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Abstract

We start by studying a peeling process on finite random planar maps with faces of
arbitrary degrees determined by a general weight sequence, which satisfies an ad-
missibility criterion. The corresponding perimeter process is identified as a biased
random walk, in terms of which the admissibility criterion has a very simple inter-
pretation. The finite random planar maps under consideration were recently proved
to possess a well-defined local limit known as the infinite Boltzmann planar map
(IBPM). Inspired by recent work of Curien and Le Gall, we show that the peeling
process on the IBPM can be obtained from the peeling process of finite random
maps by conditioning the perimeter process to stay positive. The simplicity of the
resulting description of the peeling process allows us to obtain the scaling limit of
the associated perimeter and volume process for arbitrary regular critical weight
sequences.

1 Introduction

Discrete random surfaces encoded by maps have been subject of intensive research for
a long time, in the mathematical literature mainly because of their rich combinatorial
and geometric structure, and in the physics literature because of their relevance to two-
dimensional quantum gravity, string theory, and Feynman diagrams. Many exact enu-
merative properties of random (planar) maps, starting with the seminal work of Tutte
in the sixties [30], were known before methods were discovered to study their intrinsic
geometric properties. Perhaps the first significant progress in this direction was made in
the early nineties, when Watabiki introduced a peeling procedure of a random triangulated
surface [31]. This procedure shortly after lead to the first determination of a two-point
function of large random triangulations [3], which captures the probability distribution of
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the geodesic distance between two random vertices.1 This two-point function was shown
to possess a scaling limit if the distances were rescaled by the fourth root of the vol-
ume, leading to the (now well-established) conjecture that large random surfaces have a
Hausdorff dimension of four.

In the late nineties Schaeffer [28], inspired by earlier work by Cori and Vauquelin
[17], discovered a bijection between quadrangulations and labeled trees that was tailored
to the study of graph distances. Soon this bijection and its many generalizations, par-
ticularly the Bouttier-Di Francesco-Guitter bijection [13], became the tool of choice for
studying geometry of random surfaces, culminating in the proof of the convergence in
the Gromov-Hausdorff sense of many classes of large random planar maps to a universal
random continuum geometry on the sphere, known as the Brownian map. Nevertheless,
the peeling procedure in various forms received renewed interest in the mathematical
literature, starting with its formalization in the setting of the uniform infinite planar tri-
angulation (UIPT, [6]) by Angel in [4]. It was recognized that peeling could not only
be used to study geometry, but that due to its important Markov properties it could be
tailored towards studying many other aspects of random maps, including various forms
of percolation [4, 5, 25, 1, 27, 10], random walks [7], and some aspects of their conformal
structure [18].

In a recent paper [19] Curien and Le Gall revisited the geometric study of the peeling
process on the UIPT (and also on the uniform infinite planar quadrangulation (UIPQ)),
which was initiated by Angel in [4]. They found that the perimeter process, which keeps
track of the length of the (simple) boundary of the explored region during a peeling
process of the UIPT, takes the form of a random walk conditioned to stay positive. The
unconditioned random walk is easily seen to scale to a index-3/2 stable process with only
negative jumps. The perimeter process can be obtained from this random walk by a simple
Doob transform (or h-transform), and it follows from an invariance principle [15] that it
scales to the aforementioned stable process conditioned to stay positive. The convergence
is then extended to include the volume process, which keeps track of the volume of the
explored region.

The goal of this paper is to extend these results to the more general setting of q-
Boltzmann planar maps associated to arbitrary weight sequences q = (q1, q2, . . .). A
(finite) q-Boltzmann planar map is a random planar map with arbitrary face degrees,
where the probability of picking a particular map is proportional to the product of over all
faces f of the weight qdeg(f) depending on the degree deg(f) of f . Whenever this procedure
leads to a well-defined probability distribution on (finite) planar maps, the sequence q
is said to be admissible. We will explicitly derive the law of the perimeter process for
(pointed) q-Boltzmann planar maps associated to such admissible weight sequences. Like
in the case of the UIPT, the perimeter process is realized as a Doob transform of a random

1The derivation of the two-point function in [3] has always been regarded as heuristic, leading to an
approximate probability distribution of the graph distance between random vertices that only becomes
exact in the scaling limit. Only recently in [1] it was recognized that the expressions in [3] are already
exact in the discrete setting, but they do not correspond to the graph distance of the triangulation but
to a first-passage time on the dual cubic map, which agree up to rescaling in the scaling limit.
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walk which depends on q. Explicit conditions for a weight sequences to be admissible were
worked out by Miermont in [26], using the Bouttier-Di Francesco-Guitter bijection [13].
As we will see these quite non-trivial conditions can be recast into very simple conditions
on the law of the random walk associated to the perimeter process. In fact, in some sense
the q-Boltzmann planar map is more naturally characterized by this law than by the
weight sequence itself. In particular, the critical weight sequences q, which are basically
sequences that are on the border of being admissible and which are the appropriate ones
to study large map limits, are related to random walks that do not drift.

It has recently been shown in [29] for general critical weight sequence q, and earlier in
the more restricted setting of bipartite Boltzmann planar maps in [9], that q-Boltzmann
planar maps possess a well-defined local limit, known as the infinite q-Boltzmann planar
map (q-IBPM), as the conditioned number of vertices is taken to infinity. We will show
that our peeling process naturally extends to the setting of the q-IBPM, and that the
associated perimeter process, like in the case of the UIPT, is obtained by conditioning the
aforementioned random walk to stay positive. Based on the supposed universality of the
Brownian map, and its local limit as the Brownian plane, one expects the scaling limit
of the perimeter process to agree with that of the UIPT. Indeed, this will turn out to be
the case for a large class of critical weight sequences q, namely the regular critical ones,
and we will obtain explicit expressions for the scaling constants involved.

Interestingly, our description of the peeling process also covers q-IBPMs associated
to non-regular critical weight sequences q which are heavy-tailed. The related finite q-
Boltzmann planar maps were studied by Le Gall and Miermont in [23], and the metric
spaces associated to the graph distances were shown to converge in the Gromov-Hausdorff
sense to random continuum geometries distinct from the Brownian map. These continuum
geometries are characterized by holes corresponding to macroscopic faces in the planar
maps and lead to a Hausdorff dimension strictly smaller than four. We will not study
the scaling limits of the non-regular q-IBPMs in any detail, but we do notice that the
associated perimeter processes seem to converge to stable processes (conditioned to stay
positive) with an index smaller than 3/2. A natural next step, which we leave to future
work, is to consider the peeling process in the setting of random planar maps coupled to
O(n) models which are known to be closely related to heavy-tailed q-Boltzmann planar
maps [23, 12, 11].

The simple characterization of the perimeter (and volume) process of the q-IBPM
opens up the possibility to study various aspects of its geometry, and percolation im-
posed on it. Indeed, the results presented in this paper are independent of the chosen
peel algorithm, meaning roughly that it does not matter in what direction or what order
one chooses to explore the q-IBPM using the peeling procedure. By choosing appropri-
ate peeling algorithms one can for instance discover the q-IBPM by balls2 of increasing
geodesic radius with respect to different metrics associated to the planar map, including
graph distance, first-passage time and dual graph distance. The known perimeter and
volume processes then give information about the perimeter and volume of these geodesic

2Or, rather, the hulls of the balls, which are obtained from the balls by including the finite components
of their complements, since during a peeling process the explored region is always kept simply-connected.
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balls. Indeed, this was done for the UIPT in [19] in the case of the graph distance and first-
passage time (see also [1] for the latter), and convergence was found to similar processes
defined directly in terms of the Brownian plane [20]. We postpone similar applications of
the peeling process in the setting of the q-IBPM to a future paper, in which in particular
we will use the technology in this paper to derive simple formulas for the relative scaling
constants associated to the various metrics.

We should mention that the results in this paper should not be viewed as direct
generalizations of the results by Curien and Le Gall. First of all, the Boltzmann planar
maps considered here will always be of type 1 meaning that they are allowed to contain
multiple edges and loops. More importantly, the lazy peeling process considered here is
slightly different from the (simple) peeling process considered in [19]. The difference is
that we do not require the frontier, i.e. boundary of the explored region in the planar
map, to be a simple closed curve, as it is in the simple peeling process. We call this peeling
process lazy because the determination of the adjacency of a face incident to the frontier
is postponed until it is needed in order to perform further exploration. This means that
it is possible, contrary to the simple peeling process, that an attempted peeling step does
not lead to a newly explored face. It turns out that this lazy peeling process is much
simpler than the simple peeling process for general weight sequences, and corresponds in
fact to a generalization of the original peeling process of Watabiki [31]. As we will see the
simplicity manifests itself in the existence of a martingale for the aforementioned random
walk associated to the (lazy) perimeter process that is nearly universal, meaning that
it depends on the weight sequence only through a single parameter r ∈ (−1, 1] (which
moreover is always r = 1 in the bipartite case). It is exactly this martingale that can be
used to bias the random walk to stay positive.

The paper is organized as follows. In section 2 we introduce the lazy peeling process
on finite pointed planar maps and on infinite maps, and in section 3 we determine its law
when applied to pointed q-Boltzmann planar maps. Some of the proofs depend explicitly
on Miermont’s conditions in [26] for the admissibility of weight sequences. Since they
involve different notation and appeal to the Bouttier-Di Francesco-Guitter bijection [13],
which is not of central importance to the peeling process, we have decided to gather those
proofs in appendix A. In section 4 we take a brief look at the volume process, while in
section 5 we derive and prove the law of the perimeter process of the q-IBPM. In sections
6 and 7 we derive the scaling limits of the perimeter and volume processes on the q-IBPM
for regular critical q, thereby reproducing the results of [19], Section 3, in the setting of
the q-IBPM. We finish with some examples in Section 8, showing that the formulation in
terms of random walks leads to an efficient way to calculate explicit scaling constants.

2 Planar maps and the lazy peeling process

A planar map m is a connected graph that is properly embedded in the sphere, i.e. without
edge crossings, and two such maps are considered identical when they are related by a
homeomorphism of the sphere. The sets of vertices, (unoriented) edges, and faces of m

are denoted by V(m), E(m), and F(m), respectively. In addition we will denote by ~E(m)
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Figure 1: An example of a pointed, rooted planar map m with a frontier F . The edges
appearing in the frontier are colored red, and the first edge is indicated by an arrow. The
second and third figure show the corresponding explored map e(m, F ) and unexplored
map u(m, F ).

the set of oriented edges of m. Unless indicated otherwise we will always consider rooted
planar maps, which are planar maps with a distinguished oriented edge er ∈ ~E(m), the root
edge. The face on the left-hand side of the root edge er is called the root face fr ∈ F(m).
We denote the set of all (finite) rooted planar maps byM, whileM(k) denotes the rooted
planar maps with root face degree deg(fr) = k. In addition we often consider pointed
planar maps (m, v) ∈ M•, which are rooted planar maps with a distinguished vertex
v ∈ V(m).

