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Abstract

The symmetric group S(n) is partially ordered by Bruhat order. This order is
extended by L. Renner to the set of partial injective functions of {1, 2, . . . , n} (see,
Linear Algebraic Monoids, Springer, 2005). This poset is investigated by M. Fortin
in his paper The MacNeille Completion of the Poset of Partial Injective Functions
[Electron. J. Combin., 15, R62, 2008]. In this paper we show that Renner order
can be also defined for sets of all functions, partial functions, injective and partial
injective functions from {1, 2, . . . , n} to {1, 2, . . . ,m}. Next, we generalize Fortin’s
results on these posets, and also, using simple facts and methods of linear algebra,
we give simpler and shorter proofs of some fundamental Fortin’s results. We first
show that these four posets can be order embedded in the set of n × m-matrices
with non-negative integer entries and with the natural componentwise order. Sec-
ond, matrix representations of the Dedekind-MacNeille completions of our posets
are given. Third, we find join- and meet-irreducible elements for every finite sub-
lattice of the lattice of all n × m-matrices with integer entries. In particular, we
obtain join- and meet-irreducible elements of these Dedekind-MacNeille comple-
tions. Hence and by general results concerning Dedekind-MacNeille completions,
join- and meet-irreducible elements of our four posets of functions are also found.
Moreover, subposets induced by these irreducible elements are precisely described.

Keywords: finite functions, partial functions, partial injective functions, matrix
representation of function, Bruhat order, Renner order, posets, posets of functions,
posets of matrices, join-irreducible element, meet-irreducible element, Dedekind-
MacNeille completion

1 Introduction

The symmetric group S(n) of all bijections of the finite set {1, 2, . . . , n} is partially or-
dered by Bruhat order (see [1]). The Dedekind-MacNeille completion of S(n) (i.e., the
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smallest lattice that contains S(n)) is characterized (up to isomorphism) in [10] as some
finite lattice of square matrices of size n with non-negative integer entries and with the
natural componentwise order. Hence it is obtained in [10] that this completion has the
same number of elements as the set of all alternating sign matrices (see [2]). The Bruhat
order is extended by Renner in [12] for the set P (n) of all partial injective functions of
{1, 2, . . . , n} (the partiality of a function means that its domain is a subset of {1, 2, . . . , n}).
The poset P (n) is investigated by M. Fortin in [7] (see also [6]). He first proves that P (n)
is isomorphic to a poset of some special square matrices of size n with non-negative integer
entries, ordered componentwise. Next, this poset is extended in a natural way to a lattice
of square matrices. Hence a square matrix representation of Dedekind-MacNeille comple-
tion L(P (n)) of P (n) is obtained. This representation shows that L(P (n)) is distributive
and has the same number of elements as the set of all alternating matrices, where these
matrices generalize the alternating sign matrices. Moreover, having this matrix character-
ization M. Fortin finds join- and meet-irreducible elements of L(P (n)). Thus by general
results concerning Dedekind-MacNeille completions he also obtains descriptions of join-
and meet-irreducible elements of P (n).

In the present paper we show that Renner order can be also defined for sets of all
functions, partial functions, injective and partial injective functions from {1, 2, . . . , n} to
{1, 2, . . . ,m}, where n,m are arbitrary positive integers. Next, we generalize Fortin’s re-
sults on these four posets, and also, using simple facts and methods of linear algebra (e.g.,
classical operations on rows and columns of matrices), we give simpler and shorter proofs
of some fundamental results of [7]. We first show that each function can be represented
by an n×m-matrix with non-negative integer entries. Having this matrix representation
we show that our posets can be order embedded in the poset of all n×m-matrices with
non-negative integer entries and with the natural componentwise order. Secondly, matrix
representations of Dedekind-MacNeille completions of our posets are given. In particular,
we obtain another matrix representation of the Dedekind-MacNeille completion of the
symmetric group S(n) than that given in [10]. Thirdly, we find join- and meet-irreducible
elements for every finite sublattice of the lattice of all n×m-matrices with integer entries.
In particular, join- and meet-irreducible elements of these Dedekind-MacNeille comple-
tions are found. Hence we obtain also join- and meet-irreducible elements of our four
function posets. Moreover, structures of subposets induced by these irreducible elements
are precisely described.

1.1 Basic definitions and facts

We recall a few definitions and facts concerning posets (partially ordered sets) and lattices
needed in this paper (for details see [4, 5, 9, 13]). Take posets (P,6P ), (Q,6Q) and let
f : P −→ Q be a function. Then f is an (order) embedding if, for each p1, p2 ∈ P ,
p1 6P p2 iff f(p1) 6Q f(p2). In particular, each embedding is injective. If additionally f
is surjective, then f is an isomorphism of P on Q (or an automorphism of P if Q = P ).

Let R ⊆ P be a subset of a poset (P,6P ). Then we can restrict 6P to R and we obtain
a poset (R,6P �R) which is called an induced subposet, or simply a subposet, of (P,6P )
(see [13], p. 243). To simplify notation we will write (R,6P ) instead of (R,6P �R). Of
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course, (Q,6Q) is a subposet of (P,6P ) iff Q ⊆ P and the identity embedding Q ↪→ P is
an order embedding.

Take a poset (P,6P ) and its subset X ⊆ P . Then
∨
X and

∧
X denote the supremum

and the infimum of X (if exist) in P , respectively. If X = {x1, x2}, then we write x1 ∨ x2

and x1 ∧ x2 instead of
∨
{x1, x2} and

∧
{x1, x2}, respectively. Recall that a poset (L,6L)

is a complete lattice (a lattice) if each set (each two-element set) has a supremum and an
infimum. In particular, a complete lattice has the bottom element 0L =

∨
∅ and the top

element 1L =
∧
∅. Each finite lattice is complete.

(Completely) join- and meet-irreducibility are classical notions of lattice theory (see
[4] and [9]), which are also useful in the theory of posets (see [8, 10, 11]). An element
i ∈ P is (completely) join-irreducible if, for each set Y ⊆ P such that

∨
Y exists, i =

∨
Y

implies i ∈ Y . In particular, the least element 0P of P (if exists) is not join-irreducible,
because

∨
∅ = 0P . Otherwise, if P has no least element, then each minimal element of P

is join-irreducible. The set of all (completely) join-irreducible elements of poset (P,6P )
will be denoted by Jir(P ). An element i ∈ P is (completely) meet-irreducible if, for each
set Y ⊆ P such that

∧
Y exists, i =

∧
Y implies i ∈ Y . In particular, the greatest

element 1P of P (if exists) is not meet-irreducible, because
∧
∅ = 1P . Otherwise, if P has

no greatest element, then each maximal element of P is meet-irreducible. The set of all
(completely) meet-irreducible elements of poset (P,6P ) will be denoted by Mir(P ).

If (P,6P ) is a complete lattice, then
∨
Y and

∧
Y exist for all Y ⊆ P and we obtain

classical lattice definitions of (completely) join- and meet-irreducible elements (see [4] and
[9]). In lattice theory we have also weaker notions of join- and meet-irreducibility (see also
[4] and [9]), which are obtained by taking two-element sets in the above two definitions.
These notions are too weak in the case of posets, and they are not used in this paper. For
example, take a poset P = {x1, x2, x3, y1, y2, y3, y4} such that x1, x2 6P y1, x1, x3 6P y4,
x2, x3 6P y3 and x1, x2, x3 6P y2. Then

∨
{x1, x2, x3} = y2, so y2 is not completely join-

irreducible. But it is easy to verify that y2 is join-irreducible. On the other hand, for a
finite lattice (L,6L) we have that its element l ∈ L is completely join-(meet-)irreducible
if l 6= 0L (l 6= 1L) and l is join-(meet-)irreducible, i.e., for each k1, k2 ∈ L, l = k1 ∨ k2

(l = k1 ∧ k2) implies l = k1 or l = k2. Since almost all lattices in this paper are finite and
for posets we use only one kind of join- and meet-irreducibility, we will omit the adverb
“completely” in phrases completely join-irreducible and completely meet-irreducible.

Let 6dP denotes the inverse relation to 6P , i.e., p 6dP q iff q 6P p for all p, q ∈ P .
Then 6dP is also a partial order on P . Recall that (P,6dP ) is called the dual poset and is
sometimes denoted by P d (see [4]). Obviously, an element is join-irreducible (respectively,
meet-irreducible) in (P,6P ) iff it is meet-irreducible (respectively, join-irreducible) in
(P,6dP ). A poset (P,6P ) is called self-dual if (P,6P ) is isomorphic to its dual (P,6dP ).
Isomorphisms between P and its dual P d are sometimes called anti-automorphisms of
P . Thus P is self-dual iff there is an anti-automorphism of P . If P is self-dual, then
(Jir(P ),6P ) ' (Jir(P d),6dP ) = (Mir(P ),6dP ) and (Mir(P ),6P ) ' (Mir(P d),6dP ) =
(Jir(P ),6dP ). It is the well-known fact (see [4]) that if (L,6L) is a lattice, then its dual
(L,6dL) is also a lattice, where the join of (L,6L) is the meet of (L,6dL) and the meet of
(L,6L) is the join of (L,6dL).
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A non-empty subset R ⊆ P is called an order ideal of (P,6P ) if, for each p, q ∈ P ,
p 6P q ∈ R implies p ∈ R (see [4] and [9]). A non-empty subset S ⊆ P is called an order
filter of (P,6P ) if, for each p, r ∈ P , S 3 r 6P p implies p ∈ S (see [4] and [9]). Families
of all order ideals and order filters of (P,6P ), together with the empty set ∅, will be
denoted by OI(P ) and OF (P ), respectively. Then (OI(P ),⊆) and (OF (P ),⊆) with set
inclusion form distributive complete lattices (see also [4] and [9]), where, for each family
F of order ideals or order filters, its infimum

∧
F is the intersection

⋂
F of this family

and its supremum
∨
F is the union

⋃
F of this family. It is a classical result (see [9] for

details) that each finite distributive lattice (L,6L) is isomorphic to (OI(Jir(L)),⊆), so
is also anti-isomorphic to (OF (Mir(L)),⊆) by duality.

Assume that (P,6P ) is a finite poset and recall (see [13], Chapter 3) that there is a nat-
ural bijection between order ideals and anti-chains (i.e., subsets of pairwise incomparable
elements) of (P,6P ). More precisely, take an order ideal R ⊆ P and let XR be the set of all
maximal elements of the subposet (R,6P ). Then R =

⋃
x∈XR
{p ∈ P : p 6P x}, because R

is finite. Hence R is uniquely determined by XR. Moreover, XR is an anti-chain in (P,6P ).
On the other hand, for each anti-chain X in (P,6P ), RX =

⋃
x∈X{p ∈ P : p 6P x} is

an order ideal of (P,6P ) such that XRX
= X. Thus we have a bijection between order

ideals of finite poset and anti-chains of this poset. By duality we obtain also analogous
facts for order filters of (P,6P ). Each order filter S ⊆ P is uniquely determined by the
set YS of all minimal elements of (S,6P ) (note that S =

⋃
y∈YS{q ∈ P : y 6P q}), and

YS is an anti-chain. Moreover, for each anti-chain Y , SY =
⋃
y∈Y {q ∈ P : y 6P q} is an

order filter such that YSY
= Y . In particular, there is a bijection between order filters of

finite poset and anti-chains of this poset. By these facts we obtain that the number of
elements of a finite distributive lattice (L,6L) is equal to the number of all anti-chains of
(Jir(L),6L), and also is equal to the number of all anti-chains of (Mir(L),6L).

1.2 Posets of functions

Z, N and N∗ = N\{0} are sets of all integers, non-negative integers and positive integers,
respectively. The natural linear order on Z, thus also on N, will be denoted by 6. Next,
product orders induced by 6 on direct powers Zn and Nn, where n ∈ N∗, will be denoted
by 6prod (it is not precise notation, but it should not give reason to misunderstanding).

Let A and B be sets. A function f from any subset X ⊆ A to B is called a partial
function from A to B and denoted by f : A 99K B; its domain is denoted by dom(f), i.e.,
dom(f) = X.

Definition 1. For all positive integers n,m ∈ N∗,

(a) Let F (n,m) be a family of all functions from {1, 2, . . . , n} to {0, 1, . . . ,m}.

(b) Let P (n,m) be a family of all injective partial functions from {1, 2, . . . , n} to
{1, 2, . . . ,m}.

(c) Let T (n,m) be a family of all functions from {1, 2, . . . , n} to {1, 2, . . . ,m}.
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(d) Let I(n,m) = P (n,m)∩T (n,m), i.e., I(n,m) is the family of all injective functions
from {1, 2, . . . , n} to {1, 2, . . . ,m}.

