},
we have C = (X − {xl}) ∪ {yk}. Since M is binary, C 4 {xk, yk, xl, yl}, which equals
(X − {xk}) ∪ {yl}, contains a circuit. As no subset of this last set is of the form in (I)
or (II), (X − {xk}) ∪ {yl} is a circuit. It is now easily checked that M has exactly three
circuits, namely, {xk, yk, xl, yl}, (X−{xl})∪{yk}, and (X−{xk})∪{yl}, and that M can
be obtained from a rank-r tipless binary spike whose legs include {xk, yl} and {xl, yk} by
deleting r − 2 elements no two of which belong to the same leg.

We may now assume that t ∈ C and so |Z| = 1. Let k ∈ K. Then {t, xk, yk} is a
circuit of M , and so, as M is binary, C 4 {t, xk, yk} contains a circuit. If either xk ∈ C
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or yk ∈ C, then |C 4 {t, xk, yk}| = r − 1, and no subset of C 4 {t, xk, yk} is of the form
in (I) or (II). Thus neither xk ∈ C nor yk ∈ C. As |C| = r, we deduce that |Y | = 1
and C = (X − {xk}) ∪ {t}. It is now easily checked that the circuits of M are precisely
{t, xk, yk}, (X − {xk}) ∪ {t}, and X ∪ {yk}, in which case, M can be obtained from a
rank-r binary spike with tip yk by deleting r − 1 elements no two of which belong to the
same leg. This competes the proof for r > 5.

Now suppose that r = 4. The approach is similar to that used for r > 5. Since M is
not paving, it has a 3-circuit and so |Z| = 1. First note that, by circuit elimination, if
k, l ∈ K, then {xk, yk, xl, yl} is a 4-circuit as {t, xk, yk} and {t, xl, yl} are both circuits.

Let C be a 4-circuit of M that is not of the form in (II) and is not in{
{z1, z2, z3, z4} : zi ∈ {xi, yi} for all i

}
. Suppose t ∈ C. If, for some k in K, either

xk ∈ C or yk ∈ C, then, as M is binary, C 4 {t, xk, yk} is a 3-circuit avoiding t;
a contradiction. Thus, |Y | = 1 and so, letting Y = {k}, it is easily checked that
C(M) = {{t, xk, yk}, (X − {xk}) ∪ {t}, X ∪ {yk}}, in which case, M can be obtained
from a rank-r binary spike with tip yk by deleting r− 1 elements no two of which belong
to the same leg.

We may now assume that t 6∈ C, and so, for some k in K, we have {xk, yk} ⊆ C. But
then C 4 {t, xk, yk} contains a 3-circuit that is not of the form in (I); a contradiction.
This completes the proof of the lemma.

3 Proofs of Theorems 1 and 2

Proof of Theorem 1. Since r > 3, we can determine the loops and parallel classes of M .
By deleting all loops and all but one element of each parallel class, we may assume that
M is simple. Moreover, we may assume that |E(M)| > r otherwise M ∼= Ur,r. Suppose
r = 3. Then M is paving. Since M is isomorphic to neither U3,4 nor U2,3⊕U1,1, Theorem 3
implies that M ∼= M(K−4 ),M(K4), or F7. Each of these matroids can be obtained from
a rank-3 binary spike by deleting at most two elements no two from the same leg. Up
to isomorphism, the number of elements in M distinguishes M . Thus the theorem holds
when r = 3.

Suppose r > 4. Assume M is paving. As M is not isomorphic to Ur,r+1 or Ur−1,r⊕U1,1,
Theorem 3 implies that r = 4 and M is isomorphic to M(K3,2), F

∗
7 , or AG(3, 2). Each of

the last two matroids can be obtained from a rank-4 binary spike by deleting at most two
elements no two from the same leg. Thus, by Lemma 4, M is unique up to isomorphism.

We may now assume that M is not paving. By Lemma 7, we can determine when M
can be obtained from a rank-r binary spike by deleting at most r − 1 elements no two of
which belong to the same leg. If M can be obtained in this way, then, by Lemma 4, M
is determined up to isomorphism. Therefore, assume that M cannot be obtained in this
way. Let B be a subset of E(M) with |B| = r. If there is no circuit C with |C| 6 r − 1
and |C −B| = 1, then, by Lemma 5, B is not a basis of M . But if there is such a circuit
C, then, by Lemma 6, B is a basis of M if and only if neither B nor B 4 C contains a
circuit of size at most r − 1. Hence we can determine if B is basis of M . Thus we can
determine the collection of bases of M , thereby determining M .
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Proof of Theorem 2. It follows by Theorem 1 that we may assume M has a circuit C+

with |C+| > r. Let f ∈ C+. We next determine a basis B of M with C+ − {f} ⊆ B. If
|C+| = r + 1, then choose B to be C+ − {f}. On the other hand, if |C+| = r, then, by
Lemma 6, we can find a basis of M containing C+ − {f}, in which case, choose B to be
this basis.

Let B = {e1, e2, . . . , er}, and construct a binary representation [Ir|D] of M with
columns labelled, in order, e1, e2, . . . , er, er+1, . . . , en, where n = |E(M)|. We complete the
proof by determining the columns of D. Let k ∈ {r + 1, r + 2, . . . , n}. If the fundamental
circuit C(ek, B) has size at most r− 1, then the column ek is determined. Observing that
such a column has at least two ones and at most r − 2 ones, we see that the columns ek
that are not immediately determined have either r− 1 ones or r ones. Since M is binary
and simple, there is at most one column ek of D with |C(ek, B)| = r + 1.

Let el denote the column of D corresponding to f . Then el is determined. If
|C(el, B)| = r + 1, then, for k 6= l, the unique zero in column ek is in row i if and
only if {ei, ek, el} is a circuit. Since r(M) > 5, we can decide if {ei, ek, el} is a circuit, and
so we can determine ek, and thus determine M .

Now suppose that |C(el, B)| = r. Then the column el has exactly one zero, say in row i.
For k 6= l, the column ek has no zeros if and only if {ei, ek, el} is a circuit. Furthermore,
if the column ek has exactly one zero, then it is in row j if and only if {ei, ej, ek, el} is a
circuit, where i 6= j. Since r(M) > 5, we can decide if {ei, ek, el} and {ei, ej, ek, el} are
circuits, and so we can determine ek. Hence M is determined.
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