Given a planar map m ∈ M, let a closed path F = (ei)i be a finite sequence of

oriented edges ei ∈ ~E(m) such that for each pair (ei, ei+1) of (cyclically) consecutive edges
ei+1 starts at the endpoint of ei. We say F is non-intersecting if F contains no duplicates
and whenever it visits a single vertex v ∈ V(m) multiple times the sequence of edges of e
starting or ending at v should be ordered counterclockwise around v in the embedding. A
non-intersecting closed path F naturally partitions the faces F(m) into those inside and
outside F , where we say a face f is inside F when F winds around f in counterclockwise
direction, and outside F otherwise.

A non-intersecting path F on a pointed planar map (m, v) ∈M• is said to be a frontier
when the following conditions are satisfied: the root face fr is inside F , the vertex v is
either on F or incident to a face outside F , and any two faces inside F are connected by
a path in the dual map that does not cross F . See figure 1 for an example. The explored
map e(m, F ) ∈ M is a rooted planar map with a distinguished oriented edge e obtained
from m by cutting it open along F and replacing all faces outside F by a single face, called
the outer face, and e is taken to be the oriented edge corresponding to the first entry in
the frontier. Two faces inside F that share an edge belonging to F are not adjacent to
each other along this edge in e(m, F ). Similarly, if the F visits a vertex multiple times
it gives rise to a corresponding number of distinct vertices on the boundary of the outer
face. This means that e(m, F ) ∈ M is not quite a submap of m in the usual sense. The
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Figure 2: An example of a lazy peeling process on a planar map with root face degree 7.
The marked vertex is shown as an open dot, while the red edges represent the frontier.
The peel edges, which are indicated by the red arrows, are chosen arbitrarily at each step.
The numbers in parentheses correspond to the perimeter and volume (li, Vi)i>0.

unexplored map u(m, F ) ∈ M• is the submap of m obtained from m by removing all
vertices and edges that are not on F and are not incident to a face outside F . We take
u(m, F ) to be rooted at the first oriented edge of the frontier. Notice that both the outer
face of the explored map e(m, F ) and the root face of the unexplored map u(m, F ) have
degree equal to the length |F | of the frontier. The former is necessarily a simple face,
i.e. all its corners correspond to distinct vertices, while the latter is in general not. By
convention we allow F = ∅, in which case we set e(m, ∅) = m and u(m, ∅) = {v}, i.e. the
planar map consisting of just the vertex v.

A lazy peeling process on a pointed planar map (m, v) ∈ M• is a sequence (Fi)i>0 of
frontiers on m satisfying the following property. For each i > 0, if Fi = ∅ then Fi+1 = ∅,
and otherwise the frontier Fi+1 is obtained from Fi by peeling an oriented edge e ∈ Fi,
which we call the peel edge. We distinguish two types of peeling depending on whether
the face on the right-hand side of e is inside or outside Fi. If it is inside, e is incident on
both sides to the root face in the unexplored map u(m, Fi) and therefore its removal from
u(m, Fi) leads to two disconnected components, one of which contains the marked vertex
v. Then Fi+1 is the (possibly empty) subsequence of Fi of edges that are contained in the
latter component. If the face f on the right-hand side of e is outside Fi, Fi+1 is obtained
from Fi by replacing its entry e by the sequence of edges of f in counterclockwise order
starting at the starting point of e and ending at the endpoint of e. We refer to the two
types of peeling steps as pruning the frontier and exploring a new face, respectively.

It is easy to see that the number of edges |E(u(m, Fi))| in the unexplored map strictly
decreases at each step as long as Fi 6= ∅. Therefore, after a finite number of steps the
frontier will vanish, meaning that the map m is fully explored. Notice also that the
lazy peeling process (Fi)i>0 is completely fixed by the initial frontier F0, which is usually
taken to be the contour of the root face fr starting at the root edge er, together with an
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Figure 3: A lazy peeling process of an infinite planar map. The numbers in parentheses
again correspond to the perimeter and volume process (li, Vi)i>0.

algorithm to select a peel edge from the frontier Fi at each step i.
Two integer-valued processes associated to the lazy peeling process (Fi)i>0 will play

an important role in the rest of this paper. The first is the perimeter process (li)i>0

which is simply defined as the length li = |Fi| of the frontier. The second is the volume
process (Vi)i>0 which counts the number of fully explored vertices after i steps, i.e. Vi =
|V(e(m, Fi))| − |Fi| is the number of vertices in the explored map which are not incident
to the outer face. If Fi+1 is obtained from Fi by exploring a new face of degree k, then
li+1 = li + k − 2 > li − 1 and Vi+1 = Vi. If on the other hand Fi+1 is obtained by pruning
Fi then li+1 6 li − 2 and Vi+1 = Vi + v where v > 1 is the number of vertices in the
“discarded” component of the unexplored map u(m, Fi) after removal of the peel edge.

The notion of lazy peeling can be easily extended to the case of an infinite rooted
planar map m∞ ∈ M∞. We define the latter to be an embedding of an infinite, locally
finite graph, i.e. a graph for which all vertices have finite degree, in R2 such that its
complement is a disjoint union of simply connected, bounded domains. Moreover we need
to assume that m∞ is one-ended, meaning that the complement in m∞ of each finite subset
of vertices contains a unique infinite connected component, and that all faces have finite
degree.

We can define a frontier F on m∞ in the same way as before, except that we replace
the condition that the marked vertex is outside F by the condition that there are finitely
many faces inside F . The explored map e(m∞, F ) is still a rooted planar map with a
distinguished outer face of degree |F |, while the unexplored map u(m∞, F ) is now an
infinite rooted planar map with root face degree |F |. The lazy peeling process is again
defined as a sequence of frontiers (Fi)i>0 where the frontier Fi+1 is obtained from Fi by
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peeling as before. The only difference is that, when the frontier is pruned, the appropriate
disconnected component of u(m, Fi) (after removal of the peel edge) is not selected to
contain the marked vertex but to be infinite. Notice that in particular the frontier can
never become empty, i.e. li = |Fi| > 1 for all i > 0. See figure 3 for an example.

One should keep in mind that it is possible, with particular peeling algorithms, that a
peeling process of an infinite planar map does not explore the full map. For the random
maps discussed below we do expect that the full map is almost surely explored indepen-
dently of the peeling algorithm. However, proving this in general goes beyond the scope
of this paper (see [19], Corollary 7, for a proof in the case of the “simple” peeling process
on the UIPT).

3 Boltzmann planar maps

We would like to apply the peeling process introduced in the previous section to a random
pointed planar map m ∈ M(l)

• with fixed root face degree l. A quite general probability
distribution on M(l)

• (and on M(l)) is obtained by assigning a weight wq(m) to m given
by

wq(m) :=
∏

f∈F(m)\{fr}

qdeg(f), (1)

where the product is over all non-root faces and q = (q1, q2, . . .) is a weight sequence of
non-negative real numbers. To avoid degenerate situations we will require that at least
one of the qk’s with k > 3 is positive. We define the disk function W (l)(q) and pointed

disk function W
(l)
• (q) as

W (l)(q) :=
∑

m∈M(l)

wq(m), W (l)
• (q) :=

∑
m∈M(l)

•

wq(m), (2)

where by convention we include the single vertex map in M(0) and M(0)
• such that

W (0)(q) = W
(0)
• (q) = 1. Notice that in general W (l)(q) 6 W

(l)
• (q).

In order for the weights wq to give rise to a probability distributions onM(0) andM(0)
•

we need W
(l)
• (q) < ∞, which puts a non-trivial restriction on the weight sequence q. If

qk = 0 for all odd k the pointed disk function W
(l)
• (q) has support on bipartite planar

maps and we call q bipartite, and non-bipartite otherwise. It is not hard to see that the
only way W

(l)
• (q) can vanish is when q is bipartite and l is odd. As we will see below,

apart from this degenerate situation where W
(l)
• (q) = 0, the condition that W

(l)
• (q) <∞

only depends on q and not on l. Therefore, it suffices to consider the case l = 2, and
following [26] we will call q admissible if W

(2)
• (q) < ∞. To see why the case l = 2 is

special, notice that there is a natural bijection between pointed planar maps with root
face degree 2 (and more than one face) and pointed rooted planar map with arbitrary root
face degree, corresponding to the operation of gluing the edges of the root face. Hence
we may identify

W (2)
• (q)− 1 =

∑
m∈M•

∏
f∈F(m)

qdeg(f), (3)
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which is the partition function studied in [26].
In the following we will keep the dependence on q implicit whenever the considered

weight sequence is clear from the context and simply write W
(l)
• = W

(l)
• (q). We will also

denote by W (z) and W•(z) the generating functions

W (z) :=
∞∑
l=0

W (l)z−l−1, W•(z) :=
∞∑
l=0

W (l)
• z

−l−1, (4)

which, as we will see below, converge for |z| large enough.

3.1 Lazy peeling of Boltzmann planar maps

Let (m, v) ∈M(l)
• be a pointed Boltzmann planar map and let F0 be the frontier given by

the contour of the root face, which has length |F0| = l. Recall that a lazy peeling process
(Fi)i>0 is characterized by a peel algorithm that selects a peel edge at each step i. The
algorithm can be deterministic or probabilistic, but in either case we restrict the choice of
peel edge at step i, i.e. the step Fi → Fi+1, only to depend on the explored map e(m, Fi).
In this case the lazy peeling satisfies the following important Markov property.

Proposition 1. For any i > 0, conditional on the explored map e(m, Fi) after i steps
in the lazy peeling process with a peel algorithm as above, the law of the unexplored map
u(m, Fi) ∈ M(li)

• depends only on the length li = |Fi| of the frontier, and its distribution
is given by

M(li)
• → R : m′ → wq(m′)

W
(li)
•

. (5)

Proof. For a fixed rooted planar map e with a distinguished, simple outer face of degree
l the mapping u : (m, F )→ u(m, F ) determines a bijection

{(m, F ) : m ∈M•, F frontier, e(m, F ) = e} →M(l)
• .

To see that this is a bijection, notice that its inverse is given by taking any pointed map
m′ ∈ M(l)

• and gluing its root face to the outer face of e to obtain a pointed planar map
with a frontier. Notice that wq(m) = w0wq(u(m, F )), where w0 is a constant independent
of u(m, F ). Hence, if m is a q-Boltzmann planar map and F = Fi the frontier after

i steps in a peel algorithm, then the probability that u(m, Fi) = m′ for m′ ∈ M(li)
• is

wq(m′)/W
(li)
• .