If n = m, then we will write F (n), P (n) and T (n) instead of F (n, n), P (n, n) and
T (n, n), respectively. Moreover, I(n, n) will be denoted by S(n).

Of course, I(n,m) ⊆ T (n,m) ⊆ F (n,m), I(n,m) ⊆ P (n,m) and |F (n,m)| = (m+1)n,
|T (n,m)| = mn, |I(n,m)| = m · (m − 1) · . . . · (m − n + 1). If m < n, then I(n,m) = ∅
and each f ∈ P (n,m) is a partial function whose domain has at most m elements. If
n = m, then I(n, n) is the family of all bijections of {1, 2, 3, . . . , n}, and therefore it
is denoted by S(n). Of course, |S(n)| = n!. Next, each function f ∈ P (n,m) can
be considered as a function from {1, 2, . . . , n} to {0, 1, . . . ,m} by setting f(i) = 0 for
all i ∈ {1, 2, 3, . . . , n} \ dom(f) (see [7]). Thus P (n,m) ⊆ F (n,m) and |P (n,m)| =
1 +

∑n
k=1

(
n
k

)
·m · (m − 1) · (m − 2) · . . . · (m − k + 1) (here 1 corresponds to the empty

partial injective function).
Similarly as in the case of partial injective functions we can consider arbitrary partial

functions from {1, 2, 3, . . . , n} to {1, 2, 3, . . . ,m} as elements of F (n,m), and vice versa,
each f ∈ F (n,m) is a partial function such that dom(f) = {1, 2, 3, . . . , n}\{i : f(i) = 0}.
Hence the set F (n,m) can be considered as the family of all partial functions from
{1, 2, 3, . . . , n} to {1, 2, 3, . . . ,m}. But it is no important idea, because the function
Θ: (f(1), f(2), . . . , f(n)) 7−→ (f(1) + 1, f(2) + 1, . . . , f(n) + 1) is a natural bijection be-
tween F (n,m) and T (n,m + 1). Moreover, we will show below that these two sets form
isomorphic posets.

The set S(n) is partially ordered by Bruhat order (see [1]). First, the relation →B is
defined on S(n) as follows: f →B g if there are 1 6 i < j 6 n such that f(i) < f(j)
and g is obtained from f by transposing f(i) and f(j), i.e., g(i) = f(j), g(j) = f(i) and
g(k) = f(k) for all k 6= i, j. If f →B g, then g has one more inversion than f . Recall
that a pair (i, j) is an inversion of h ∈ F (n,m) if i < j and h(i) > h(j). Hence →B and
its transitive closure are antisymmetric. Thus the transitive closure of→B, together with
the identity relation, forms a partial order 6B called Bruhat order.

The relation →B and Bruhat order 6B can be defined on the set F (n,m), thus on
P (n,m), I(n,m) and T (n,m) too, without changes. But Pennell, Puchta and Renner have
defined a relation → on P (n) which generalizes →B. Consequently, they have obtained
a partial order on P (n) which generalizes Bruhat order (see [12], Sections 8.7 and 8.8,
see also [7]). This relation → and its partial order can be defined on F (n,m) without
changes. Recall that f → g if one of the following two conditions hold:

(o.1) there are 1 6 i, j 6 n such that i < j, g(j) = f(i) < f(j) = g(i) and f(k) = g(k)
for all k 6= i, j;

(o.2) there is 1 6 i 6 n such that f(i) < g(i) and f(j) = g(j) for all j 6= i.

For f ∈ F (n,m), L(f) is the number of all inversions of f plus the sum
∑n

k=1 f(k) (see
[7]). If f → g, then L(f) < L(g). Hence → and its transitive closure are antisymmetric.
Thus the transitive closure of→, together with the identity relation, forms a partial order
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on F (n,m). This order is denoted by 6F , or more formally by 6F (n,m). We have also
three subposets of (F (n,m),6F ) induced by sets I(n,m), P (n,m) and T (n,m). It is
easy to see that the natural bijection Θ is an isomorphism between (F (n,m),6F ) and
(T (n,m + 1),6F ). Next, for n = m we have the subposet (S(n),6F ) of (F (n,m),6F ).
But it is easy to see that (o.2) cannot holds for bijections. Thus the restriction of 6F to
S(n) is equal to Bruhat order 6B, so (S(n),6F ) = (S(n),6B). Of course, (S(n),6B) is
also a subposet of (P (n),6F ) and (T (n),6F ).

The set F (n,m) can be also considered as the direct power {0, 1, . . . ,m}n. Since
{0, 1, . . . ,m} is linearly ordered by the standard order 6 on N, we have the product order
6prod on F (n,m), i.e, f 6prod g iff f(i) 6 g(i) for all 1 6 i 6 n. It is easy to see that 6F
is transitive closure of the union 6prod ∪ →B.

It is well-known that (P (n,m),6P ) and (S(n),6B) are not lattices in general (see [1]
and [7]). The similar fact holds for (F (n,m),6F ), so also for (T (n,m),6F ). Take posets
P (2), F (2) and S(3) (the poset S(2) is a two-element chain, so it is a lattice). Then
{(1, 0), (0, 2)}, which is contained in P (2) and F (2) simultaneously, has no supremum in
both these posets. Next, (2, 1, 3) and (1, 3, 2) has no supremum in S(3).

(2, 1)s
�

�
�

@
@
@s(1, 2)HHH

HHH

s(2, 0)���
���s(1, 0)

@
@
@

s(0, 2)
�

�
�s(0, 1)

s(0, 0)

P (2)

(2, 2)s
(2, 1)s

�
�

�

@
@
@s(1, 2)HHH

HHH

s(1, 1)

s(2, 0)���
���s(1, 0)

@
@
@

s(0, 2)
�
�

�s(0, 1)

s(0, 0)

F (2)

(3, 2, 1)s
�

�
�

@
@
@s(2, 3, 1)HHH

HHH

s(3, 1, 2)���
���s(2, 1, 3)

@
@
@

s(1, 3, 2)
�

�
�s(1, 2, 3)

S(3)

For all m ∈ N∗, F (1,m) = P (1,m), T (1,m) = I(1,m) and these sets are linearly
ordered by 6F . Next, for each n ∈ N∗ we have

P (n, 1) = {(0, 0, . . . , 0, 0), (1, 0, . . . , 0, 0), (0, 1, . . . , 0, 0), . . . , (0, 0, . . . , 0, 1)};

note that (0, 0, . . . , 0, 0) denotes the empty partial injective function. Thus (P (n, 1),6F )
is an n+ 1-element chain, because (0, 0, . . . , 0, 0) 6prod (0, 0, . . . , 0, 1)→ (0, 0, . . . , 1, 0)→
. . . → (0, 1, . . . , 0, 0) → (1, 0, . . . , 0, 0). We will see in Subsection 2.3 that (F (n, 1),6F ),
for all n ∈ N∗, is a lattice (but linearly ordered only for n = 1, 2). We will also show that
(F (n,m),6F ) and (P (n,m),6F ) are not lattices for n,m > 2. Moreover, (I(n,m),6F )
is a lattice only for m = n = 2.

Posets (F (n,m),6F ), (T (n,m),6P ), (P (n,m),6P ) and (I(n,m),6I), for n,m ∈ N∗,

the electronic journal of combinatorics 23(1) (2016), #P1.3 6



have the bottom and the top elements. Functions 0n = (0, 0, . . . , 0︸ ︷︷ ︸
n

) and 1n = (1, 1, . . . , 1︸ ︷︷ ︸
n

)

are the bottom elements of (F (n,m),6F ) and (T (n,m),6P ), respectively. Next, mn =
(m,m, . . . ,m︸ ︷︷ ︸

n

) is the top element of (F (n,m),6F ) and (T (n,m),6P ).

Since 0n ∈ P (n,m) (here 0n denotes the empty partial injection), it is also the bottom
element of P (n,m). Next,

∇(n,m) = (m,m− 1,m− 2, . . .︸ ︷︷ ︸
n

) =


(m,m− 1,m− 2, . . . 1︸ ︷︷ ︸

m

0, 0, . . . , 0︸ ︷︷ ︸
n−m

) if m 6 n

(m,m− 1,m− 2, . . .m− (n− 1)︸ ︷︷ ︸
n

) if n 6 m

is the top element of (P (n,m),6P ).
Take n 6 m. Then ∇(n,m) ∈ I(n,m), so ∇(n,m) is also the top element of (I(n,m),6I).

Next, ∆(n,m) = (1, 2, 3, . . . , n) ∈ I(n,m) is the bottom element of (I(n,m),6I). In
particular, ∇(n) = ∇(n,n) and the identity function ∆(n) = ∆(n,n) are the top and the
bottom element of (S(n),6B), respectively.

1.3 Self-duality of posets (F (n,m),6F ), (T (n,m),6F ) and (I(n,m),6F )

The following result shows that the poset (F (n,m),6F ) is self-dual for all n,m ∈ N∗.
Recall, a function f : A −→ A is an involution if f ◦ f = idA.

Proposition 2. Let Φ: F (n,m) −→ F (n,m) be a function such that

Φ(f) = mn − f = (m− f(1),m− f(2), . . . ,m− f(n)) for all f ∈ F (n,m)

Then Φ is an involutive anti-automorphism of F (n,m). In particular, (F (n,m),6F ) is
a self-dual poset. Moreover, (Jir(F (n,m)),6F ) and (Mir(F (n,m)),6F ) are isomorphic
to (Mir(F (n,m)),6dF ) and (Jir(F (n,m)),6dF ), respectively, and these isomorphisms are
given by functions Φ�Jir(F (n,m)) and Φ�Mir(F (n,m)). In particular, for each g ∈ F (n,m), g is
join-irreducible (respectively, meet-irreducible) iff mn−g is meet-irreducible (respectively,
join-irreducible).

Proof. It is easily shown that if f → g, then Φ(g)→ Φ(f). Next, since Φ is an involution,
we have that Φ is bijective and Φ(g)→ Φ(f) implies f = Φ(Φ(f))→ Φ(Φ(g)) = g.

Take the poset (T (n,m),6F ), where m > 2, the natural isomorphism Θ: F (n,m −
1) −→ T (n,m) defined in the previous subsection (i.e., Θ(f) = f + 1n) and the anti-
automorphism Φ of F (n,m) introduced in Proposition 2. Then Ψ = Θ ◦ Φ ◦ Θ−1 is an
anti-automorphism of T (n,m) such that Ψ(f) = (m− 1)n− (f −1n) + 1n = mn− f + 1n
and Ψ ◦ Ψ = Θ ◦ Φ2 ◦ Θ−1 = Θ ◦ idF (n,m) ◦ Θ−1 = idT (n,m). Next, Ψ(I(n,m)) ⊆ I(n,m),
so Ψ(I(n,m)) = I(n,m). Summarizing, since T (n, 1) = {1n}, we obtain that for all
n,m ∈ N∗ the following fact holds (of course, it can be also proved directly in a similar
way as Proposition 2).
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Corollary 3. Let Ψ: T (n,m) −→ T (n,m) be a function such that Ψ(f) = mn − f + 1n
for all f ∈ T (n,m). Then

(a) Ψ is an involutive anti-automorphism of T (n,m). In particular, (T (n,m) 6F ) is
self-dual. Moreover, (Jir(T (n,m)),6F ) and (Mir(T (n,m)),6F ) are isomorphic to
(Mir(T (n,m)),6dF ) and (Jir(I(n,m)),6dF ), respectively, and these isomorphisms
are give by functions Ψ�Jir(T (n,m)) and Ψ�Mir(T (n,m)). In particular, for each g ∈
T (n,m), g is join-irreducible (respectively, meet-irreducible) iff mn−g+1n is meet-
irreducible (respectively, join-irreducible).

(b) If n 6 m, then Ψ�I(n,m) is an involutive anti-automorphism of I(n,m). In particular,
(I(n,m) 6F ) is self-dual. Moreover, (Jir(I(n,m)),6F ) and (Mir(I(n,m)),6F ) are
isomorphic to (Mir(I(n,m)),6dF ) and (Jir(I(n,m)),6dF ), respectively, and these
isomorphisms are give by functions Ψ�Jir(I(n,m)) and Ψ�Mir(I(n,m)). In particular, for
each g ∈ I(n,m), g is join-irreducible (respectively, meet-irreducible) iff mn−g+1n
is meet-irreducible (respectively, join-irreducible).

The example of the poset (P (2),6F ) shows that (P (n,m),6F ) need not be self-dual.
Taking n = m in the point (b) of Corollary 3 we obtain analogous facts for the poset
(S(n) 6B).