In the light of this Markov property, it is often convenient to think of the peeling
process not as a sequence of frontiers (Fi)i>0 on a random map m, but as a sequence of
explored maps (ei)i>0 := (e(m, Fi))i>0. We can easily determine the law of ei+1 given ei
and a peel edge e. Recall that two types of peeling steps can occur: either a new face is
explored or the frontier is pruned (see figure 4). In the first case ei+1 is obtained from ei
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Figure 4: Schematic depiction of three different outcomes of a (lazy) peeling step of a
pointed planar map: either a new face is explored (a), or the frontier is pruned with the
marked vertex to the left (b) or to the right (c) of the peel edge. The shaded faces with a
dot represent the outer faces of the explored maps, while undotted shaded faces are to be
filled in with (unpointed) Boltzmann planar maps with the appropriate root face degree.

by gluing a new face of degree k to e, and li+1 = li + k− 2. It follows from the law of the
unexplored map that this occurs with probability

P(li+1 − li = k − 2 > −1|ei) = qk
W

(li+k−2)
•

W
(li)
•

. (6)

In the second case ei+1 is obtained from ei by gluing e to another edge e′ in the frontier,
thereby splitting the outer face into two faces. One of these two faces, say with degree l,
is then filled in with a (unpointed) Boltzmann planar map with the appropriate root face
degree l, and li+1 = li − l − 2. By examining the Boltzmann weights involved one finds
that this occurs with probability

P(li+1 − li = −l − 2 6 −2|ei) = 2W (l)W
(li−l−2)
•

W
(li)
•

. (7)

The fact that the probabilities (6) and (7) add up to one is equivalent to the loop
equation

W (l)
• =

∞∑
k=1

qkW
(l+k−2)
• + 2

l−2∑
l′=0

W (l′)W (l−l′−2)
• , (8)

satisfied by the pointed disk function. Similarly, by examining the face on the right-hand
side of an unpointed planar map with root face degree l, one finds that the unpointed
disk function satisfies a similar and well-known loop equation

W (l) =
∞∑
k=1

qkW
(l+k−2) +

l−2∑
l′=0

W (l′)W (l−l′−2). (9)

It turns out that the pointed disk function W•(z) has a universal form, that we will
use as a starting point for our investigation.
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Proposition 2. Given an admissible weight sequence q = (q1, q2, . . .), there exist real
numbers c+ > 2 and −c+ 6 c− < c+ such that the pointed disk function is finite for
z > c+ and is given by

W•(z) =
1√

(z − c+)(z − c−)
. (10)

Moreover, c− = −c+ if and only if q is bipartite.

This result can in principle be derived directly from the loop equations (8) and (9),
using the so-called one-cut assumption, see e.g. [11] for a discussion in the case of general
admissible weight sequences. However, there is another particularly simple route towards
(10) using the Bouttier-Di Francesco-Guitter bijection [13] between pointed planar maps
and labeled mobiles. The identity (10) is well-known, appearing for instance in a slightly
different form in [14]. For completeness we include a proof in the appendix, Section A.1,
using very similar arguments as the ones in [13, 14]. Notice in particular that Proposition

2 implies that W
(l)
• <∞ for all l > 0 when q is admissible, as promised.

The form of the unpointed disk function W (z) is not universal, but can be easily
derived from the loop equation (8). To see this let us introduce the generating functions

U ′(z) :=
∞∑
k=1

qkz
k−1 (11)

M(z) := −1 +
∞∑
k=2

k−2∑
l=0

qkW
(k−l−2)
• zl. (12)

From Proposition 2 it follows that asymptotically

lim
l→∞

W (l+k)
• /W (l)

• = ck+. (13)

Therefore (8) implies that

U ′(c+) =
∞∑
k=1

qk lim
l→∞

W
(l+k−2)
•

W
(l)
•

6 lim
l→∞

∞∑
k=1

qk
W

(l+k−2)
•

W
(l)
•

6 1,

meaning that U ′(z) has a radius of convergence R > c+. In terms of generating functions
the loop equation (8) reads

(z − U ′(z)− 2W (z))W•(z) +M(z) = 0 (c+ 6 |z| 6 R),

which should be understood as an equation for Laurent series on the annulus c+ 6 |z| 6 R.
In particular this implies that M(z) also has a radius of convergence at least equal to c+.
In combination with Proposition 2 this leads to the familiar one-cut form of the disk
function,

W (z) =
1

2

(
z − U ′(z) +M(z)W•(z)−1

)
=

1

2

(
z − U ′(z) +M(z)

√
(z − c+)(z − c−)

)
, (14)

which is finite for |z| > c+. One can easily check that (14) is indeed (a generating function
for) a solution to the loop equation (9).
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3.2 A new admissibility criterion

It follows from the law of the peeling process, characterized by the probabilities (6) and
(7), that the perimeter process (li)i>0 is a Markov process with step probabilities

P(li+1 = l + k|li = l) =


qk+2

W
(l+k)
•
W

(l)
•

for k > −1

2W (−k−2)W (l+k)
•
W

(l)
•

for − l 6 k < −1

0 for k < −l

, (15)

for l > 0, while we use the convention P(li+1 = k|li = 0) = δk,0. The asymptotics
(13) imply that the large-l limit of (15) corresponds to a random walk (Xi)i>0 with step
probabilities ν(k) given by

ν(k) := lim
l→∞

P(li+1 = l + k|li = l) =

{
qk+2c

k
+ if k > −1

2W (−k−2)ck+ if k 6 −2
. (16)

It follows from Proposition 2 that c−l+ W
(l)
• only depends on l and the ratio r := −c−/c+ ∈

(−1, 1] and is given by

h(0)r (l) := [y−l−1]
1√

y − 1
√
y + r

=

(
−r
4

)l(
2l

l

)
2F1

(
1

2
,−l; 1

2
− l;−1

r

)
, (17)

where 2F1 is the hypergeometric function defined as 2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n!
in

terms of the rising Pochhammer symbol (a)n := a(a + 1) . . . (a + n − 1). In general the

values h
(0)
r (l) for fixed l > 0 are polynomials in r of order l, with the first few reading

h
(0)
r (0) = 1, h

(0)
r (1) = (1 − r)/2, and h

(0)
r (2) = (3 − 2r + 3r2)/8. For convenience we set

h
(0)
r (l) = 0 for l < 0.

In terms of ν and h
(0)
r the loop equation (8) takes on the simple form

∞∑
l=−∞

h(0)r (l + k)ν(l) = h(0)r (k) for k > 0. (18)

Whenever this relation holds we will say that h
(0)
r is ν-harmonic on the positive integers.

Clearly the map q → ν, which associates a law for a random walk to an admissible
weight sequence, is injective since the weights may be recovered through

qk =

(
ν(−2)

2

) k−2
2

ν(k − 2). (19)

The following result is proved in the appendix, Section A.2, and relies on an explicit
evaluation of the conditions for admissibility in [26].
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Proposition 3. Relation (19) determines a bijection between admissible weight sequences
q and random walks (Xi)i>0 with step probabilities ν for which there exists an r ∈ (−1, 1]

such that h
(0)
r is ν-harmonic on Z>0 and

∞∑
l=0

h(1)r (l + 1)ν(l) 6 1, (20)

with h
(1)
r (l) :=

∑l−1
p=0 h

(0)
r (l) = [y−l−1] 1

(y−1)3/2
√
y+r

.

Remark 1. Actually we will see below in Proposition 4 that the condition (20) is redun-

dant, in the sense that it is satisfied by all ν for which h
(0)
r is ν-harmonic on Z>0 for some

r ∈ (−1, 1].

Before continuing let us extend the definitions of h
(0)
r and h

(1)
r by introducing the

family of functions h
(k)
r (l) : Z → R, k ∈ Z, that will appear in various places below. For

−1 6 r 6 1 and k ∈ Z we set

h(k)r (l) := [y−l−1]
1

(y − 1)k+1/2
√
y + r

(21)

=

(
−r
4

)l−k (
2l − 2k

l − k

)
2F1

(
1

2
+ k, k − l; 1

2
+ k − l;−1

r

)
.

Then h
(k)
r (l) = 0 for l < k, h

(k)
r (k) = 1 and

h(k+1)
r (l) =

l−1∑
p=k

h(k)r (p), h(k)r (l) = h(k+1)
r (l + 1)− h(k+1)

r (l) for k > 0. (22)

For future use we also record the asymptotics

h(k)r (l) ∼ lk−1/2

Γ(k + 1/2)
√

1 + r
as l→∞ (r < 1), (23)

which is valid for r ∈ (−1, 1) and k ∈ Z. In the case r = 1, one has to be a bit careful
since the asymptotics depend on the parity of l, but (23) remains valid when the left-hand

side is replaced by the average (h
(k)
r (l) + h

(k)
r (l + 1))/2. Finally, let us note that in the

bipartite case, h
(0)
1 and h

(1)
1 have the simple expressions

h
(0)
1 (2l) = 2−2l

(
2l

l

)
, h

(1)
1 (2l) = 2l · 2−2l

(
2l

l

)
, (l > 0) (24)

while h
(0)
1 vanishes on the odd integers and h

(1)
1 (2l − 1) = h

(1)
1 (2l).

We call ν critical when equality holds in (20) and regular critical if in addition ν(k)
falls off at least exponentially as k → ∞, i.e., there exists a constant C > 1 such that∑∞

k=0 ν(k)Ck <∞. It is a simple check using the ingredients of the proof of Proposition
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3 that these are equivalent to the corresponding conditions on the weight sequence q as
given in [26].

Let us try to understand the condition (20) a bit better. Notice that if h
(0)
r is ν-

harmonic on Z>0, it follows from (22) that the condition (20) is equivalent to

∞∑
l=−∞

h(1)r (l + k)ν(l)− h(1)r (k) =
∞∑
l=0

h(1)r (l + 1)ν(l)− h(1)r (1) 6 0 (25)

for all k > 1, i.e., h
(1)
r is ν-superharmonic on Z>0. Moreover, q is critical if and only if

h
(1)
r is ν-harmonic on Z>0, since the latter implies the ν-harmonicity of h

(0)
r . We therefore

have

Corollary 1. Relation (19) determines a bijection between critical weight sequences q

and step probabilities ν for which h
(1)
r is ν-harmonic on Z>0 for some r ∈ (−1, 1].

3.3 The perimeter process as a Doob transform

As we will see now the functions h
(0)
r and h

(1)
r have simple interpretations in terms of the

random walk (Xi)i>0.

Lemma 1. If h
(0)
r is ν-harmonic on Z>0 then the random walk (Xi)i started at l hits zero

before hitting the negative integers with probability h
(0)
r (l).

Proof. For fixed k > X0 = l, let τk be the first time at which (Xi)i exits {1, 2, . . . k − 1}.
The sought-after probability can then be expressed as supk P(Xτk = 0). Since h

(0)
r is

ν-harmonic on Z>0, h
(0)
r (Xi) defines a bounded martingale with respect to the random

walk killed upon entry of Z60. By the optional stopping theorem

h(0)r (l) = P(Xτk = 0) +
∞∑
p=k

P(Xτk = p)h(0)r (p).

The sum on the right-hand side is bounded by h
(0)
r (k) +h

(0)
r (k+ 1) since h

(0)
r is decreasing

along the even and odd integers, and therefore it goes to zero as k →∞. It follows that
supk P(Xτk = 0) = h

(0)
r (l).

Since the probability h
(0)
r (l) is positive we can easily condition (Xi)i to hit zero before

hitting the negative integers. The result is again a Markov process, known as the Doob
transform (or h-transform) of (Xi)i with respect to h

(0)
r , which turns out to be identical

in law to the perimeter process (li)i. Indeed, (15) can be rewritten precisely as

P(li+1 = l + k|li = l) =
h
(0)
r (l + k)

h
(0)
r (l)

ν(k), (26)

where ν is the law of the increments of (Xi)i.
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Following [8] we say a random walk (Xi)i>0 drifts to ∞ if P(Xi > X0 for all i) > 0,
and it drifts to −∞ if P(Xi 6 X0 for all i) > 0. If it drifts neither to ∞ nor to −∞, it is

said to oscillate. Using that h
(1)
r is essentially the renewal function associated to (Xi)i>0,

we can apply the ingredients of [8] to show the following.

Proposition 4. If h
(0)
r is ν-harmonic on Z>0 then the condition (20) is always satisfied.

Furthermore, if q is admissible, the associated random walk (Xi)i does not drift to ∞ and
it oscillates if and only if q is critical.

Proof. Following [8] let (Hi, Ti)i>0 be the strict ascending ladder point process of (X0 −
Xi)i>0 defined by T0 = 0 and

Hi = X0 −XTi , Ti+1 = inf{j > Ti : X0 −Xj > Hi},

and we setHi =∞ if Ti =∞. Then the renewal function is given by V (k) :=
∑∞

i=0 P(Hi 6

k). Using Lemma 1 we may identify h
(0)
r (l) =

∑∞
i=0 P(Hi = l). Therefore V (k) =∑k

l=0 h
(0)
r (l) = h

(1)
r (k + 1).

According to [8], Section 2, the renewal function of any random walk is ν-superharmonic

on the non-negative integers. Hence, h
(1)
r is ν-superharmonic on the positive integers,

which as discussed before is equivalent to (20) when h
(0)
r is ν-harmonic on Z>0. The sec-

ond statement follows from the fact, see again [8], Section 2, that a random walk drifting

to ∞ has a bounded renewal function, while h
(1)
r is unbounded. Moreover, the renewal

function of a random walk is ν-harmonic on Z>0 if and only if it does not drift to −∞,
which combined with Corollary 1 gives the final statement.

In the following we will consider cases when q is critical (but not necessarily regular

critical). Since h
(1)
r is ν-harmonic on Z>0 and vanishes on Z60 the Doob transform of the

random walk (Xk)k>0 w.r.t. h
(1)
r corresponds exactly to conditioning Xk to stay positive

(see [8] for precise statements). It is natural to expect that this transform describes the
perimeter process of the infinite Boltzmann planar map. In section 5 we will see that this
is indeed the case.

4 The volume process

Recall that the volume process (Vi)i>0 associated to a planar map m counts the number
of fully explored vertices after i peeling steps, i.e. Vi = |V(e(m, Fi))| − |Fi|, and that it
only increases when the frontier is pruned. If m is a q-Boltzmann planar map and l > 0,
then conditional on the change li+1 − li = −l− 2 in the perimeter during the i’th peeling
step, the law of the change Vi+1 − Vi in the volume is simply given by the law of the
number of vertices |V(m′)| in a (unpointed) q-Boltzmann planar map m′ ∈M(l) with root
face degree l. Remember that when l = 0 the latter is the one-vertex map and therefore
Vi+1−Vi = 1. In order to study this law let us introduce the analogues W (l,V ) and W

(l,V )
•
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of the unpointed and pointed disk functions (2) where the sum is restricted to be over

maps with exactly V vertices, with the convention that W (0,V ) = W
(0,V )
• = δV,1. Then

P(Vi+1 = Vi + v|li+1 = li + l) =
W (l,v)

W (l)
.

We denote the corresponding generating functions by

W (l)
g :=

∞∑
V=1

W (l,V )gV =
∑

m∈M(l)

g|V(m)|
∏

f∈F(m)\{fr}

qdeg(f) (27)

and similarly for the pointed version, which necessarily have radius of convergence in g
larger or equal to one. Using Euler’s formula we find that

|V(m)| = 1 + l/2 +
∑

f∈F(m)\{fr}

(deg(f)− 2)/2,

and therefore we may identify W
(l)
g (q) = g1+l/2W (l)(qg) where qg is the weight sequence

determined by (qg)k := g(k−2)/2qk. The same relation holds between the pointed versions

of the disk function, i.e. W
(l)
•,g(q) = g1+l/2W

(l)
• (qg).

When q is admissible and 0 < g < 1, then qg is also admissible, and we denote by
c±(g) the associated constants from Proposition 2, and r(g) = −c−(g)/c+(g). No general
explicit expression is known for these functions, but it is proved in the appendix, Section
A.3, that the behavior in the vicinity of g = 1 is universal in the case of regular critical
weight sequences q. A similar derivation appears in [2], section 4.2.5.

Lemma 2. If q is regular critical, 0 < g < 1 and c±(g) is defined as above then

lim
g↑1

1− c+(g)/c+(1)√
1− g

=

√
16

3(1 + r)c2+Lν
, (28)

where

Lν :=
∞∑
k=1

ν(k)h(2)r (k + 1). (29)

If q is non-bipartite we furthermore have that limg↑1(1− c−(g)/c−(1))/
√

1− g = 0.

For general critical weight sequences q it is not straightforward3 to determine the
behavior as g → 1, but at least we have the following result that we will need in the next
section. See section A.4 for the proof.

Lemma 3. If q is critical, l > 1 and W
(l)
g (q) is not identically zero, then W

(l)
g (q) has

unit radius of convergence.

3See e.g. [12], Section 3.4, of [11], Section 6, for discussions of the asymptotic behavior in the non-
regular case that qk ∼ kα−1c−k+ for 1/2 6 α 6 3/2.
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5 The infinite q-Boltzmann planar map

Depending on the admissible weight sequence q, the q-Boltzmann planar map m ∈ M(l)

with root face degree l may have combinatorial restrictions on the number of its vertices
|V(m)|. The set of possible vertex numbers is denoted by Iq,l, i.e.,

Iq,l := {V > 1 : P(|V(m)| = V ) > 0}.

In general, it follows from Euler’s formula that Iq,l consists of all but finite of the integers
in the lattice c+ dZ>0 for some c ∈ Z and

d := gcd({k > 1 : q2k+2 > 0, or k odd and qk+2 > 0}).

The starting point of this section is the following recent result.

Theorem 1 (Local limit of q-Boltzmann planar maps, Stephenson [29]). Let q be a
critical weight sequence, and let mV , V ∈ Iq,2, be rooted pointed q-Boltzmann planar
maps conditioned to have V vertices. Then there exists a random rooted infinite planar
map m∞ such that mV converges in distribution in the local topology to m∞ as V → ∞
along Iq,2.

We would like to study lazy peeling processes on the infinite planar map m∞. Recall
from Section 2 that in order for such process to be well-defined one needs all faces to
have finite degree and m∞ to be one-ended. Luckily both are satisfied by the q-IBPM.
The proof of Theorem 1 in [29] relies on the fact that the q-IBPM can be coded by an
infinite multi-type Galton-Watson tree. The absence of infinite degree faces in m∞ follows
from the absence of infinite degree vertices in the latter tree. On the other hand, the one-
endedness, which states that the complement of any finite submap has exactly one infinite
component, follows from the fact that the tree has a unique infinite spine.

Similar convergence results were obtained in [29] for the case where the conditions are
put on the number of edges or faces instead of vertices, but only in the case of regular
critical weight sequences. In order to study the peeling process of the general infinite
q-Boltzmann planar maps, we therefore need to understand the peeling of q-Boltzmann
planar map mV with fixed number V of vertices.

Theorem 2. The perimeter process (li)i>0 associated to any lazy peeling process of the
infinite q-Boltzmann planar map m∞ determined by the critical weight sequence q is given
by the Doob transform of the associated random walk from Corollary 1 with respect to h

(1)
r .

Proof. LetBr(m) be the geodesic ball of radius r around the root in the pointed Boltzmann
planar map m, i.e. the submap of m consisting of all vertices, and edges between them,
whose graph distance to the starting point of the root edge is at most r. The q-IBPM
m∞, whose existence follows from Theorem 1, is characterized by the fact that its geodesic
balls Br(m∞) agree in law with the balls Br(m) of the map m when conditioned to have
a large number of vertices, i.e.,

P(Br(m∞) = b) = lim
V→∞

P(Br(m) = b| |V(m)| = V ).
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The existence of these limits imply that we may instead condition the number of vertices
in m to be at least V since

lim
V→∞

P(Br(m) = b| |V(m)| > V ) = lim
V→∞

P(Br(m) = b| |V(m)| = V ).

In the following we will denote the random map m conditioned to have at least V vertices
by m>V . Similarly, we will write W

(l,>V )
• :=

∑∞
v=V W

(l,v)
• for the disk function with a lower

bound V on the number of vertices.
We will attempt to determine the law of the perimeter (li(m∞))ni=0 by considering the

V → ∞ limit of the analogous process (li(m>V ))ni=0 on m>V . Unfortunately, due to the
conditioning the latter is not a Markov process. However, we can easily turn it into a
Markov process (li, Vi)

n
i=0 by considering the joint law of the perimeter li and the volume

Vi, i.e., the number of fully explored vertices after i peeling steps, see section 2. Indeed, it
is easy to see that the law of the unexplored map u(m>V , Fi) only depends on the length
of the frontier and the number of fully explored vertices in the explored map e(m>V , Fi).
The transition probabilities follow from the loop equation

W (l,>V )
• =

∞∑
k=1

qkW
(l+k−2,>V )
• + 2

l−2∑
l′=0

∞∑
v=1

W (l′,v)W (l−l′−2,>V−v)
• , (30)

which is the straightforward generalization of (8). We read off that

Pm>V (li+1 = li + k, Vi+1 = Vi + v|e) =
W

(li+k,>V−Vi+v)
•

W
(li,>V−Vi)
•


δv,0qk+2 k > −1

2W
(−k−2)
v −li 6 k 6 −2

0 otherwise.