2 Lattices of matrices

M. Fortin has shown in [7] that each partial injective function f ∈ P (n) can be represented
by a square matrix M(f) of size n with non-negative entries. Moreover, he has proved
that the function f 7−→ M(f) is an order embedding of the poset (P (n),6F ) into the
family of all square matrices of size n with non-negative entries and with the natural
componentwise order. In this section, using simple facts and methods of linear algebra
(e.g., classical operations on rows and columns of matrices), we first give simpler and
shorter proofs of these results in a more general case of the poset F (n,m). Thus posets of
finite functions (F (n,m),6F ), (P (n,m),6F ), (T (n,m),6F ) and (I(n,m),6F ) are (up to
isomorphism) subposets of the family of matrices of size n×m with non-negative entries
and with the natural componentwise order. Hence, using ideas from [7], we are able to
define four lattices of matrices, which contain our posets of finite functions. Next, we
show some properties of these lattices. For example, three of them are self-dual. We also
show that these lattices have the same numbers of elements as families of row-alternating
matrices, alternating matrices and row-alternating sign matrices, respectively. In the
next section we will prove that these lattices represent Dedekind-MacNeille completions
of (F (n,m),6F ), (P (n,m),6P ), (I(n,m),6I) and (T (n,m),6T ). Hence we will obtain
additional informations about our posets of finite functions. For instance, their subposets
containing all join-irreducible and meet-irreducible elements will be described.
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2.1 Lattices (Mm
n (Z),6M), (Mm

n (N),6M) and (Mm
n (k),6M)

As usual, a matrix A is called an n×m-matrix or equivalently, a matrix of size n×m, if
A has n rows and m columns, i.e.,

A =
[
A[i, j]

]
i=1,2,...n,j=1,2,...m

=

 A[1, 1] A[1, 2] . . . A[1,m]
A[2, 1] A[2, 2] . . . A[2,m]

...
...

. . .
...

A[n, 1] A[n, 2] . . . A[n,m]

 ,
where n,m ∈ N∗ are positive integers.

For each subset X ⊆ Z (where Z is the set of all integers), let Mm
n (X) be a family of

all n×m-matrices A such that A[i, j] ∈ X. For all k ∈ N, let Mm
n (k) = Mm

n ({0, 1, . . . , k}),
of course, Mm

n (0) contains only the zero matrix. Then we have Mm
n (k) ⊆Mm

n (k+ 1) and
Mm

n (k) ⊆Mm
n (N) ⊆Mm

n (Z).
The family Mm

n (Z) can be partially ordered by the natural componentwise order 6M
(see [7]), i.e., for each A,B ∈Mm

n (Z),

A 6M B iff A[i, j] 6 B[i, j] for all i = 1, 2, . . . n, j = 1, 2, . . .m.

Obviously (Mm
n (Z),6M) is isomorphic to the direct power Zn·m with the product order

6prod. Thus

Proposition 4. (Mm
n (Z),6M) is a distributive lattice, (Mm

n (N),6M) is a sublattice of
(Mm

n (Z),6M) and (Mm
n (k),6M) is a finite sublattice of (Mm

n (N),6M). In particular,
(Mm

n (k),6M) is a finite distributive lattice. Moreover, operations of supremum ∨ and in-
fimum ∧ are defined as follows: for each A,B ∈Mm

n (Z) and i = 1, 2, . . . n, j = 1, 2, . . .m,

(A ∨B)[i, j] = max{A[i, j], B[i, j]} and (A ∧B)[i, j] = min{A[i, j], B[i, j]}.

Lattices (Mm
n (Z),6M) and (Mm

n (N),6M) have no top elements, in particular, they
are not complete lattices. The first of them has no bottom element, too. But the zero
matrix

0mn =

 0 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈Mm
n (N)

is the bottom element of (Mm
n (N),6M). Hence 0mn is also the bottom element of the

lattice (Mm
n (k),6M) for all k ∈ N. Next,

kmn =

 k k · · · k
k k · · · k
...

... · · ·
...

k k · · · k

 ∈Mm
n (k)

is the top element of (Mm
n (k),6M).

the electronic journal of combinatorics 23(1) (2016), #P1.3 9



2.2 Matrix representation

It is the classical result that each permutation f ∈ S(n) can be represented by the
linear operator ϕf : Rn −→ Rn such that ϕf (εi) = εf(i) for i = 1, 2, . . . , n and its matrix
MSt
St (ϕf ) =

[
ϕf (ε

n
1 ), ϕf (ε

n
2 ), . . . , ϕf (ε

n
n)
]

(here ϕf (ε
n
1 ), ϕf (ε

n
2 ), . . . , ϕf (ε

n
n) are successive

columns of the matrix), where St : εn1 = (1, 0 . . . , 0), εn2 = (0, 1 . . . , 0), . . . , εnn = (0, 0 . . . , n)
is the standard base of Rn. In fact, it is a faithful group representation of S(n) in the
special linear group SL(n,R). In a similar way we can represent functions of F (n,m).

For each f ∈ F (n,m) take the linear operator ϕf : Rn −→ Rm specified by conditions
ϕf (ε

n
i ) = εmf(i) if f(i) 6= 0, and ϕf (ε

n
i ) = (0, 0, . . . , 0) if f(i) = 0. Let

C(f) =

 C(f)[1, 1] · · · C(f)[1,m]
C(f)[2, 1] · · · C(f)[2,m]

...
. . .

...
C(f)[n, 1] · · · C(f)[n,m]


be the transposition of the matrix MSt

St (ϕf ) corresponding to ϕf , i.e., C(f) = (MSt
St (ϕf ))

T .
Equivalently,

C(f)[i, j] =

{
1 if j = f(i)

0 if j 6= f(i)
.

Of course, this matrix uniquely determines f .
Let M c(f) and M r(f) be matrices obtained from C(f) in the following way:

M c(f)[i, j] = C(f)[i, j] + C(f)[i, j + 1] + · · ·+ C(f)[i,m],

M r(f)[i, j] = C(f)[1, j] + C(f)[2, j] + · · ·+ C(f)[i, j],

i.e., the j-th column of M c(f) is the sum of columns of C(f) from the j-th to the m-th,
and similarly, the i-th row of M r(f) is the sum of rows of C(f) from the first to the i-th.

Of course,

M c(f)[i, j] =

{
1 if j 6 f(i)

0 if j > f(i)
.

Now we can introduce the following definition.

Definition 5. For each f ∈ F (n,m), let M(f) be an n×m-matrix such that

M(f)[i, j] =
i∑

k=1

M c(f)[k, j] =
m∑
k=j

M r(f)[i, k] =
∑

k6i, l>j

C[k, l],

i.e., the i-th row of M(f) is the sum of the rows of M c(f) from the first to the i-th, the
j-th column of M(f) is the sum of the columns of M r(f) from the j-th to the m-th, and
M(f)[i, j] is the sum of all entries of C(f) which lie above and to the right of the place
(i, j).
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For n = m and f ∈ P (n), our definition of the matrix M(f) is equivalent with the
definition formulated in [7], Section 3.2. Therefore we use the same notation.

For example, take f = (3 0 2 4 1) ∈ P (5). Then (see also [7], Example 3.3) matrices
C(f), M c(f), M r(f) and M(f) are equal, respectively, to

0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0

,


1 1 1 0 0
0 0 0 0 0
1 1 0 0 0
1 1 1 1 0
1 0 0 0 0

,


0 0 1 0 0
0 0 1 0 0
0 1 1 0 0
0 1 1 1 0
1 1 1 1 0

,


1 1 1 0 0
1 1 1 0 0
2 2 1 0 0
3 3 2 1 0
4 3 2 1 0

.

For f = (1 1 2 0 2) ∈ F (5, 3) we have

C(f) =

 1 0 0
1 0 0
0 1 0
0 0 0
0 1 0

,M c(f) =

 1 0 0
1 0 0
1 1 0
0 0 0
1 1 0

,M r(f) =

 1 0 0
2 0 0
2 1 0
2 1 0
2 2 0

,M(f) =

 1 0 0
2 0 0
3 1 0
3 1 0
4 2 0

.
For each f ∈ F (n,m) we have C(f),M c(f) ∈ Mm

n (1) and M r(f),M(f) ∈ Mm
n (n).

Moreover, f ∈ P (n,m) iff M r(f) ∈Mm
n (1); and f ∈ T (n,m) iff the first column of M c(f)

equals [1 1 1 . . . 1]T iff the first column of M(f) equals [1 2 3 . . . n]T iff M(f)[n, 1] = n.
Operations on rows and columns of C(f) are invertible, so M c(f) and M r(f) can be

rebuild from M(f), and similarly, C(f) can be rebuild from M c(f) and also from M r(f).
For instance, M c(f)[i, j] = M(f)[i, j] − M(f)[i − 1, j] and C(f)[i, j] = M c(f)[i, j] −
M c(f)[i, j+1], whereM(f)[0, j] = 0 andM c(f)[i,m+1] = 0. Hence, for all f, g ∈ F (n,m),

M(f) = M(g) implies f = g.

In particular, the function f 7−→M(f) is injective.
Now we show a more general result. This result is proved by M. Fortin in [7] only for

P (n), but his proof can be adopted without major changes for F (n,m). However, we now
formulate another simpler and shorter proof of this fact.

Theorem 6. The function f 7−→ M(f) is an embedding of the poset (F (n,m),6F ) into
(Mm

n (n),6M), i.e., for all f, g ∈ F (n,m), f 6F g iff M(f) 6M M(g).

Proof. =⇒: Take f, g ∈ F (n,m). If f 6prod g, then M c(f) 6M M c(g), so also M(f) 6M
M(g). If f →B g, then there are i1 < i2, j1 < j2 such that C(f)[i1, j1] = 1, C(f)[i1, j2] = 0,
C(f)[i2, j1] = 0, C(f)[i2, j2] = 1, C(g)[i1, j1] = 0, C(g)[i1, j2] = 1, C(g)[i2, j1] = 1,
C(g)[i2, j2] = 0 and C(f)[i, j] = C(g)[i, j] for all other i, j. So we have M(f)[i, j] =∑

k6i, l>j C(f)[k, l] 6
∑

k6i, l>j C(g)[k, l] = M(g) for all i, j. By these two facts we obtain
our implication, because 6F is the transitive closure of 6prod ∪ →B.
⇐=: Take f, g ∈ F (n,m) such that M(f) 6M M(g). Since the function f 7−→ M(f)

is injective, we can assume that M(f) 6= M(g). Then it is sufficient to show (see [7]) that
there is f ′ ∈ F (n,m) such that f �F f

′ and M(f ′) 6M M(g). If f 6prod g, then f 6F g.
Thus assume f �prod g and take the least number 1 6 i0 6 n such that f(i0) > g(i0).
Since M c(f)[1, j] = M(f)[1, j] 6M(g)[1, j] = M c(g)[1, j], we have i0 > 2.

the electronic journal of combinatorics 23(1) (2016), #P1.3 11



Let A be the set of all numbers 1 6 l < i0 such that f(i0) 6 f(l). Then we have
M c(f)[l, f(i0)] = 1 for l ∈ A∪{i0}, so M(g)[i0, f(i0)] >M(f)[i0, f(i0)]= M c(f)[1, f(i0)]+
M c(f)[2, f(i0)] + · · ·+M c(f)[i0, f(i0)] = |A|+ 1. Hence

M c(g)[1, f(i0)] +M c(g)[2, f(i0)] + · · ·+M c(g)[i0, f(i0)] > |A|+ 1.

Next, M c(g)[i0, f(i0)] = 0 (since f(i0) > g(i0)) and for each 1 6 i < i0, M c(f)[i, f(i0)] = 1
implies M c(g)[i, f(i0)] = 1 (because f(i) 6 g(i) for 1 6 i < i0). By these three facts,
there is 1 6 k0 < i0 such that

M c(g)[k0, f(i0)] = 1 and M c(f)[k0, f(i0)] = 0,

so f(i0) 6 g(k0) and f(k0) < f(i0).
Let f ′ ∈ F (n,m) be a function such that f ′(k0) = f(i0), f ′(i0) = f(k0) and f ′(i) = f(i)

for i 6= k0, i0. Then f →B f
′. Next, for s = f(k0) + 1, f(k0) + 2, . . . , f(i0),

M c(f ′)[k0, s] = 1 = M c(f)[k0, s] + 1 = M c(g)[k0, s], M c(f ′)[i0, s] = 0 = M c(f)[i0, s]− 1

and for all other pairs (l, j),

M c(f ′)[l, j] = M c(f)[l, j].

Since f(i) 6 g(i) for i < i0, we have also that

M c(f)[l, j] 6M c(g)[l, j] for l = 1, 2, . . . , i0 − 1 and 1 6 j 6 m.