(31)

The limit as V → ∞ of (31) with li, Vi, k, v fixed must exist and must equal the
transition probability of the corresponding process on m∞, since the interior of any frontier
of length li + k enclosing Vi + v vertices is necessarily contained in a sufficiently large ball
Br(m∞) (take e.g. r = Vi + li + v + k). In particular, setting k = −2, we find that the
limit

lim
V→∞

W (l−2,>V−1)
• /W (l,>V )

• <∞ (32)

exists for all l > 3. Similarly, setting k > 1 such that qk+2 > 0, gives that

lim
V→∞

W (l+k,>V )
• /W (l,>V )

• <∞ (33)

exists for all l > 1. Combining these limits we find that

lim
V→∞

W
(l,>V−k)
•

W
(l,>V )
•

= lim
V→∞

W
(l+k,>V )
•

W
(l,>V )
•

W
(l+2k,>V )
•

W
(l+k,>V )
•

W
(l+2k−2,>V−1)
•

W
(l+2k,>V )
•

· · · W
(l,>V−k)
•

W
(l+2,>V−k+1)
•

(34)

converges for all l > 1 and takes value in [1,∞). It is not hard to see that if this limit is

larger than one then the generating function W
(l)
g must have radius of convergence larger
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than one, in contradiction with Lemma 3. Therefore we conclude that (34) has limit

one for all l > 1 and all k > 1 such that qk+2 > 0. Since W
(l,>V )
• is by construction

non-increasing for increasing V , this implies that the same limit holds for any k ∈ Z, i.e.,

lim
V→∞

W
(l,>V+v)
•

W
(l,>V )
•

= 1 for all l > 1, v ∈ Z. (35)

If q is non-bipartite (32) and (33) together with (35) imply that for all l, l′ > 1 and
v ∈ Z,

lim
V→∞

W
(l′,>V+v)
•

W
(l,>V )
•

=
F (l′)

F (l)
cl
′−l
+ , with F (l) := lim

V→∞

W
(l,>V )
•

W
(1,>V )
•

c1−l+ .

In the bipartite case we have the same identity for even l, l′ > 2 and v ∈ Z, but one should
define F (l) := limV→∞W

(l,>V )
• /W

(2,>V )
• c2−l+ . In either case we set F (l) = 0 for l 6 0. By

first taking the V →∞ limit of (31) and then summing over v ∈ Z>0 we find

Pm∞(li+1 = l + k, Vi+1 <∞|li = l, Vi = v) =
F (l + k)

F (l)
ν(k) (36)

for all l > 1 (and l even in the bipartite case) and all k ∈ Z. The one-endedness of m∞
implies that Pm∞(Vi+1 =∞|li = l, Vi = v) = 0 and therefore (36) leads to

Pm∞(li+1 = l + k|li = l) =
F (l + k)

F (l)
ν(k). (37)

Since m∞ has no infinite faces, these probabilities must sum to one, implying that F is
ν-harmonic on Z>0. It is known, see e.g. [21], Theorem 1, that for a general aperiodic
random walk with step probabilities ν there exists up to rescaling at most one non-negative
function that is ν-harmonic on Z>0 and vanishes on Z60. Therefore we necessarily have

F = h
(1)
r , since h

(1)
r is also ν-harmonic on Z>0, while F (1) = h

(1)
r (1) = 1 for non-bipartite

q and F (2) = h
(1)
1 (2) = 1 for bipartite q.

It follows easily from the ingredients of this proof, e.g. by deducing the laws of the
peeling process from the large-V limit of (30), that apart from the bias in the perimeter
li the laws of the explored maps after i steps in the q-IBPM m∞ and in the pointed
q-Boltzmann planar map m agree (provided both arise from the same peeling algorithm).
Indeed, if e0 is a possible explored map of m∞ after i steps, i.e. P(e(m∞, Fi) = e0) > 0,
then

P(e(m∞, Fi) = e0) =
h
(1)
r (l)

h
(1)
r (l0)

h
(0)
r (l0)

h
(0)
r (l)

P(e(m, Fi) = e0), (38)

where l is the outer face degree of e0 and l0 is the root face degree (which we usually take
to be 2 for the q-IBPM). In particular, this means that conditionally on the perimeter
process the description of the volume process in Section 4 remains valid for the infinite
q-Boltzmann planar map without change.

Theorem 2 also allows us to establish the following expected limits in an indirect way.
Recall that W (l,V ) =

∑
mwq(m) is the disk function involving a sum over planar maps m

with exactly V vertices and root face degree l.
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Corollary 2. For l > 1 and v ∈ Z, provided W (2,V−v) 6= 0 and W (l,V ) 6= 0 for infinitely
many V > 0, along this subsequence the disk function satisfies the limit

W (l,V−v)

W (2,V )

V→∞−−−→ h
(1)
r (l)

h
(1)
r (2)

cl−2+ . (39)

Proof. It is not too hard to see that provided v is sufficiently large one can find a possible
explored map e0 of m∞, in the sense as above, with outer face degree l and v fully
explored vertices, i.e. vertices that are not incident to the outer face. According to
Theorem 1, P(e(m∞, Fi) = e0) = limV→∞ P(e(mV , Fi) = e0) along V ∈ Iq,2, where mV

is a q-Boltzmann planar map with root face degree two conditioned to have V vertices.
Assuming a deterministic peeling algorithm, we can explicitly evaluate

P(e(mV , Fi) = e0) = wq(e0)
W

(l,V−v)
•

W
(2,V )
•

,

where wq(e0) =
∏

f qdeg(f) with the product running over all faces except the root face
and outer face. On the other hand, the right-hand side of (38) equals

h
(1)
r (l)

h
(1)
r (2)

h
(0)
r (2)

h
(0)
r (l)

wq(e0)
W

(l)
•

W
(2)
•

=
h
(1)
r (l)

h
(1)
r (2)

wq(e0)c
l−2
+ .

Combining these facts we establish (39) for sufficiently large v. By considering suitable
ratios of the established limits one may obtain the limit in the full range of v, but we
leave the details to the reader.

6 Scaling limit of the perimeter process

Now that we have a simple characterization of the perimeter process (li)i>0 of an infinite q-
Boltzmann planar map, we can try to obtain its scaling limit for general weight sequences
q. For this we need to study the positive and negative tails of the step probabilities ν,
which are related to each other through the following result.

Lemma 4. Suppose ν is critical, i.e. h
(1)
r is ν-harmonic on Z>0, then the negative jump

probabilities can be expressed linearly in the positive probabilities as

ν(−k) =
∞∑
m=1

Rr(k,m)ν(m), for k > 1, (40)

where

Rr(k,m) :=
m−1∑
p=0

h(1)r (m− p)
(
h(−2)r (k + p− 1) + rh(−2)r (k + p− 2)

)
(41)
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Proof. From (16) and (14) it follows that the probability generating function ν̂(y) :=∑∞
k=−∞ ν(k)yk, which converges on an annulus 1 6 |y| 6 R for some R ∈ [1,∞], is given

formally by

ν̂(y) = 1 +
1

y
M(yc+)

√
(y − 1)(y + r),

where c+ =
√

2/ν(−2). Using (12) this evaluates to

ν̂(y) = 1 +
1

y

(
−1 +

∞∑
m=0

m∑
l=0

ν(m)h(0)r (m− l)yl
)√

(y − 1)(y + r).

Writing

√
(y − 1)(y + r) = (y + r)

∞∑
p=−1

h(−1)r (p)y−p−1 =
∞∑

p=−2

(
h(−1)r (p+ 1) + rh(−1)r (p)

)
y−p−1

we get for k > 1,

ν(−k) =[y−k+1]

(
−1 +

∞∑
m=0

m∑
l=0

ν(m)h(0)r (m− l)yl
)

∞∑
p=−2

(
h(−1)r (p+ 1) + rh(−1)r (p)

)
y−p−1

=− h(−1)r (k − 1)− rh(−1)r (k − 2)

+
∞∑
m=0

m∑
l=0

h(0)r (m− l)
(
h(−1)r (l + k − 1) + rh(−1)r (l + k − 2)

)
ν(m).

It follows from the ν-harmonicity of h
(1)
r that

ν(0) = 1−
∞∑
m=1

h(1)r (m+ 1)ν(m).

Hence we have (40) with

Rr(k,m) =− h(1)r (m+ 1)
(
h(−1)r (l + k − 1) + rh(−1)r (l + k − 2)

)
+

m∑
l=0

h(0)r (m− l)
(
h(−1)r (l + k − 1) + rh(−1)r (l + k − 2)

)
and (41) follows from writing h

(0)
r (m− l) = h

(1)
r (m− l+ 1)− h(1)r (m− l) and recombining

the terms.

In the bipartite case r = 1, the kernel Rr(k,m) can further be simplified to

R1(2k, 2m) =
mh

(1)
1 (2k)h

(1)
1 (2m+ 2)

2k(2k − 1)(m+ k)
= 4−m−k

m(2m+ 1)

(m+ k)(2k − 1)

(
2k

k

)(
2m

m

)
.
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From (41) we can easily determine the large-k behaviour of Rr(k,m) for fixed m,

lim
k→∞

Rr(k,m)

h
(−2)
r (k)

= (1 + r)
m−1∑
p=0

h(1)r (m− p) = (1 + r)h(2)r (m+ 1),

where in the bipartite case k and m are restricted to be even. Recall from (29) the

definition Lν =
∑∞

k=1 ν(k)h
(2)
r (k + 1), which is not necessarily finite. If it is finite, for

which regular criticality of ν is a sufficient condition, then Lemma 4 together with (23)
implies that for k →∞ (and r < 1)

lim
k→∞

ν(−k) k5/2 = Lν(1 + r) lim
k→∞

h(−2)r (k) k5/2 =
3Lν
√

1 + r

4
√
π

. (42)

If r = 1, ν(−k) vanishes for odd k but the limit still holds when ν(−k) is replaced by
(ν(−k) + ν(−k − 1))/2.

Lemma 5. If h
(1)
r is ν-harmonic on Z>0 and Lν < ∞, then the characteristic function

ϕν(θ) close to θ = 0 satisfies

ϕν(θ) :=
∞∑

k=−∞

ν(k)eikθ = 1−
√

1 + r

2
Lν |θ|1/2(|θ| − iθ) +O(|θ|5/2), (43)

which implies in particular that ν is centered.

Proof. From Lν <∞ and (42) it follows that ν has finite first moments and therefore the
characteristic function ϕν(θ) is continuously differentiable. Using (16) and (14) we can
express ϕν(θ) as

ϕν(θ) = 1 + e−iθM(c+e
iθ)
√

(eiθ − 1)(eiθ + r). (44)

From (12) it follows that

M(c+e
iθ) = −1 +

∞∑
m=0

ν(m)
m∑
l=0

h(0)r (m− l)eilθ =
∞∑
m=0

ν(m)
m∑
l=0

h(0)r (m− l)
(
eilθ − 1

)
.

One may check that for any θ ∈ R and l > 0∣∣∣(eilθ − 1)
√

(eiθ − 1)(eiθ + r)
∣∣∣ 6 l
√

1 + r |θ|3/2.

Therefore

|ϕν(θ)− 1| 6
√

1 + r|θ|3/2
∞∑
m=0

ν(m)
m∑
l=0

l h(0)r (m− l) =
√

1 + r|θ|3/2Lν

and we may perform the small-θ expansion termwise. Equation (43) then follows from

e−iθ(eilθ − 1)
√

(eiθ − 1)(eiθ + r) = −
√

1 + r

2
|θ|1/2(|θ| − iθ) +O(|θ|5/2).

In particular ϕ′ν(0) = 0 and therefore
∑∞

k=−∞ kν(k) = 0.
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Notice that the last statement of Lemma 5 that ν is centered can also be inferred from
Proposition 4, since an oscillating random walk (Xi)i with finite first moments necessarily
has vanishing drift.

Let S3/2 be the 3/2-stable Levy process with no positive jumps, normalized such that
for all θ ∈ R

E exp(iθS3/2(t)) = exp
[
−t|θ|1/2(|θ| − iθ)/

√
2
]
, (45)

and S+
3/2 the corresponding process conditioned to be positive (see e.g. [16]). The following

result is the analogue of Proposition 5 in [19].

Proposition 5. Let (Xk)k>0 be a random walk with step probabilities ν(k) and r ∈ (−1, 1],

such that h
(1)
r is ν-harmonic on Z>0 and let (lk)k>0 be the corresponding Doob transform.

If Lν <∞ then we have the following convergence in distribution in the sense of Skorokhod
of (Xk)k>0 and (lk)k>0 to S3/2 and S+

3/2, Xbntc(√
1 + rLνn

) 2
3


t>0

(d)−−−→
n→∞

S3/2(t),

 lbntc(√
1 + rLνn

) 2
3


t>0

(d)−−−→
n→∞

S+
3/2(t). (46)

Proof. The characteristic function for the distribution of n−2/3Xbntc is given by

θ →
(
ϕν(n

−2/3θ)
)bntc

with ϕν as in Lemma 5. It converges pointwise as n→∞ to

(
ϕν(n

−2/3θ)
)bntc −−−→

n→∞
exp

[
−t
√

1 + r

2
Lν |θ|1/2(|θ| − iθ)

]
,

which implies the stated convergence in distribution of the random walk (Xk)k>0. Since
(lk)k>0 is obtained from (Xk)k>0 by conditioning on staying positive its convergence to
S+
3/2 follows from the invariance principle in [15] (see also [19], Proposition 5, for the

analogous statement).

6.1 Intermezzo: heavy-tailed case

In the rest of the paper we will only consider cases in which Lν < ∞, but for the sake
of completeness let us comment on what happens when Lν =∞. The latter implies that∑∞

k=1 k
3/2ν(k) =∞, while

∑∞
k=1 k

1/2ν(k) <∞ by (20). Therefore we may define

α = inf

{
s ∈ R :

∞∑
k=1

ksν(k) =∞

}
which necessarily takes values in [1/2, 3/2]. For simplicity let us assume r < 1 and

lim
k→∞

kα
∞∑
m=k

ν(m) = p+

the electronic journal of combinatorics 23(1) (2016), #P1.28 23



with p+ finite and positive. Then

lim
k→∞

kα+1ν(−k) = lim
k→∞

∞∑
m=1

kα+1 (Rr(k,m)−Rr(k,m− 1))
∞∑
l=m

ν(l)

= lim
k→∞

∫ ∞
0

dxk2 (Rr(k, bxkc)−Rr(k, bxkc − 1)) kα
∞∑

l=bxkc

ν(l). (47)

One may check using the asymptotics (23) that for r < 1 we have

lim
k→∞

k2 (Rr(k, bxkc)−Rr(k, bxkc − 1)) =

√
x

2π

x+ 3

(x+ 1)2
,

which suggests that (47) should equal

p+

∫ ∞
0

dx

√
x

2π

x+ 3

(x+ 1)2
x−α =

α

cos(π(α− 1))
p+.

Hence, both tails of ν fall off with the same power −α− 1 and the positive tail is lighter
by a factor of cos(π(α− 1)) compared to the negative tail.4 We therefore expect, but do
not prove, that (n−1/αXbntc)t>0 converges in distribution as n→∞ (up to normalization)
to an α-stable Levy process Sα,β with skewness parameter

β = − cot2(πα/2), (48)

which is characterized by5

E exp(iθSα,β(t)) = exp [−t|θ|α(1− iβ tan(πα/2)sgn(θ))]

= exp [−t|θ|α(1− i cot(πα/2)sgn(θ))] . (49)

Another way to arrive at (48) is by combining Zolotarev’s formula [32] for the positivity
parameter

ρ := P(Sα,β(1) > 0) =
1

2
+

1

πα
arctan

(
β tan

πα

2

)
with the fact (see, e.g., [16, 15]) that the renewal function x→ xα(1−ρ) for Sα,β should be

the scaling limit of the discrete renewal function h
(1)
r , implying that α(1− ρ) = 1/2.

Notice that the value α = 1 is special since it yields a symmetric limiting process,
namely the Cauchy process S1,0. One may wonder whether a random walk with critical

4In a slightly different form this relation was observed in [12, 11] in the setting of planar maps coupled
to an O(n) loop model with 0 < n < 1. The gasket of a random map with loops, which is obtained
by removing the interiors of all loops, turns out to be distributed as a q-Boltzmann planar map for a
particular weight sequence satisfying qk ∼ k−α−1c−k+ , where 1/2 < α < 3/2 is one of the two solutions to
n = 2 cos(π(α− 1)). Notice that the ratio of the tails of ν is precisely n/2.

5Notice that the normalization of the process S3/2 in Proposition 5 differs slightly from Sα,β with

α = 3/2 and β = −1: one has S3/2(
√

2t) = S3/2,−1(t).
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step probabilities ν exists which is already symmetric at the discrete level. It turns out
that for each r ∈ (−1, 1] there exists a one parameter family of such random walks. To
see this recall the expression (44) for the characteristic function ϕν(θ). Symmetry of ν is
equivalent to ϕν(θ) being real for all θ, i.e.

M(c+e
iθ)e−iθ

√
(eiθ − 1)(eiθ + r) ∈ R. (50)

Notice that e−iθ
√

(eiθ − 1)(eiθ + r) only contains non-positive powers of eiθ, whileM(c+e
iθ)

contains only non-negative powers of eiθ. Therefore the only way (50) can be real is when
they are complex conjugates up to a real constant. Hence

ϕν(θ) = 1− a
∣∣∣√(eiθ − 1)(eiθ + r)

∣∣∣2 = 1− 2a
√

1 + r2 + 2r cos(θ) |sin(θ/2)| .

This corresponds to a (critical) step probability distribution ν if and only if∫ 2π

0

ϕν(θ) ∈ [0, 1),

which amounts to

0 < a 6


π/4 for r = 0, 1

π

2(r+1)+
(r−1)2√

r
arctanh

(
2
√
r

r+1

) for 0 < r < 1

π

2(r+1)+
(r−1)2√
−r arctan

(
2
√
−r

r+1

) for − 1 < r < 0

.

For example, in the case r = 1 and a = π/4 we get

ν(k) =

{
1

k2−1 for k even and k 6= 0

0 otherwise
,

which is the random walk associated to the weight sequence with q2k = 61−k/((2k−2)2−1),
k > 1, and the other weights zero.

7 Scaling limit of the volume process

Let q be regular critical and ml ∈M(l), l > 1, a q-Boltzmann planar map with root face
degree l. The expected number of vertices in ml is easily determined to be

E|V(ml)| =
W

(l)
•

W (l)
=
h
(0)
r (l)ν(−2)

ν(−l − 2)
.

Therefore, using (42),

Bν := lim
l→∞

l−2E|V(ml)| =
ν(−2)

(1 + r)Lν
lim
l→∞

h
(0)
r (l)

l2h
(−2)
r (l)

=
4ν(−2)

3(1 + r)Lν
. (51)

With some extra work we can determine the convergence in distribution of l−2|V(ml)| as
follows.
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Proposition 6. Let ξ be a positive random variable with density e−1/(2ξ)ξ−5/2/
√

2π. Then
we have the weak convergence

l−2|V(ml)|
Bν

(d)−−−→
l→∞

ξ. (52)

Proof. We will prove that the Laplace transform of the left-hand side of (52) converges
pointwise to the Laplace transform of ξ, i.e.,

lim
l→∞

E exp
(
−λl−2|V(ml)|/Bν

)
= (1 +

√
2λ)e−

√
2λ (53)

for all λ > 0. In order to evaluate the expectation value on the left-hand side let us
write g = exp(−λl−2/Bν) < 1 and consider the disk function W

(l)
g in (27). Recall that

we may identify W
(l)
g (q) = g1+l/2W (l)(qg) where qg is the weight sequence determined by

(qg)k := g(k−2)/2qk and let c±(g) (and r(g) = −c−(g)/c+(g)) be the associated constants
from Proposition 2. Then one finds

E|V(ml)|g|V(ml)|

E|V(ml)|
=
W

(l)
•,g

W
(l)
•

=

(
c+(g)

c+(1)

)l h(0)r(g)(l)
h
(0)
r(1)(l)

.

From Lemma 2 it follows that r(g) is continuous as g → 1 and that

lim
g↑1

1− c+(g)/c+(1)√
1− g

=
√

2Bν .

Setting g = exp(−λl−2/Bν) and using the asymptotics (23) we find

lim
l→∞

h
(0)
r(g)(l)/h

(0)
r(1)(l) = 1

and therefore

lim
l→∞

E|V(ml)| exp(−λl−2|V(ml)|/Bν)
E|V(ml)|

= lim
l→∞

(
1−
√

2λ/l
)l

= e−
√
2λ.

Since the left-hand side is bounded by one uniformly in λ we may integrate both sides
with respect to λ, which leads to (53).