Now take 1 6 r 6 n and 1 6 s 6 m. Then by the above facts we obtain:
If s /∈ {f(k0) + 1, f(k0) + 2, . . . , f(i0)} or 1 6 r 6 k0 − 1, then M(f ′)[r, s] =

M c(f ′)[1, s]+M c(f ′)[2, s]+· · ·+M c(f ′)[r, s] = M c(f)[1, s]+M c(f)[2, s]+· · ·+M c(f)[r, s] =
M(f)[r, s] 6M(g)[r, s].

If k0 6 r 6 i0 − 1 and s ∈ {f(k0) + 1, f(k0) + 2, . . . , f(i0)}, then M(f ′)[r, s] =
M c(f ′)[1, s] + · · ·+M c(f ′)[k0, s] + · · ·+M c(f ′)[r, s] = M c(f)[1, s] + · · ·+ (M c(f)[k0, s] +
1) + · · ·+M c(f)[r, s] 6M c(g)[1, s] + · · ·+M c(g)[k0, s] + · · ·+M c(g)[r, s] = M(g)[r, s].

If i0 6 r 6 n and s ∈ {f(k0)+1, f(k0)+2, . . . , f(i0)}, then M(f ′)[r, s] = M c(f ′)[1, s]+
· · ·+M c(f ′)[k0, s]+· · ·+M c(f ′)[i0, s]+· · ·+M c(f ′)[r, s] = M c(f)[1, s]+· · ·+(M c(f)[k0, s]+
1) + · · ·+ (M c(f)[i0, s]− 1) + · · ·+M c(f)[r, s] = M(f)[r, s] 6M(g)[r, s].

Definition 7. For all n,m ∈ N∗, let Fm
n = {M(f) : f ∈ F (n,m)}, Pm

n = {M(f) : f ∈
P (n,m)}, Tmn = {M(f) : f ∈ T (n,m)} and Imn = {M(f) : f ∈ I(n,m)}. Moreover,
Snn = Inn = {M(f) : f ∈ S(n)}.

Note that P n
n is denoted by Rn in [7]. Of course, Imn ⊆ Tmn ⊆ Fm

n and Imn ⊆ Pm
n ⊆ Fm

n .
If n > m, then Imn = ∅. Recall that the function f 7−→ M(f) is injective. So Imn =
Pm
n ∩ Tmn . Moreover, we can introduce the following notation (which will be used in the

third section).

Remark 8. For each matrix A ∈ Fm
n , there is an exactly one function of F (n,m), denoted

by fA, such that M(fA) = A.
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Sets Fm
n , Pm

n , Tmn , Imn induce subposets of (Mm
n (n),6M), which are isomorphic to

(F (n,m),6F ), (P (n,m),6P ), (T (n,m),6P ), (I(n,m),6I), respectively, by Theorem 6.
In particular, (S(n),6B) is isomorphic to (Snn ,6M).

For all m ∈ N∗,

Im1 = Tm1 = {[1 0 0 . . . 0 0], [1 1 0 . . . 0 0], . . . , [1 1 1 . . . 1 0], [1 1 1 . . . 1 1]}

is an m-element chain and Pm
1 = Fm

1 = {[0 0 0 . . . 0 0]} ∪ Tm1 is an m+ 1-element chain.
Next, for each n ∈ N∗,

P 1
n = {[0 0 . . . 0 0 0]T , [0 0 . . . 0 0 1]T , [0 0 . . . 0 1 1]T , . . . [0 1 . . . 1 1 1]T , [1 1 . . . 1 1 1]T}

is an n+ 1-element chain (hence we obtain another proof of the fact that (P (n, 1),6F ) is
an n+ 1-element chain).

Finally, take posets T (n,m) and Tmn . If m = 1, then T (n, 1) = {(1 1 1 . . . 1)} and
T 1
n = {[1 2 3 . . . n]T}. Thus assume that m > 2. Then we know that the function
f 7−→ f −1n is an isomorphism of (T (n,m),6F ) onto (F (n,m−1),6F ) and the function
g 7−→ g+1n is its inverse. It is easy to see that M(f−1n) =↓M(f) for each f ∈ T (n,m),
where ↓A is the n × (m − 1)-matrix obtained from an n ×m-matrix A by removing its
first column. Similarly, we obtain M(g + 1n) =↑ M(g) for each g ∈ F (n,m − 1), where
↑ A be an n × (k + 1)-matrix obtained from an n × k-matrix A by adding the first
column [1 2 3 . . . n]T . Hence the function Φ: A 7−→↓A is an isomorphism of (Tmn ,6M)
onto (Fm−1

n ,6M), and Ψ: A 7−→↑ A is an isomorphism of (Fm−1
n ,6M) onto (Tmn ,6M).

Moreover, it is obvious that ↓↑A = A for each matrix A, and it is not difficult to see that
↑↓A = A for each A ∈ Tmn . Thus Ψ is the inverse function of Φ.

2.3 Special sublattices of (Mm
n (n),6M)

Posets (Fm
n ,6M), (Pm

n ,6M) (Tmn ,6M), and (Imn ,6M) are not lattices. Therefore now, ap-
plying methods from [7], we define families FGm

n , PGm
n TGm

n , and IGm
n of matrices, which

contains these posets and form sublattices of (Mm
n (n),6M). In fact we will show in the

next section that these lattices are (up to isomorphism) Dedekind-MacNeille completions
of these posets, and consequently, of posets (F (n,m),6F ), (P (n,m),6F ), (T (n,m),6F )
and (I(n,m),6F ).

Definition 9. Let n,m ∈ N∗ be positive integers. Then

(a) FGm
n is a set of all n×m-matrices A ∈Mm

n (N) such that

(1) the columns of A, from the top to the bottom, are increasing and starting by
0 or 1,

(2) each two adjacent numbers on a column of A are equal or differ by 1,

(3) the rows of A, from the left to the right, are decreasing.

(b) PGm
n is a set of all matrices A ∈ FGm

n such that
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(1) the rows of A, from the left to the right, are decreasing and ending by 0 or 1,

(2) each two adjacent numbers on a row of A are equal or differ by 1.

(c) TGm
n is a set of all matrices A ∈ FGm

n such that A[n, 1] = n (equivalently, the first
column of A is equal to [1 2 . . . n]T ).

(d) IGm
n = PGm

n ∩ TGm
n . In other words, IGm

n is a set of all matrices A ∈ PGm
n such

that A[n, 1] = n (equivalently, the first column of A is equal to [1, 2, . . . , n]T ).

If n = m, then IGn
n will be denoted by SGn

n (equivalently, SGn
n is a set of all matrices

A ∈ PGn
n such that the first column of A is equal to [1, 2, . . . , n]T and the last row

is equal to [1, 2, . . . , n]).

Note that the family PGn
n is introduced in [7], where it is denoted by RGn. Next,

conditions (b.1) and (b.2) imply that IGm
n = ∅ for n > m.

For each m ∈ N∗, FGm
1 = Fm

1 , PGm
1 = Pm

1 , TGm
1 = Tm1 and IGm

1 = Im1 ; in particular,
PGm

1 = FGm
1 and IGm

1 = TGm
1 . Next, for each n ∈ N∗, TG1

n = T 1
n = {[1 2 3 . . . n]T}

and PG1
n = P 1

n .
Conditions (a.1) and (a.2) of Definition 9 imply

0 6 A[i, j] 6 i 6 n for each A ∈ FGm
n .

Hence PGm
n , TG

m
n , IG

m
n ⊆ FGm

n ⊆Mm
n (n). In particular, all these sets are finite.

By these two inequalities and conditions (b.1), (b.2) of Definition 9 we obtain

0 6 A[i, j] 6 min{i, m− j + 1} 6 min{n,m} for each A ∈ PGm
n .

In particular, PGm
n , IG

m
n ⊆Mm

n (min{n,m}).
Conditions (b.1), (b.2) and (d) of Definition 9 imply also

max{0, i− j + 1} 6 A[i, j] for each A ∈ IGm
n .

The set FGm
n induces a subposet of the lattice (Mm

n (n),6M), and sets PGm
n , TGm

n , IGm
n

induce subposets of (FGm
n ,6M). Moreover, it is easy to see that the following more

general result holds (it generalizes Theorem 4.16 formulated and proved in [7] for PGn
n).

Proposition 10. Let n,m ∈ N∗. Then

(a) (FGm
n ,6M) is a sublattice of the lattice (Mm

n (n),6M). In particular, it is a finite
distributive lattice with the join and meet operations defined as in Proposition 4.

(b) (PGm
n ,6M), (TGm

n ,6M) and (IGm
n ,6M) (if n 6 m) are sublattices of (FGm

n ,6M).

The lattice (IGm
n ,6M) (if 1 6 n 6 m) is a sublattice of lattices (PGm

n ,6M) and
(TGm

n ,6M). Moreover, (PGm
n ,6M) is a sublattice of the lattice (Mm

n (min{n,m}),6M).
For each m ∈ N∗, FGm

1 = PGm
1 is an m + 1-element chain and TGm

1 = IGm
1 is

m-element chain. Next, for each n ∈ N∗, (PG1
n,6M) is an n+ 1-element chain.
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Take the lattice (TGm
n ,6M). If m = 1, then it is a trivial (i.e., one-element) lattice.

For m > 2 it is easy to see that the function Φ: A 7−→↓ A, for all A ∈ TGm
n , is an

embedding of (TGm
n ,6M) into (FGm−1

n ,6M); recall that ↓A is the n × (m − 1)-matrix
obtained from an n × m-matrix A by removing its first column. Next, observe that if
A ∈ FGm−1

n , then ↑A ∈ TGm
n (rows of ↑A are decreasing, because A[i, 1] 6 i), recall that

↑A is an n× (k+ 1)-matrix obtained from an n× k-matrix A by adding the first column
[1 2 3 . . . n]T . Thus the function Ψ: A 7−→↑A, for all A ∈ FGm−1

n , is an embedding of
(FGm−1

n ,6M) into (TGm
n ,6M). Moreover, ↑↓A = A for each A ∈ TGm

n and ↓↑A = A for
each A ∈ FGm−1

n . So Ψ is the inverse function of Φ. Hence Φ is an isomorphism between
(TGm

n ,6M) and (FGm−1
n ,6M).

Now we formulate some technical notions which will be needed later.

Definition 11. Let A ∈Mm
n (Z). Then

(a) Or(A) is a matrix such that Or(A)[i, j] = A[i, j]−A[i− 1, j], where A[0, j] = 0, for
i = 1, 2, . . . , n, j = 1, 2, . . . ,m (i.e., the i-th row of Or(A) is the difference of the
i-th and the i− 1-th row of A).

(b) Oc(A) is a matrix such that Oc(A)[i, j] = A[i, j]−A[i, j+ 1], where A[i,m+ 1] = 0,
for i = 1, 2, . . . , n and j = 1, 2, . . . ,m (i.e., the j-th column of Oc(A) is the difference
of the j-th and the j + 1-th column of A).

(c) O(A) = Oc(Or(A)) = Or(Oc(A)), i.e., O(A)[i, j] = (A[i, j]− A[i− 1, j])− (A[i, j +
1] − A[i − 1, j + 1]) = (A[i, j] + A[i − 1, j + 1]) − (A[i − 1, j] + A[i, j + 1]), where
A[0, j] = 0 and A[i,m+ 1] = 0.

(d) Aht is a matrix (called the horizontal transposition of A) obtained from A by chang-
ing the positions of columns from the last to the first, i.e., Aht[i, j] = A[i,m− j+1].

(e) Avt is a matrix (called the vertical transposition of A) obtained from A by changing
the positions of rows from the bottom to the top, i.e., Aht[i, j] = A[n− i+ 1, j].

(f) Aqt = ((Aht)vt)T = ((Avt)ht)T (where T denotes the transposition of matrix), equiv-
alently, Aqt[i, j] = A[m − j + 1, n − i + 1]. This matrix will be called the quasi-
transposition of A. In other words, Aqt is obtained from A by the mirror symmetry
with respect to the second diagonal (i.e., the diagonal from the left and the bottom
to the right and the top).

(g) If A is a 0 − 1 matrix, i.e., A ∈ Mm
n (1), then Aneg = 1mn − A (i.e., Aneg[i, j] =

1−A[i, j]), equivalently, Aneg is obtained from A by replacing each zero entry by 1
and each one entry by 0.