Given the process S+
3/2 let us introduce an associated process Z as in [19, 20] by setting

Z(t) =
∑
ti6t

ξi(∆S
+
3/2(ti))

2,

where (ti)i>0 is a measurable enumeration of the jumps of S+
3/2(t), ∆S+

3/2(ti) is the size of

the jump at time ti, and (ξi)i>0 are independent random variables with the law of ξ in
Proposition 6.
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Theorem 3 (Analogue of Curien–le Gall [19], Theorem 1). Let q be a regular critical
weight sequence. Then one has the following joint convergence in distribution in the sense
of Skorokhod of the boundary length (lk)k>0 and the volume (Vk)k>0 of the peeling process
of the infinite q-Boltzmann planar map: lbntc(√

1 + rLνn
)2/3 , Vbntc

8
3c2+

( Lν
1+r

)1/3
n4/3


t>0

(d)−−−→
n→∞

(
S+
3/2(t), Z(t)

)
t>0

, (54)

Proof. As in [19] we may write

Vk =
k∑
i=1

1{li<li−1−1}Ui,

where Ui are independent random variables distributed like V(li−1 − li − 2). The proof
of [19] goes through without modification, since it only depends on (the analogues of)
Propositions 5 and 6 and on the following two bounds. It follows from (51) and (42)

that there exist constants C,C ′ > 0 such that EV(l) 6 Cl2 for all l > 0 and h
(1)
r (l −

k)ν(−k)/h
(1)
r (l) 6 ν(−k) 6 C ′k−5/2 for all l, k > 1.

8 Examples

The one-to-one relation between critical weight sequences and random walks with jump
probabilities ν such that h

(1)
r is ν-harmonic on Z>0 for some r provides a simple algorithm

to determine the scaling constants for specific infinite q-Boltzmann planar maps. First
one imposes desired conditions on the ν(k) for k > −1. Then the ν-harmonicity of h

(1)
r

on {1, 2, 3} gives three equations, of which two can be used to fix r and c+, while the

remaining corresponds to the criticality condition. The ν-harmonicity of h
(1)
r on Z>4 then

allows one to solve for all ν(k) with k 6 −3 (perhaps by using Lemma 4). Notice that
the latter encode exactly the (unpointed) disk functions W (l).

8.1 2p-angulations

Let p > 2 and set ν(k) = 0 for all −1 6 k 6= 2p − 2, while ν(2p − 2) > 0. Since 2p-
angulations are bipartite, we necessarily have r = 1. It follows from the ν-harmonicity of
h
(1)
1 on {1, 3} that

ν(2p− 2) =
1

h
(1)
1 (2p− 1)

=
22p−1

p
(
2p
p

) , ν(−2) = h
(1)
1 (3)− h(1)1 (2p+ 1)ν(2p− 2) =

p− 1

2p

and therefore c+ and the critical weight q2p are given by

c+ =

√
2

ν(−2)
=

√
4p

p− 1
and q2p = c−2p+2

+ ν(2p− 2) = 2

(
1− 1

p

)p−1
1

p
(
2p
p

) .
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After some algebra one finds for l > 0,

ν(−2l) =
p− 1

2l(2l − 1)(p+ l − 1)
h
(1)
1 (2l) = 4−l

p− 1

(p+ l − 1)(2l − 1)

(
2l

l

)
and

Lν =
∞∑
k=1

h
(2)
1 (k + 1)ν(k) =

4

3
(p− 1).

8.2 (2p + 1)-angulations

This time we set ν(k) = 0 for −1 6 k 6= 2p− 1, which leads to

ν(2p− 1) =
1

h
(1)
r (2p)

and ν(−2) = h(1)r (3)− h(1)r (2p+ 2)ν(2p− 1),

while r is the unique root in (−1, 1) of the 2p’th order polynomial

h(1)r (2p+ 1)− 1

2
(3− r)h(1)r (2p) = 0.

Only the case p = 1 admits a simple closed-form solution, leading to the well-known
critical values for (type-I) triangulations,

r = 2
√

3− 3, q3 =
1√

12
√

3
and c+ =

√
6 + 4

√
3.

The corresponding scaling constant for the uniform infinite planar triangulation (UIPT)
then becomes

Lν =
1

2

(
1 +

1√
3

)
.

8.3 Uniform planar maps with controlled number of edges and vertices

As a final example let us consider the random planar map m ∈ M(l) that is sampled
according to the critical Boltzmann weight m → a|V(m)|b|E(m)| for suitable a, b > 0. Using
Euler’s formula it is easy to see that these are precisely the q-Boltzmann planar maps for
which the critical weight sequences q are geometric sequences. By Corollary 1 these are
in bijection with step probabilities ν for which h

(1)
r is ν-harmonic on Z>0 and for which

(ν(k))k>−1 is geometric. It is straightforward to construct all the ν satisfying the latter
conditions. Indeed, we may write ν(k) = ασk for k > −1 with α > 0 and 0 < σ < 1, and

we consider the ν-harmonicity of h
(1)
r on {1, 2, 3}. The first condition gives

1 =
∞∑
k=0

h(1)r (k + 1)ν(k) =
α

(1− σ)3/2
√

1 + rσ
,
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fixing α in terms of r and σ, while the second is equivalent to (3− r)σ = 2. Since we need
r ∈ (0, 1] we should restrict to σ ∈ (1/2, 1) and take α = (1− σ)3/2

√
3σ − 1. Finally, the

third conditions reads

3

8
(5− 2r + r2) =

∞∑
k=−1

h(1)r (k + 3)ν(k) =
1− α
σ2

+
2

c2+
,

which allows us to express c+ in terms of σ. It is convenient here to switch parameters
from σ to H defined by

H :=
∞∑
k=0

(k + 1)ν(k) =

√
3σ − 1

1− σ
, σ =

H2 + 1

H2 + 3
,

such that H ∈ (1,∞). Some simple algebra allows us to express the various constants as

r =
H2 − 3

H2 + 1
, c+ =

2(H2 + 1)

(H− 1)3/2
√
H + 3

, Lν =
1

2
(H2 + 1).

In particular we may parameterize all critical geometric weight sequences by

qk =
16H

(H + 3)(H− 1)3

(
(H− 1)3/2

√
H + 3

2(H2 + 3)

)k
, (55)

which may be compared with [22], Section 5.6

The Boltzmann planar maps associated to geometric weight sequences are special in
that they are the only Boltzmann planar maps whose dual maps are also distributed as
Boltzmann planar maps. Indeed, the weight a|V(m)|b|E(m)| is proportional to (a′)|F(m)|(b′)|E(m)|

for suitably chosen a′ and b′. This duality corresponds exactly to replacing H−1
2
→ 2

H−1
in the weight sequence (55). In particular, the self-dual case H = 3 yields the weight
sequence of uniform planar maps, for the which the Boltzmann weight depends only on
the number of edges.

A Proofs using results and notation of Miermont

The starting point for the proofs to follow is the following result appearing in [26].

Proposition 7 (Miermont [26], Proposition 1). Define

f •(x, y) :=
∞∑
k=0

∞∑
k′=0

xkyk
′
(

2k + k′ + 1

k + 1

)(
k + k′

k

)
q2+2k+k′ (56)

f �(x, y) :=
∞∑
k=0

∞∑
k′=0

xkyk
′
(

2k + k′

k

)(
k + k′

k

)
q1+2k+k′ . (57)

6The parameter r introduced in [22], Section 5.1, is related to H by r = 3/H.
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The non-bipartite sequence q is admissible if and only if there exist z+, z� > 0 such that

f •(z+, z�) = 1− 1

z+
, f �(z+, z�) = z� (58)

and the matrix

Mq(z+, z�) :=

 0 0 z+ − 1
z+

z�
∂xf

�(z+, z�) ∂yf
�(z+, z�) 0

(z+)2

z+−1∂xf
•(z+, z�) z+z�

z+−1∂yf
•(z+, z�) 0

 (59)

has spectral radius ρq 6 1. Moreover, if q is admissible the solution z+, z� is unique and

the partition function (3) is given by Z•(q) := W
(2)
• (q)− 1 = 2z+ + (z�)2 − 1.

The case of bipartite weight sequences q is not quite covered by this result, but was
solved earlier in [24], Proposition 1. There it was shown that a bipartite weight sequence is
admissible if and only if f •(z+, 0) = 1−1/z+ has a solution such that (z+)2∂xf

•(z+, 0) 6 1.
Therefore Proposition 7 can be made to cover arbitrary weight sequences by allowing
z� > 0 and replacing the condition on Mq(z+, z�) by (z+)2∂xf

•(z+, 0) 6 1 whenever
z� = 0.

A.1 Proof of Proposition 2

Proof. Let q be an admissible weight sequence, i.e., Z•(q) := W
(2)
• (q)− 1 <∞. For any

(m, v) ∈M• one may label the vertices of m by their graph distance to the marked vertex
v. The set of pointed rooted maps naturally partitions into M• = M+

•
⋃
M−
•
⋃
M0
•

based on whether the labels increase, decrease or remain constant along the root edge of
the map. The partition function decomposes accordingly as

Z• = Z+
• + Z−• + Z0

• = 2Z+
• + Z0

• ,

where we have defined
Zε
• :=

∑
m∈Mε

•

∏
f∈F(m)

qdeg(f)

for ε ∈ {−, 0,+}. Clearly Z• <∞ then implies Zε
• <∞.

According to the Bouttier-Di Francesco-Guitter bijection [13] z+ := Z+
• + 1 is the

generating function for labeled mobiles rooted at a labeled vertex, while z� :=
√
Z0
• is

the generating function for so-called half-mobiles. We will see that it is straightforward
to write down an expression for the pointed disk function W

(l)
• using these generating

functions. Similar expression can be found in [13].

Given (m, v) ∈M(l)
• , let (ei)

l
i=1 be the sequence of oriented edges around the root face

in counterclockwise order (or clockwise when the root face is taken to be the outer face
as in figure 5a) starting with the root edge and define the sequence (xi)

l
i=1 ∈ {−1, 0, 1}l

by setting xi equal to the change in the distance to v along the edge ei. The labeled
mobile corresponding to (m, v), rooted at the vertex corresponding to the root face of
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Figure 5: The Bouttier-Di Francesco-Guitter bijection gives a map between pointed rooted
planar maps (figure a) and labeled mobiles (figure b), which are rooted planar trees with
three types of labeled or unlabeled vertices. The numbers z+, z� give the total weight of
all possible submobiles appearing in a branch ending at either a black vertex or a diamond
shaped vertex (figure c). The total weight of all mobiles sharing the same “distance change
sequence” (xi)

l
i=1 = (0, 1,−1, 1,−1, 1, 0,−1, 0) is thus (z+)3(z�)3.

m, decomposes into k mobiles that are rooted at a labeled vertex and k′ half-mobiles,
where k and k′ are respectively the number of 1’s and 0’s in the sequence (xi)

l
i=1 (see

figure 5c). Since
∑l

i=1 xi = 0, we necessarily have k′ + 2k = l. It follows from the
Bouttier-Di Francesco-Guitter bijection that any such sequence (xi)

l
i=1 satisfying the latter

condition can occur. Hence we may identify

W (l)
• =

bl/2c∑
k=0

l!