Take A =

 1 0 0
1 1 0
2 2 0

. Then A ∈ FG3
3 and A /∈ PG3

3, A /∈ TG3
3, A /∈ IG3

3. Next,

Or(A) =

 1 0 0
0 1 0
1 1 0

 , Oc(A) =

 1 0 0
0 1 0
0 2 0

 , O(A) =

 1 0 0
−1 1 0
0 1 0

 ,
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Aht =

 0 0 1
0 1 1
0 2 2

 , Avt =

 2 2 0
1 1 0
1 0 0

 , Aqt =

 0 0 0
2 1 0
2 1 1

 .
Take A ∈ Mm

n (Z). Then O(A)qt[i, j] = O(A)[m − j + 1, n − i + 1] = (A[m − j +
1, n − i + 1] + A[m − j, n − i + 2]) − (A[m − j, n − i + 1] + A[m − j + 1, n − i + 2]) =
(Aqt[i, j] + Aqt[i− 1, j + 1])− (Aqt[i, j + 1] + Aqt[i− 1, j]) = O(Aqt)[i, j]. Thus

O(Aqt) = O(A)qt.

It is also easy to show that O(A) = Or(Or(A)qt)qt = Or(Or(A)T )T . Next, Or(Aht) =
Or(A)ht, Oc(Avt) = Oc(A)vt, (Aqt)qt = A, (Aht)ht = A, (Avt)vt = A. If A is a 0−1-matrix,
then (Aneq)ht = (Aht)neq, (Aneq)vt = (Avt)neq and (Aneq)qt = (Aqt)neq.

Matrices O(A), Or(A), Oc(A) are obtained from A by invertible operations, so A can
be rebuild from these matrices, and also Or(A), Oc(A) can be rebuild from O(A). More
precisely,

Or(A)[i, j] =
∑m

k=j O(A)[i, k], Oc(A)[i, j] =
∑i

k=1O(A)[k, j],

A[i, j] =
∑i

k=1 O
r(A)[k, j] =

∑m
k=j O

c(A)[i, k] =
∑

k6i,l>j O(A)[k, l].

In particular, for all A,B ∈Mm
n (Z),

if O(A) = O(B) or Or(A) = Or(B) or Oc(A) = Oc(B), then A = B.

Applying the above results it is easy to see that for every function f ∈ F (n,m),

Or(M(f)) = M c(f), Oc(M(f)) = M r(f) and O(M(f)) = C(f).

For each A ∈Mm
n (N) we have also the following simple facts:

A ∈ FGm
n implies that Or(A) is a 0− 1 matrix, i.e., Or(A) ∈Mm

n (1).
A ∈ PGm

n iff A ∈ FGm
n and Aqt ∈ FGn

m.
A ∈ Fm

n iff each row of Or(A) is decreasing from the left to the right, i.e. each row of
Or(A) is of the form [1, 1, . . . , 1︸ ︷︷ ︸

k

, 0, 0, . . . , 0], where 0 6 k 6 m.

Moreover, if n = m, then A ∈ SGn
n iff Aqt ∈ SGn

n.

Proposition 12.

(a) Fm
n ⊆ FGm

n , Pm
n ⊆ PGm

n , Tmn ⊆ TGm
n and Imn ⊆ IGm

n .

(b) Fm
n ∩ PGm

n = Pm
n , Fm

n ∩ TGm
n = Tmn and Fm

n ∩ IGm
n = Imn .

Proof. (a): Take f ∈ F (n,m). Then M c(f) is a 0 − 1 matrix which has decreasing
rows, so M(f) ∈ FGm

n . If f ∈ P (n,m), then additionally M r(f) is a 0 − 1 matrix,
so M(f) ∈ PGm

n . If f ∈ T (n,m), then M(f)[n, 1] = n, so M(f) ∈ TGm
n . Finally,

Imn = Pm
n ∩ Tmn ⊆ PGm

n ∩ TGm
n = IGm

n .
(b): Pm

n ⊆ Fm
n ∩ PGm

n and Tmn ⊆ Fm
n ∩ TGm

n by (a). Thus take A ∈ Fm
n and

f = fA (see Remark 8). If A ∈ TGm
n , then A[n, 1] = n, so f ∈ T (n,m). Hence
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A ∈ Tmn . Next, assume that f /∈ P (n,m), i.e., f(i) = f(j) > 1 for some i < j.
If f(j) < m, then A[j, f(j)] = M(f)[j, f(j)] =

∑
k6j,l>f(j) C(f)[k, l] > C(f)[i, f(i)] +

C(f)[j, f(j)] +
∑

k6j,l>f(j)+1C(f)[k, l] = 2 + A[j, f(j) + 1]. If f(j) = m, then A[j,m] =∑
k6j,l=mC(f)[k, l] > C(f)[i,m] + C(f)[j,m] = 2. These cases imply A /∈ PGm

n , so
Fm
n ∩ PGm

n ⊆ Pm
n .

Finally, Fm
n ∩IGm

n = Fm
n ∩PGm

n ∩TGm
n = Fm

n ∩PGm
n ∩Fm

n ∩TGm
n = Pm

n ∩Tmn = Imn .

Take a matrix A ∈ FG1
n. Then the unique column of Or(A) = O(A) can be considered

as a function f from {1, 2, . . . , n} to {0, 1}. Of course, M c(f) = Or(A), so M(f) =
A. Hence we obtain that FG1

n = F 1
n for all n ∈ N∗. In particular, (F 1

n ,6M) is a
finite distributive lattice for each n ∈ N∗. Observe also that (F 1

n ,6M) is not linearly
ordered for n > 3, because the supremum of [1 1 1 . . . 1]T and [0 1 2 . . . 2]T is equal
to [1 1 2 . . . 2]T . Note that these matrices correspond to functions (1, 0, 0, 0, . . . , 0),
(0, 1, 1, 0, . . . , 0) and (1, 0, 1, 0, . . . , 0), respectively. Obviously, lattices F 1

1 = {[0], [1]} and
F 1

2 = {[0 0]T , [0 1]T , [1 1]T , [1 2]T , } are chains.
Since (F (n, 1),6F ) and (F 1

n ,6M) are isomorphic, we have also that F (n, 1) is a finite
distributive lattice for all n ∈ N∗. Next, F (n, 1) is a chain iff n = 1, 2. Note that
F (1, 1) = {(0), (1)} and F (2, 1) = {(0, 0), (0, 1), (1, 0), (1, 1)}.

For all n,m > 2, posets (Fm
n ,6M) and (Pm

n ,6M), thus also posets (F (n,m),6F )
and (P (n,m),6F ), do not form lattices. Take four functions f1 = (1, 0, 0, . . . , 0), f2 =
(0, 2, 0, . . . , 0), g1 = (1, 2, 0, . . . , 0), g2 = (2, 0, 0, . . . , 0) ∈ P (n,m) ⊆ F (n,m) (see Figure
in Subsection 1.3) and let A = M(f1), B = M(f2), C = M(g1), D = M(g2), i.e.,

A =


1 0 0 · · · 0
1 0 0 · · · 0
1 0 0 · · · 0
...

...
... · · · ...

1 0 0 · · · 0

 , B =


0 0 0 · · · 0
1 1 0 · · · 0
1 1 0 · · · 0
...

...
... · · · ...

1 1 0 · · · 0

 ,

C =


1 0 0 · · · 0
2 1 0 · · · 0
2 1 0 · · · 0
...

...
... · · · ...

2 1 0 · · · 0

 , D =


1 1 0 · · · 0
1 1 0 · · · 0
1 1 0 · · · 0
...

...
... · · · ...

1 1 0 · · · 0

 .
Assume that S ∈ Fm

n is a supremum of A and B. Then A,B 6M S, so S[1, 1] >
max{A[1, 1], B[1, 1]} = 1, S[1, 2] > 0, S[2, 1], S[2, 2] > 1. Next, C and D are upper
bound of A and B, so S 6M C,D. Hence S[1, 1] 6 min{C[1, 1], D[1, 1]} = 1, S[1, 2] 6 0,
S[2, 1], S[2, 2] 6 1. Summarizing, S[1, 1] = S[2, 1] = S[2, 2] = 1 and S[1, 2] = 0. Thus
Or(S)[1, 1] = 1, Or(S)[1, 2] = 0, Or(S)[2, 1] = 0, Or(S)[2, 2] = 1, so S /∈ Fm

n . This
contradiction shows that {A,B} has no supremum in Fm

n , thus also in Pm
n .

Posets (Imn ,6M) and (I(n,m),6F ) (where n 6 m) are not lattices for n > 2 and
m > 3. Take four functions f1 = (2, 1, 3, 4, 5, . . . , n), f2 = (1, 3, 2, 4, 5, . . . , n), g1 =
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(2, 3, 1, 4, 5, . . . , n), g2 = (3, 1, 2, 4, 5, . . . , n) ∈ I(n,m) (see Figure in Subsection 1.3) and
let A = M(f1), B = M(f2), C = M(g1), D = M(g2), i.e.,

A =


1 1 0 · · ·
2 1 0 · · ·
3 2 1 · · ·
...

...
... · · ·

 , B =


1 0 0 · · ·
2 1 1 · · ·
3 2 1 · · ·
...

...
... · · ·

 ,

C =


1 1 0 · · ·
2 2 1 · · ·
3 2 1 · · ·
...

...
... · · ·

 , D =


1 1 1 · · ·
2 1 1 · · ·
3 2 1 · · ·
...

...
... · · ·


Assume that S ∈ Imn is a supremum of A and B. Then A,B 6M S, so S[1, 1] >
max{A[1, 1], B[1, 1]} = 1, S[1, 2], S[2.2], S[2, 3] > 1, S[1, 3] > 0, S[2, 1] > 2. Next, C and
D are upper bound of A and B, so S 6M C,D. Hence S[1, 1] 6 min{C[1, 1], D[1, 1]} = 1,
S[1, 2], S[2, 2], S[2, 3] 6 1, S[1, 3] 6 0, S[2, 1] 6 2. Summarizing, S[1, 1] = S[1, 2] =
S[2, 2] = S[2, 3] = 1, S[2, 1] = 2 and S[1, 3] = 0. Thus Or(S)[1, 1] = Or(S)[1, 2] =
Or(S)[2, 1] = Or(S)[2, 3] = 1 and Or(S)[1, 3] = Or(S)[2, 2] = 0. Hence S /∈ Fm

n , in
particular, S /∈ Imn .

Recall that (Im1 ,6M) is an m-element chain. Next, I2
2 = S2

2 =
{ [

1 0
2 1

]
,
[

1 1
2 1

] }
is a two-element chain. Hence and by the above fact we obtain that (Imn ,6M), thus also
(I(n,m),6F ), is a lattice iff n = m = 2 or n = 1, because Imn = ∅ if m < n.

The bottom element 0mn =


0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0

 of the lattice (Mm
n (N),6M) is also the

bottom element of lattices (FGm
n ,6M), (PGm

n ,6M) and of posets (Fm
n ,6M), (Pm

n ,6M).
Since 1n is the bottom element of (T (n,m),6F ) (see the end of Subsection 1.2), we

have that the matrix M(1n) =


1 0 . . . 0
2 0 . . . 0
...

... . . .
...

n 0 . . . 0

 is the bottom element of (Tmn ,6M), which

will be sometimes denoted by 0Tm
n

. Of course, 0Tm
n

is the bottom element of (TGm
n ,6M)

too. It also follows from facts that TG1
n = T 1

n = {0T 1
n
} and for m > 2, the function

A 7−→↓A is an isomorphism from TGm
n to FGm−1

n and ↓0Tm
n

= 0m−1
n .

Take the top element mn of (F (n,m),6F ) and (T (n,m),6F ) (see the end of Subsec-

tion 1.2). Then M(mn) =


1 1 . . . 1
2 2 . . . 2
...

... . . .
...

n n . . . n

 is the top element of (Fm
n ,6M) and (Tmn ,6M).

The matrix M(mn) will be denoted by 1Fm
n

. It is easy to see that 1Fm
n

is also the top

element of (FGm
n ,6M) and (TGm

n ,6M). Note that Or(1Fm
n

) = M c(mn) =


1 1 . . . 1
1 1 . . . 1
...

... . . .
...

1 1 . . . 1


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and O(1Fm
n

) = C(mn) =


0 0 . . . 0 1
0 0 . . . 0 1
...

... . . .
...

...
0 0 . . . 0 1

.
Take the top element ∇(n,m) of (P (n,m),6F ) (see the end of Subsection 1.2), which

is also the top element of (I(n,m),6F ) if n 6 m. Then M(∇(n,m)) is the top element
of (Pm

n ,6M) and also of (Imn ,6M) if n 6 m. The matrix M(∇(n,m)) will be denoted by

∇m
n . Next, it is easy to see that ∇m

n =



1 1 1 · · · 1 1 1
2 2 2 · · · 2 2 1
3 3 3 · · · 3 2 1
...

...
... · · ·

...
...

...
m− 1 m− 1 m− 2 · · · 3 2 1
m m− 1 m− 2 · · · 3 2 1
...

...
... · · ·

...
...

...
m m− 1 m− 2 · · · 3 2 1


if m 6 n, and

∇m
n =


1 1 · · · 1 1 1 · · · 1 1
2 2 · · · 2 2 2 · · · 2 1
...

... · · ·
...

...
... · · ·

...
...

n− 1 n− 1 · · · n− 1 n− 1 n− 2 · · · 2 1
n n · · · n n− 1 n− 2 · · · 2 1

 if n 6 m. Hence it easily follows

that ∇m
n is the top element of (PGm

n ,6M) and also of (IGm
n ,6M) if n 6 m. Note that

Or(∇m
n ) = M c(∇(n,m)) =



1 1 · · · 1 1 1
1 1 · · · 1 1 0
1 1 · · · 1 0 0
..
.

..

. · · ·
..
.

...
...

1 0 · · · 0 0 0
.
..

.

.. · · ·
.
..

.

..
.
..

0 0 · · · 0 0 0


if m 6 n, and Or(∇m

n ) = M c(∇(n,m)) =


1 1 · · · 1 1 · · · 1 1
1 1 · · · 1 1 · · · 1 0
...

... · · ·
...

... · · ·
...

...
1 1 · · · 1 1 · · · 0 0
1 1 · · · 1 0 · · · 0 0

 if n 6 m. Next, O(∇m
n ) = C(∇(n,m)) =



0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

... · · ·
...

...
...

1 0 · · · 0 0 0
...

... · · ·
...

...
...

0 0 · · · 0 0 0



if m 6 n, and O(∇m
n ) = C(∇(n,m)) =


0 0 · · · 0 0 · · · 0 1
0 0 · · · 0 0 · · · 1 0
...

... · · ·
...

... · · ·
...

...
0 0 · · · 0 1 · · · 0 0
0 0 · · · 1 0 · · · 0 0

 if n 6 m.

Finally, assume n 6 m and take the bottom element ∆(n,m) of (I(n,m),6F ) (see the
end of Subsection 1.2). Then M(∆(n,m)) is the bottom element of (Imn ,6M). The matrix

M(∆(n,m)) will be denoted by ∆m
n . Next, ∆m

n =


1 0 0 · · · 0 0 · · · 0 0
2 1 0 · · · 0 0 · · · 0 0
...

...
... · · ·

...
... · · ·

...
...

n− 1 n− 2 n− 3 · · · 1 0 · · · 0 0
n n− 1 n− 2 · · · 2 1 · · · 0 0

,
so it is the bottom element of (IGm

n ,6M), too. Note that Or(∆m
n ) = M c(∆(n,m)) =

1 0 0 · · · 0 0 · · · 0 0
1 1 0 · · · 0 0 · · · 0 0
.
..

.

..
.
.. · · ·

.

..
.
.. · · ·

.

..
.
..

1 1 1 · · · 1 0 · · · 0 0
1 1 1 · · · 1 1 · · · 0 0

, O(∆m
n ) = C(∆(n,m)) =


1 0 0 · · · 0 0 0 · · · 0 0
0 1 0 · · · 0 0 0 · · · 0 0
.
..

.

..
.
.. · · ·

.

..
.
..

.

.. · · ·
.
..

.

..
0 0 0 · · · 0 1 0 · · · 0 0
0 0 0 · · · 0 0 1 · · · 0 0

.
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In particular, for n = m we obtain that matrices ∇n
n =



1 1 1 · · · 1 1
2 2 2 · · · 2 1
...

...
... · · ·

...
...

n− 2 n− 2 n− 2 · · · 2 1
n− 1 n− 1 n− 2 · · · 2 1
n n− 1 n− 2 · · · 2 1



and ∆n
n =


1 0 0 · · · 0 0
2 1 0 · · · 0 0
...

...
... · · ·

...
...

n− 1 n− 2 n− 3 · · · 1 0
n n− 1 n− 2 · · · 2 1

 are the top and the bottom element of the lattice

(SGn
n,6M), respectively (obviously, these matrices are also the top and the bottom ele-

ment of (Snn ,6M), respectively). Note that Or(∇n
n) = M c(∇(n)) =


1 1 1 · · · 1 1
1 1 1 · · · 1 0
...

...
... · · ·

...
...

1 1 0 · · · 0 0
1 0 0 · · · 0 0

,

O(∇n
n) = C(∇(n)) =


0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
... · · ·

...
...

0 1 0 · · · 0 0
1 0 0 · · · 0 0

, Or(∆n
n) = M c(∆(n)) =


1 0 0 · · · 0 0
1 1 0 · · · 0 0
...

...
... · · ·

...
...

1 1 1 · · · 1 0
1 1 1 · · · 1 1

,

O(∆n
n) = C(∆(n)) = Inn =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

.

2.4 Self-duality of lattices (FGm
n ,6M), (TGm

n ,6M) and (IGm
n ,6M)

We know that the function f 7−→ mn − f is an involutive order anti-automorphism of
F (n,m) (Proposition 2). Now we show that this function can be transported on the
poset Fm

n , and next, extended to an involutive anti-automorphism of the lattice FGm
n . In

particular, FGm
n is a self-dual lattice. We start with the following definition.

Definition 13. For each A ∈ Mm
n (Z), let Ad = (1Fm

n
− A)ht = 1htFm

n
− Aht = 1Fm

n
− Aht,

i.e., Ad[i, j] = i− A[i,m− j + 1].

Lemma 14. For each A ∈ FGm
n , Ad ∈ FGm

n and (Ad)d = A.

Proof. The first part is obtained by a standard verification. Next, (Ad)d = (1F − (1F −
A)ht)ht = 1F − ((1F − A)ht)ht = 1F − (1F − A) = A.

For A ∈ FGm
n , the matrix Ad will be sometimes called the dual of A in the lattice

(FGm
n ,6M), because the following result holds.

Theorem 15.

(a) The function A 7−→ Ad is an involutive anti-automorphism of the poset (FGm
n ,6M).

In particular, the finite distributive lattice (FGm
n ,6M) is self-dual.

(b) Posets (Jir(FGm
n ),6M) and (Mir(FGm

n ),6M) are isomorphic to (Mir(FGm
n ),6dM)

and (Jir(FGm
n ),6dM), respectively.
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(c) For each matrix B ∈ FGm
n , B ∈ Jir(FGm

n ) (respectively, B ∈ Mir(FGm
n )) iff

Bd ∈Mir(FGm
n ) (respectively, Bd ∈ Jir(FGm

n )).

Proof. (a): By Lemma 14 this function is a well-defined involution from FGm
n to FGm

n .
Next, for A,B ∈ FGm

n , A 6M B iff Aht 6M Bht iff −Bht 6M −Aht iff 1F − Bht 6M
1F − Aht iff Bd 6M Ad iff Ad 6dM Bd.

Points (b) and (c) are obtained from (a).

Lemma 16. For each A ∈ FGm
n , Or(Ad) = (Or(A)neg)ht.

Proof. Or(Ad) = Or(1F − Aht) = Or(1F ) − Or(Aht) = 1mn − Or(Aht) = (Or(A)ht)neg =
(Or(A)neg)ht.

Lemma 17. Let f ∈ F (n,m) and A ∈ FGm
n . Then

(a) M(f)d = M(mn − f).

(b) A ∈ Fm
n iff Ad ∈ Fm

n .

Proof. (a): Let A = M(f). The i-th row of Or(A) is equal to [1, 1, . . . , 1︸ ︷︷ ︸
f(i)

, 0, 0, . . . , 0]. Thus

the i-th row of (Or(A)neg)ht = Or(Ad) (see Lemma 16) is equal to [1, 1, . . . , 1︸ ︷︷ ︸
m−f(i)

, 0, 0, . . . , 0].

Hence Or(M(mn − f)) = Cc(mn − f) = Or(Ad), so M(mn − f) = Ad.
(b): It is obtained by (a) and the equality (Ad)d = A.

By the above lemma we obtain the following fact.

Proposition 18. Take the involutive anti-automorphism Φ: A 7−→ Ad of (FGm
n ,6M)

and the isomorphism Ψ: f 7−→ M(f) between (F (n,m),6F ) and (Fm
n ,6M). Then Φ�Fm

n

and Ψ−1 ◦ Φ�Fm
n
◦ Ψ are involutive anti-automorphisms of (Fm

n ,6M) and (F (n,m),6F ),
respectively. Moreover, Ψ−1 ◦ Φ|Fm

n
◦ Ψ(f) = mn − f for all f ∈ F (n,m), i.e., it is the

function defined in Proposition 2.

Recall that the function A 7−→↓A is an isomorphism between lattices (TGm
n ,6M) and

(FGm−1
n ,6M) (for m > 2). Thus by Theorem 15 we have that the finite distributive lattice

(TGm
n ,6M) is self-dual and posets (Jir(TGm

n ),6M), (Mir(TGm
n ),6M) are isomorphic to

posets (Mir(TGm
n ),6dM), (Jir(TGm

n ),6dM), respectively. Note that for m = 1 these facts
are obvious, because TG1

n = {[1 2 . . . n]T} and consequently, Jir(TG1
n) = Mir(TG1

n) = ∅.
Moreover, we can transport the function A 7−→ Ad on TGm

n to obtain an involutive
anti-automorphism of (TGm

n ,6M). We will also show that this new anti-automorphism
preserves IGm

n , so (IGm
n ,6M) is self-dual too. Therefore we first introduce the following

definition.
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Definition 19. For each A ∈Mm
n (Z), where m > 2, let Atd =↑((↓A)d).

Recall that for every n × k-matrix B, ↓ B is the n × (k − 1)-matrix (for k > 2)
obtained from B by removing the first column, i.e., ↓B[i, j] = B[i, j + 1] for 1 6 i 6 n
and 1 6 j 6 k − 1. Next, ↑B is the n × (k + 1)-matrix obtained from B by adding the
first column [1 2 3 . . . n]T , i.e., ↑B[i, 1] = i and ↑B[i, j] = B[i, j − 1] for 1 6 i 6 n and
2 6 j 6 k + 1.

If m = 1, then we set Atd = [1 2 3 . . . n]T for all A ∈M1
n(Z).

Observe that for all 1 6 i 6 n and 1 6 j 6 m,

Atd[i, j] =

{
i if j = 1

i− A[i,m− j + 2] if 2 6 j 6 m
,

because Atd[i, j] = (↓A)d[i, j−1] = i−(↓A)[i, (m−1)−(j−1)+1] = i−(↓A)[i,m−j+1] =
i− A[i,m− j + 2] for each j > 2.

It is easy to see that the following facts holds. First, ↓↑A = A for each n×m-matrix
A. Second, ↓ A ∈ FGm−1

n (if m > 2) and ↑ A ∈ TGm+1
n ⊆ FGm+1

n for all A ∈ FGm
n .

Third, for every A ∈ FGm
n (where m > 2), ↑(↓A) = A iff A ∈ TGm

n .

Lemma 20.

(a) For each A ∈ FGm
n , Atd ∈ TGm

n . Moreover, if A ∈ IGm
n , then Atd ∈ IGm

n .

(b) For each A ∈ TGm
n , (Atd)td = A.

Proof. (a): It is obvious for m = 1. Thus assume m > 2. Then ↓ A ∈ FGm−1
n , so

(↓A)d ∈ FGm−1
n by Lemma 14. Hence Atd =↑((↓A)d) ∈ TGm

n .
Assume that A ∈ IGm

n . Since Atd ∈ TGm
n , it is sufficient to show that every two

adjacent numbers on a row are equal or differ by 1. Of course, all rows of ↓ A satisfy
this condition, so it holds also for all rows of (↓A)ht. Consequently, each row of (↓A)d =
1Fm−1

n
− (↓A)ht satisfies this condition. Moreover, Atd[i, 2] = i − A[i,m] for 1 6 i 6 n.

Thus Atd[i, 1]− Atd[i, 2] = i− (i− A[i,m]) = A[i,m]) = 0 or 1.
(b): (Atd)td = (↑ ((↓A)d))td =↑ ((↓↑ ((↓A)d))d) =↑ (((↓A)d)d) =↑ (↓A) = A, the last

equality holds, because A ∈ TGm
n .

For A ∈ TGm
n , the matrix Atd will be sometimes called the t-dual of A in the lattice

(TGm
n ,6M), because by Theorem 15 we have the following fact.

Corollary 21.

(a) The function A 7−→ Atd is an involutive anti-automorphism of (TGm
n ,6M). In

particular, the finite distributive lattice (TGm
n ,6M) is self-dual.