(k!)2(l − 2k)!
(z+)k(z�)l−2k,

which is necessarily finite. Its generating function is

W•(z) =
∞∑
l=0

W (l)
• z

−l−1 =
∞∑
k=0

∞∑
l=2k

1

z

(
2k

k

)(
l

2k

)(
z+

(z�)2

)k (
z�

z

)l
=
∞∑
k=0

(
2k

k

)
1

z − z�

(
z+

(z − z�)2

)k
=

1√
(z − z�)2 − 4z+

,

where in the third equality we used the identity
∑∞

l=2k

(
l
2k

)
yl−2k = [x2k](1 − y − x)−1 =

(1− y)−2k−1 for |y| < 1. We see that W•(z) is of the form (10) with

c± = z� ± 2
√
z+.

The stated bounds on c± follow directly from the fact that by construction z� = 0 if and
only if qk = 0 for all odd k, while z+ = Z+

• + 1 > 1.
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A.2 Proof of Proposition 3

Proof. Notice that we can rewrite (56) and (57) in terms of the generating function U ′(z)
in (11) as

f •(x, y) = [z−1]
z − y

2x

U ′(z)√
(z − y)2 − 4x

, (60)

f �(x, y) = [z−1]
U ′(z)√

(z − y)2 − 4x
. (61)

If we set c± = z� ± 2
√
z+ and r = −c−/c+, we may rewrite f �(z+, z�) in terms of c+, r

and ν(k) for k > −1 using (16),

f �(z+, z�) = [z−1]
U ′(z)√

(z − c+)(z + c+r)
= [y−1]

U ′(c+y)√
(y − 1)(y + r)

= [y−1]
∞∑
k=1

qk(yc+)k−1
∞∑
l=0

h(0)r (l)y−l−1 = c+

∞∑
k=−1

ν(k)h(0)r (k + 1).

Since z� = c+(1− r)/2 = c+h
(0)
r (1) the second equation in (58) is equivalent to

∞∑
k=−1

ν(k)h(0)r (k + 1) = h(0)r (1). (62)

Similarly we may evaluate

f •(z+, z�) = [z−1]
z − z�

2z+
U ′(z)√

(z − c+)(z + rc+)

= [y−1]
8

(1 + r)2

(
y − 1− r

2

)
U ′(c+y)/c+√
(y − 1)(y + r)

=
8

(1 + r)2

∞∑
k=−1

ν(k)

(
h(0)r (k + 2)− 1− r

2
h(0)r (k + 1)

)
.

In combination with (62) the first equation in (58) is equivalent to

∞∑
k=−1

ν(k)h(0)r (k + 2) =
(1 + r)2

8

(
1− 16

(1 + r)2c2+

)
+

1− r
2

h(0)r (1)

=
1

8
(3− 2r + 3r2)− 2

c2+
= h(0)r (2)− ν(−2),

where we used ν(−2) = 2/c2+. Since h
(0)
r (0) = 1, this is equivalent to

∞∑
k=−2

ν(k)h(0)r (k + 2) = h(0)r (2). (63)
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Let us introduce the notation

Ak := [z−1]
(z − z�)kU ′(z)

((z − z�)2 − 4z+)3/2
,

which are nonnegative numbers for k > 0. Assuming q is non-bipartite, one may evaluate
Mq(z+, z�) using (60) and (61) to

Mq(z+, z�) =

 0 0 z+ − 1

2 z
+

z�
A0 A1 0

1−z+(1−A1)
z+−1 2 z+z�

z+−1A0 0

 ,

where in the calculation of ∂xf
•(z+, z�) we used that (58) implies that A3 − 4z+A1 =

2z+ − 2.
Let p(λ) = det(Mq − λI) be the characteristic polynomial of the matrix Mq(z+, z�).

We claim that the statement that the spectral radius ρq is less or equal to one, which

means that p(λ) has no roots greater than one, is equivalent to A1 + 2
√
z+A0 6 1. In the

case that A1 > 1 both statements are false, since p(A1) = (2z+A0)
2 > 0, so let us assume

A1 < 1. In that case A1 +2
√
z+A0 6 1 is equivalent to p(1) = z+(4z+A2

0− (1−A1)
2) 6 0,

which is a necessary condition for the spectral radius to be less or equal to one. It is also
sufficient because one can check that p(λ)− (2z+A0)

2 = 0 has three distinct roots smaller
than one, namely A1 and ±

√
1− z+(1− A1).

The condition A1 + 2
√
z+A0 6 1 is also the right one in the bipartite case, since then

A0 = 0 while (z+)2∂xf
• 6 1 is equivalent to A1 6 1. We conclude that in general q

is admissible if and only if for some solution (z+, z�) to (58), or equivalently for some
solution (c+, r) to (62) and (63), the following condition is satisfied:

1 >A1 + 2
√
z+A0 = (∂y +

√
z+∂x)f

�(z+, z�) = [z−1]
(z − z� + 2

√
z+)U ′(z)

((z − z�)2 − 4z+)3/2

= [z−1]
U ′(z)

(z − c+)3/2
√
z − c−

= [y−1]
U ′(yc+)/c+

(y − 1)3/2
√
y + r

=
∞∑
k=0

ν(k)h(1)r (k + 1).

A.3 Proof of Lemma 2

Proof. In the notation of the other proofs in this appendix let us write c± = c±(g = 1) =
z� ± 2

√
z+. Define the function f : R2 → (R

⋃
{∞})2 in terms of the functions f � and f •

in (56) and (57) associated to q by

f(x, y) =
(
1− y−1f �(x, y), 1− x+ xf •(x, y)

)
.

Applying Proposition 7 to the weight sequence qg with 0 < g 6 1 we find that there
exists a solution to f(x, y) = (0, 1− g). From Proposition 3 one may deduce that there is
a unique such solution such that

(∂y +
√
x∂x)f

�(x, y) 6 1 (64)
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and the values c±(g) are given in terms of this solution by

c±(g) =
1
√
g

(y ± 2
√
x). (65)

It follows from the regular criticality of q that the function f is analytic in the neigh-
borhood of (z+, z�), where it takes value f(z+, z�) = (0, 0). So in order to find the solutions
c±(g) for g close to 1 it suffices to Taylor expand f around (z+, z�). The first-order partial
derivatives, which appear in the matrix Mq(z+, z�) in (59), were already computed in the
proof of Proposition 3.

Let us treat the bipartite and non-bipartite bases separately, starting with the latter.
Writing ∆x := x− z+ and ∆y := y− z� we find after some straightforward manipulation

f(z+ + ∆x, z� + ∆y) = −2A0(∆x−
√
z+∆y)

(
1

z�
,
√
z+
)

+O(∆x2 + ∆y2),

where we used that the criticality of q implies that A1 + 2
√
z+A0 = 1. It follows that

limg↑1 ∆x/∆y =
√
z+ and that ρ(x, y) := (−z�

√
z+, 1)·f(x, y) is stationary at ∆x = ∆y =

0.
One may check explicitly using the generating function identities (60) and (61) that

1

2
√
z+

(∂y +
√
z+∂x)

2ρ(x, y)

∣∣∣∣∣
x=z+
y=z�

=
[
1
2
(∂y +

√
z+∂x)

2f �(x, y) + 1
2

√
z+(∂y +

√
z+∂x)

2f •(x, y)

+ (∂y +
√
z+∂x)f

•(x, y)
]
x=z+
y=z�

= (∂y +
√
x∂x)

2f �(x, y)
∣∣∣
x=z+
y=z�

With the help of (11), (21), and (29), the latter may be evaluated to

(∂y +
√
x∂x)

2f �(x, y)
∣∣∣
x=z+
y=z�

= 3[z−1]
U ′(z)

(z − c+)5/2
√
z − c−

=
3

c+
[y−1]

U ′(yc+)/c+
(y − 1)5/2

√
y + r

=
3

c+

∞∑
k=1

h(2)r (k + 1)ν(k) =
3

c+
Lν . (66)

Therefore, using
√
z+ = (1 + r)c+/4, we find that to second order in ∆y we have

(−z�
√
z+, 1) · f(z+ +

√
z+∆y, z� + ∆y) =

3

4
(1 + r)Lν∆y2 +O(∆y3).

It follows that for g close enough to 1 there are two solutions to f(x, y) = (0, 1−g), which
are given to leading order by

(x, y) = (z+, z�)±
√

1− g
3
4
(1 + r)Lν

(
√
z+, 1) +O(1− g). (67)
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It remains to check that one of them satisfies (64). Using (66) we find

(∂y +
√
x∂x)f

�(x, y) = 1 + ∆y (∂y +
√
x∂x)

2f �(x, y)
∣∣
x=z+
y=z�

+O(1− g)

= 1±

√
12Lν(1− g)

(1 + r)c2+
+O(1− g),

which in case of a minus sign is smaller or equal to 1 for g close enough to 1. Finally,
combining (65) with the version of (67) with a minus sign gives

c+(g) = c+ + 2

√
1− g

3
4
(1 + r)Lν

+O(1− g), while c−(g) = c− +O(1− g), (68)

which finishes the proof in the non-bipartite case.
If q is bipartite, then y = 0 for any 0 < g 6 1. Therefore we only need to consider the

second component f2(x, 0) = 1− x+ xf •(x, 0) = 1− g of the equation above. When q is
critical f2(x, 0) is stationary at x = z+ and one may check that

f2(z
+ + ∆x, 0) =

3

2z+
Lν∆x2 +O(∆x3).

This implies that for g close to 1 there are two solutions x = z+ ±
√

2
3
(1− g)z+/L +

O(1 − g), of which the smaller one satisfies (∂y +
√
x∂x)f

�(x, 0) = ∂xf2(x, 0) + 1 6 1.
It follows that c+(g) obeys the same formula (68) as in the non-bipartite case, while
c−(g) = −c+(g).

A.4 Proof of Lemma 3

Proof. We already noticed that the radius of convergence was at least equal to one, so we
only need to show that it cannot be larger. The regular critical case is covered by Lemma
2, since it shows that c+(g) is non-analytic at g = 1 and therefore the same holds for W

(l)
g .

Let us assume that q is admissible and that there exists a g0 > 1 such that W
(l)
g0 (q) <

∞. We claim that q can then not be non-regular critical, which would complete the proof.
Indeed, it follows from the identity f �qg(x, y) = 1√

g
f �q(gx,

√
gy) that

f �q(g0z
+(qg),

√
g0z
�(qg)) =

√
g0z
�(qg0) <∞.

Since they are generating functions in g of non-negative quantities, z+(qg) and z�(qg) are
necessarily non-decreasing functions of g ∈ [0, g0]. Therefore there exists an ε > 0 such
that f �q((1 + ε)z+(q), (1 + ε)z�(q)) < ∞, but this is precisely Miermont’s criterion for q
being regular.
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