(b) Posets (Jir(TGm
n ),6M) and (Mir(TGm

n ),6M) are isomorphic to (Mir(TGm
n ),6dM)

and (Jir(TGm
n ),6dM), respectively.
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(c) For each matrix A ∈ TGm
n , A ∈ Jir(TGm

n ) (respectively, A ∈ Mir(TGm
n )) iff

Atd ∈Mir(TGm
n ) (respectively, Atd ∈ Jir(TGm

n )).

Proof. Assume first that m > 2 and take the involutive anti-automorphism Θ: A 7−→
Ad of the lattice (FGm−1

n ,6M), the isomorphism Φ: A 7−→↓ A from (TGm
n ,6M) to

(FGm−1
n ,6M) and its inverse Φ−1 : A 7−→↑ A. Then the composition Φ−1 ◦ Θ ◦ Φ is

an involutive anti-isomorphism of (TGm
n ,6M) and Φ−1 ◦Θ◦Φ(A) = Atd for all A ∈ TGm

n .
A 7−→ Atd is also an involutive anti-automorphism of (TG1

n,6M), because TG1
n =

{[1 2 3 . . . n]T}.

Since Atd ∈ IGm
n for all A ∈ IGm

n (Lemma 20), by Corollary 21 we obtain the following
result.

Corollary 22.

(a) The function A 7−→ Atd is an involutive anti-automorphism of (IGm
n ,6M) (where

n 6 m). In particular, the finite distributive lattice (IGm
n ,6M) is self-dual.

(b) Posets (Jir(IGm
n ),6M) and (Mir(IGm

n ),6M) are isomorphic to (Mir(IGm
n ),6dM)

and (Jir(IGm
n ),6dM), respectively.

(c) For each matrix B ∈ IGm
n , B ∈ Jir(IGm

n ) (respectively, B ∈ Mir(IGm
n )) iff Btd ∈

Mir(IGm
n ) (respectively, Btd ∈ Jir(IGm

n )).

We use the following notation in the next results. For each n × m-matrix B and
b1, b2, b3, . . . , bn ∈ Z, ↑b1,b2,b3,...,bn B denotes the n × (m + 1)-matrix obtained from B by
adding the first column [b1 b2 b3 . . . bn]T .

Lemma 23. For each A ∈ TGm
n , Or(Atd) =↑1,1,...,1 ((Or(↓A)neg)ht).

Proof. Or(Atd) = Or(↑ ((↓ A)d)) =↑1,1,...,1 O
r((↓ A)d) = (Lemma 16) =↑1,1,...,1 ((Or(↓

A)neg)ht).

Lemma 24. Let f ∈ T (n,m) and A ∈ TGm
n . Then

(a) M(f)td = M(mn − f + 1n).

(b) A ∈ Tmn (respectively, A ∈ Imn ) iff Atd ∈ Tmn (respectively, Atd ∈ Imn ).

Proof. (a): Let A = M(f). The i-th row of the matrix Or(↓ A) =↓ Or(A) is equal to
m−1︷ ︸︸ ︷

[1, 1, . . . , 1︸ ︷︷ ︸
f(i)−1

, 0, 0, . . . , 0]. Thus the i-th row of (Or(↓A)neg)ht equals

m−1︷ ︸︸ ︷
[1, 1, . . . , 1︸ ︷︷ ︸

m−f(i)

, 0, 0, . . . , 0].

Next, by Lemma 23 we have the equality Or(Atd) =↑1,1,...,1 ((Or(↓A)neg)ht). These two

facts imply that the i-th row of the matrix Or(Atd) equals

m︷ ︸︸ ︷
[1, 1, . . . , 1︸ ︷︷ ︸
m−f(i)+1

, 0, 0, . . . , 0]. Hence

Or(M(mn − f + 1n)) = Cc(mn − f + 1n) = Or(Atd), so M(mn − f + 1n) = Atd.
(b): It is obtained by (a) and the equality (Atd)td = A which holds for all A ∈ TGm

n .
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By the above lemma we obtain the following fact.

Proposition 25. Take the involutive anti-automorphism Φ: A 7−→ Atd of (TGm
n ,6M)

and the isomorphism Ψ: f 7−→M(f) between (T (n,m),6F ) and (Tmn ,6M). Then

(a) Φ�Tm
n

and Ψ−1 ◦Φ�Tm
n
◦Ψ are involutive anti-automorphisms of posets (Tmn ,6M) and

(T (n,m),6F ), respectively. Moreover, (Ψ−1 ◦ Φ�Tm
n
◦ Ψ)(f) = mn − f + 1n for all

f ∈ T (n,m), i.e., it is the function defined in Corollary 3.

(b) If n 6 m, then Φ�Imn and (Ψ−1 ◦Φ�Tm
n
◦Ψ)�I(n,m) = (Ψ�I(n,m))

−1 ◦Φ�Imn ◦Ψ�I(n,m) are
involutive anti-automorphisms of (Imn ,6M) and (I(n,m),6F ), respectively.

2.5 Row-alternating matrices, alternating matrices and row-alternating sign
matrices

Definition 26. (a) We say that A ∈Mm
n ({−1, 0, 1}) is a row-alternating matrix if the

following five conditions hold:

(ra.1) the sum of all entries on each row is 0 or 1;

(ra.2) for each 1 6 k 6 n, the sum of first k entries on each column is non-negative;

(ra.3) numbers 1 and −1 alternate on each row;

(ra.4) the first non-zero entry (if exists) on each column is 1;

(ra.5) the last non-zero entry (if exists) on each row is 1.

The set of all quasi-alternating matrices of size n×m will be denoted by RAmn .

Note that (ra.1) follows (ra.3) and (ra.5), and (ra.4) from (ra.2). Next, (ra.3) and
(ra.4) imply that the first row of row-alternating matrix contains at most one 1.

(b) A ∈ Mm
n ({−1, 0, 1}) is called an alternating matrix if the following six conditions

hold:

(al.1) the sum of all entries on each row is 0 or 1;

(al.2) the sum of all entries on each column is 0 or 1;

(al.3) numbers 1 and −1 alternate on each row;

(al.4) numbers 1 and −1 alternate on each column;

(al.5) the first non-zero entry (if exists) on each column is 1;

(al.6) the last non-zero entry (if exists) on each row is 1.

The set of all alternating matrices of size n×m will be denoted by Amn .

Note that (al.1) follows from (al.3) and (al.6), and (al.2) from (al.4) and (al.5).
Next, (al.4) and (al.6) imply that the last column of alternating matrix contains at
most one 1. Similarly, by (al.3) and (al.5) we have that the first row of alternating
matrix contains at most one 1.
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(c) An alternating matrix is called a row-alternating sign matrix if the sum of all entries
on each row is 1. The set of all row-alternating sign matrices of size n×m will be
denoted by RASmn .

The concept of alternating matrices has been introduced in [7] for square matrices.
Take A ∈ Amn . It follows from (al.4) and (al.5) that the sum of first k entries on each
column of A is 0 or 1, so (ra.2) holds for A. Hence Amn ⊆ RAmn . Of course, we have also
RASmn ⊆ Amn . Next, we easily obtain that A ∈ Amn iff A ∈ RAmn and Aqt ∈ RAnm.

Recall that a square alternating matrix is called an alternating sign matrix (see [2])
if the sum of all entries on each row and on each column is 1. The set of all alternating
sign matrices of size n× n will be denoted by ASnn. Of course, ASnn ⊆ RASnn. It is also
obvious that A ∈ ASnn iff A ∈ RASnn and Aqt ∈ RASnn.

It is proved in [7] that PGn
n and Ann have the same number of elements. Now we

show analogous results for FGm
n , PGm

n , TGm
n , IGm

n . These results may be proved using
techniques from [7], but we formulate other proofs which apply matrix operators Or and
O. We first prove two technical facts.

Lemma 27. For each A ∈Mm
n (N),

(a) A ∈ FGm
n iff O(A) ∈ RAmn .

(b) A ∈ PGm
n iff O(A) ∈ Amn .

(c) A ∈ IGm
n iff O(A) ∈ RASmn .

(d) A ∈ SGn
n iff O(A) ∈ ASnn.

Proof. (a): Assume that A ∈ FGm
n . Then Or(A) ∈ Mm

n (1), so O(A) ∈ Mm
n ({−1, 0, 1})

and O(A) satisfies (ra.5). Next, we have that
∑

k6i,l>j O(A)[k, l] = A[i, j] > A[i, j + 1] =∑
k6i,l>j+1 O(A)[k, l], so

∑i
k=1O(A)[k, j] > 0, i.e., (ra.2) holds for A.

Take the i-th row R of the matrix Or(A). If R is non-zero, then R is of the form
[. . . , 0, 1, . . . , 1, 0 . . . , 0, 1, . . . , 1, 0, . . .]. Each fragment 0, 1, . . . , 1, 0 of R is transformed to
−1, 0, . . . , 0, 1, 0 in the i-th row R′ of O(A). Of course, if R = [1, . . . , 1, 1, 0, . . .], then
R′ = [0, . . . , 0, 1, 0, . . .]. Thus O(A) satisfies (ra.3).

To see (ra.4) assume that the first non-zero entry of a j-th column of O(A) is −1 in
the position i. Then j 6 m − 1, because A satisfies (ra.5). Next, by the above results
concerning rows of Or(A) and O(A) we obtain that Or(A)[i, j] = 0, Or(A)[i, j + 1] = 1
and Or(A)[k, j] = Or(A)[k, j + 1] = 0 or Or(A)[k, j] = Or(A)[k, j + 1] = 1 for each k < i.
These facts imply A[i, j] =

∑i
k=1 O

r(A)[k, j] <
∑i

k=1O
r(A)[k, j + 1] = A[i, j + 1]. This

contradiction shows that O(A) satisfies (ra.4).
Now assume that O(A) ∈ RAmn . Then we have that A[i, j] =

∑
k6i,l>j O(A)[k, l] =∑

k6i,l>j+1 O(A)[k, l] +
∑i

k=1O(A)[k, j] >
∑

k6i,l>j+1 O(A)[k, l] = A[i, j + 1] by (ra.2), so
each row of A is decreasing. Next, (ra.3) and (ra.5) imply

∑m
l=j O(A)[i, l] = 0 or 1. Thus

A[i, j] − A[i − 1, j] =
∑

k6i,l>j O(A)[k, l] −
∑

k6i−1,l>j O(A)[k, l] =
∑m

l=j O(A)[i, l] = 0 or
1, where we set A[0, j] = O(A)[0, j] = 0. In particular, A[1, j] = 0 or 1.
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(b): We know that A ∈ PGm
n iff A ∈ FGm

n and Aqt ∈ FGn
m. Hence A ∈ PGm

n iff
O(A) ∈ RAmn and O(A)qt = O(Aqt) ∈ RAnm iff O(A) ∈ Amn .

(c): Assume that A ∈ IGm
n . Then O(A) ∈ Amn by (b). Since the first column of A is

[1, 2, . . . , n]T , each row of Or(A) is of the form [1, 1, . . . , 1, 0, . . .]. Hence the first non-zero
entry on each row of O(A) is 1. Thus (al.3) and (al.6) imply that the sum of all entries
on each row of O(A) is 1. So O(A) ∈ RASmn .

Now assume that O(A) ∈ RASmn . Then A ∈ PGm
n by (b). Next, we have that

A[i, 1] =
∑

k6i,l>1O(A)[k, l] =
∑i

k=1

(∑m
l=1O(A)[k, l]

)
=
∑i

k=1 1 = i. Thus A ∈ IGm
n .

(d): ” ⇐= ” follows from (c) (for n = m), because ASnn ⊆ RASnn. Assume that
A ∈ SGn

n. Then we know that Aqt ∈ SGn
n. Hence and by (c), O(A) and O(A)qt = O(Aqt)

belong to RASnn. Thus O(A) ∈ ASnn.

Lemma 28. Let A,B ∈ Mm
n (Z) be matrices such that A[i, j] =

∑
k6i,l>j B[k, l]. Then

O(A) = B.

Proof. Or(A) = A[i, j]−A[i−1, j] =
∑

l>j B[i, l], so O(A) = Or(A)[i, j]−Or(A)[i, j+1] =
B[i, j].

Since the function A 7−→ O(A) is injective, by Lemmas 27 and 28 we obtain the
following result (recall that TGm+1

n is isomorphic to FGm
n ).

Theorem 29. |FGm
n | = |RAmn | = |TGm+1

n |, |PGm
n | = |Amn |, |IGm

n | = |RASmn | and
|SGn

n| = |ASnn|.

Since ASnn ⊆ RASnn and |ASnn| = |SGn
n| = |RASnn|, we obtain the following fact.

Corollary 30. ASnn = RASnn.

If n 6= m, then the sum of all entries on a column of a row-alternating sign matrix

need not be 1, in general. For example, take the matrix

 0 0 1 0
0 1 −1 1
1 −1 1 0

 which obviously

belongs to ∈ RAS4
3.

Next, since IGm
n = ∅ for n > m, by Theorem 29 we obtain

Remark 31. RASmn = ∅ for n > m.

By the above results we obtain the following fact that describes, using only the matrix
operator O whose matrices of FGm

n , PGm
n and IGm

n , respectively, belong to Fm
n , Pm

n and
Imn .

Proposition 32. Let A ∈Mm
n (N∗). Then

(a) A ∈ Fm
n iff A ∈ FGm

n and O(A) ∈Mm
n (1) iff O(A) ∈ RAmn ∩Mm

n (1).

(b) A ∈ Pm
n iff A ∈ PGm

n and O(A) ∈Mm
n (1) iff O(A) ∈ Amn ∩Mm

n (1).

(c) A ∈ Imn iff A ∈ IGm
n and O(A) ∈Mm

n (1) iff O(A) ∈ RASmn ∩Mm
n (1).

(d) A ∈ Snn iff A ∈ SGn
n and O(A) ∈Mm

n (1) iff O(A) ∈ ASnn ∩Mm
n (1).
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Proof. Observe first that (d) is obtained by (c) and Corollary 30.
Take A ∈ Fm

n and its corresponding function fA ∈ F (n,m) (see Remark 8). Then
O(A) = C(fA) ∈ Mm

n (1), because A = M(fA). Recall also that Fm
n ⊆ FGm

n , Pm
n ⊆

PGm
n and Imn ⊆ IGm

n (Proposition 12(a)). Hence we obtain implications ” =⇒ ” of first
equivalences in (a), (b) and (c). Second equivalences in these three points follow from
Lemma 27.

If O(A) ∈ RAmn ∩Mm
n (1), then O(A) has at most one entry 1 in each row by (ra.3). Let

f ∈ F (n,m) be a function such that f(i) = 0 if the i-th row of O(A) contains only zeros,
and O(A)[i, f(i)] = 1 otherwise. Then O(A) = C(f) = O(M(f)), so A = M(f) ∈ Fm

n .
If additionally O(A) ∈ Amn (respectively, O(A) ∈ RASmn ), then A ∈ Fm

n ∩ PGm
n = Pm

n

(respectively, A ∈ Fm
n ∩ IGm

n = Imn ) by Proposition 12(b) and Lemma 27.

Applying isomorphisms A 7−→↓ A and A 7−→↑ A between lattices (TGm
n ,6M) and

(FGm−1
n ,6M) (for m > 2), all results of this subsection that concern FGm

n can be trans-
lated for TGm

n (where m > 2). For example, by Lemma 27(a) we have that for each
A ∈Mm

n (N∗) (and m > 2), A ∈ TGm
n iff ↓O(A) = O(↓A) ∈ RAm−1

n and the first column
of A equals [1 2 3 . . . n]T .

Now we show that TGm
n can be characterized in a similar way as FGm

n . Let Bmn be a
set of all matrices A ∈ RAmn such that the sum of all entries on each row of A is 1. Then

(T.1) For each A ∈Mm
n (N∗), A ∈ TGm

n iff O(A) ∈ Bmn .

” =⇒ ”: By Lemma 27(a) we have that O(A) ∈ RAmn , because TGm
n ⊆ FGm

n . Next, in
the same way as in the proof of the implication ” =⇒ ” of (c) of Lemma 27 we obtain
that the sum of all entries on each row of A is 1.

”⇐= ”: By Lemma 27(a) we have that A ∈ FGm
n , because Bmn ⊆ RAmn . Next, in the

same way as in the proof of the implication ” ⇐= ” of (c) of Lemma 27 we obtain that
the first column of A equals [1 2 3 . . . n]T . Thus A ∈ TGm

n .
Since the function A 7−→ O(A) is injective, by Lemma 28 and (T.1) we obtain the

following equality.

(T.2) |TGm
n | = |Bmn |.

Hence and by Theorem 29 we have, in particular, the following interesting fact.

|Bm+1
n | = |RAmn |.

Proposition 32 takes the following form for Tmn .

(T.3) A ∈ Tmn iff A ∈ TGm
n and O(A) ∈Mm

n (1) iff O(A) ∈ Bmn ∩Mm
n (1).

The implication ” =⇒ ” of the first equivalence is obtained in the same way as in the
proof of Proposition 32. The second equivalence follows from (T.1). Next, if O(A) ∈ Bmn ∩
Mm

n (1), then O(A) ∈ RAmn ∩Mm
n (1) and A ∈ TGm

n (by (T.1)), so A ∈ Fm
n ∩ TGm

n = Tmn
by Propositions 12(b) and 32(a).
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3 Dedekind-MacNeille completions

It is shown in [7] that the lattice (PGn
n,6M) is (up to isomorphism) the Dedekind-

MacNeille completion of the poset (P n
n ,6M), so also of (P (n),6F ). To this purpose (see

Theorem 35 in the subsection below) M. Fortin has described join- and meet-irreducible
elements of (PGn

n,6M) and has shown that they belong to P n
n . Now we use Fortin’s

methods to describe join- and meet-irreducible elements for every finite sublattice of
the lattice (Mm

n (Z),6M). In particular, join- and meet-irreducible elements of lattices
(FGm

n ,6M), (PGm
n ,6M), (TGm

n ,6M) and (IGm
n ,6M) are found. We also show that

these elements belong to Fm
n , Pm

n , Tmn and Imn , respectively. Hence we obtain that
lattices (FGm

n ,6M), (PGm
n ,6M), (TGm

n ,6M) and (IGm
n ,6M) are Dedekind-MacNeille

completions of posets (Fm
n ,6M), (Pm

n ,6M), (Tmn ,6M) and (Imn ,6M), respectively, so
also of (F (n,m),6F ), (P (n,m),6F ), (T (n,m),6F ) and (I(n,m),6F ). In particular (see
Proposition 34 in the subsection below), (Fm

n ,6M), (Pm
n ,6M), (Tmn ,6M), (Imn ,6M) and

(FGm
n ,6M), (PGm

n ,6M), (TGm
n ,6M), (IGm

n ,6M) have the same sets of join- and meet-
irreducible elements, respectively. Thus we obtain also descriptions of join- and meet-
irreducible elements of (F (n,m),6F ), (P (n,m),6F ), (T (n,m),6F ) and (I(n,m),6F ).
Next, we precisely describe structures of subposets induced by sets of join- and meet-
irreducible elements. Of course, taking n = m we obtain analogous results for (SGn

n,6M),
(Snn ,6M) and (S(n),6B).

3.1 Basic notions and facts

The classical construction due to H. MacNeille order embeds a given poset P in a complete
lattice L(P ) (see [5] and also [7]). This complete lattice L(P ) is called the Dedekind-
MacNeille completion of P (or the completion by cuts). Recall shortly this construction.
Take a poset (P,6P ) and for each X ⊆ P , let Xu = {p ∈ P : ∀x∈X x 6P p} and
X l = {p ∈ P : ∀x∈X p 6P x}. Next, let L(P ) = {X ⊆ P : Xul = X}. Then it is easy
to see that the function X 7−→ Xul is a closure operator, i.e., X ⊆ Xul, (Xul)ul = Xul

and X ⊆ Y implies Xul ⊆ Y ul (see [3]). Hence L(P ) is a closure system, so (L(P ),⊆) is
a complete lattice. Next, ϕP : P −→ L(P ) such that ϕP (p) = {p}l, for all p ∈ P , is an
embedding of P into L(P ). Recall also that for {Xi}i∈I ⊆ L(P ),

∧
i∈I Xi = (

⋂
i∈I Xi)

ul =⋂
i∈I Xi and

∨
i∈I Xi = (

⋃
i∈I Xi)

ul (in particular,
⋃
i∈I Xi ⊆

∨
i∈I Xi).

It easily follows from the definition of the Dedekind-MacNeille completion that if
posets (P,6P ) and (Q,6Q) are isomorphic, then L(P ) and L(Q) are also isomorphic.

Take a poset (P,6P ), its dual P d and let Llu(P ) = {X ⊆ P : X lu = X}. Then
L(P d) = Llu(P ). Next, if Xul = X (respectively, X lu = X), then (Xu)lu = Xu, i.e.,
Xu ∈ Llu(P ) (respectively, (X l)ul = X l, i.e., X l ∈ L(P )). Thus we have functions
L(P ) 3 X 7−→ Xu ∈ Llu(P ) and Llu(P ) 3 X 7−→ X l ∈ L(P ) which are invertible each
other, so they are bijections. Of course, X ⊆ Y implies Y u ⊆ Xu and Y l ⊆ X l. Thus
these functions are anti-isomorphisms, so L(P ) ' (L(P d))d. Hence L(P )d ' L(P d). This
implies that if P is self-dual (i.e., P ' P d), then L(P ) is self-dual, too, because isomorphic
posets have isomorphic Dedekind-MacNeille completions. Thus we have obtained
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Proposition 33. Let P be a poset. Then L(P )d ' L(P d). In particular, if P is self-dual,
then L(P ) is self-dual.

It is not difficult to see that the embedding ϕP of a given poset P into its Dedekind-
MacNeille completion L(P ) preserves all joins and meets which exist in P (see [[5], The-
orem 7.40(ii)] for details). Next, ϕP (P ) is both join-dense and meet-dense in L(P )
(see [[5], Theorem 7.41(i)]), i.e., for each X ∈ L(P ) there are Q,R ⊆ P such that∨
ϕP (Q) =

∧
ϕP (R) = X; it is sufficient to take Q = X and R = Xu (because∧

r∈R{r}l =
⋂
r∈R{r}l = Rl = Xul = X). Having these two facts we can prove the

following result (see also [11] where another proof of this result is given for finite posets).

Proposition 34. A poset P and its Dedekind-MacNeille completion L(P ) have the same
sets of join-irreducible and meet-irreducible elements, i.e., Jir(L(P )) = ϕP (Jir(P )) and
Mir(L(P )) = ϕP (Mir(P )).

Proof. Take X ∈ Jir(L(P )). Then
∨
ϕP (Q) = X for some Q ⊆ P . Thus X = ϕP (q)

for some q ∈ Q. If q would be join-reducible, then ϕP (q) would be also join-reducible,
because ϕP preserves all joins. Thus X ∈ ϕP (Jir(P )).

Now take p ∈ Jir(P ) and let ϕP (p) =
∨
X for some X ⊆ L(P ). Since ϕP (P ) is join-

dense in L(P ), for each X ∈ X there is QX ⊆ P such that
∨
ϕP (QX) = X, in particular,⋃

ϕP (QX) ⊆ X. Thus⋃
(ϕP (

⋃
X∈X

QX)) =
⋃

(
⋃
X∈X

ϕP (QX)) =
⋃
X∈X

(
⋃

ϕP (QX)) ⊆
⋃
X ,

which implies ∨
(ϕP (

⋃
X∈X

QX)) = (
⋃

(ϕP (
⋃
X∈X

QX)))ul ⊆ (
⋃
X )ul =

∨
X .

On the other hand, ϕP (QX) ⊆ ϕP (
⋃
X∈X QX), so X =

∨
ϕP (QX) ⊆

∨
ϕP (

⋃
X∈X QX).

Hence ∨
X ⊆

∨
ϕP (

⋃
X∈X

QX).

Summarizing, ϕP (p) =
∨
X =

∨
ϕP (

⋃
X∈X QX). This implies that p is the supre-

mum of
⋃
X∈X QX in P , because ϕP is an isomorphism between P and ϕP (P ). Hence

p ∈
⋃
X∈X QX , i.e., p ∈ QX0 for some X0 ∈ X , because p ∈ Jir(P ). Then ϕP (p) ⊆∨

ϕP (QX0) = X0 ⊆
∨
X = ϕP (p) (recall that L(P ) is partially ordered by ⊆), so

ϕP (p) = X0 ∈ X . Thus ϕP (p) ∈ Jir(L(P )).
The second equality can be obtained in the analogous way or we take the dual P d and

use facts Mir(P ) = Jir(P d) and L(P d) ' L(P )d.

The Dedekind-MacNeille completion is characterized in the following way.

Theorem 35 ([5], Theorem 7.41(ii)). Let a poset P , a complete lattice L and an embedding
ϕ : P −→ L satisfy the following condition: for each l ∈ L, there are subsets X, Y ⊆ P
such that l =

∨
ϕ(X) =

∧
ϕ(Y ). Then there is an isomorphism ϕ : L −→ L(P ) of L onto

the Dedekind-MacNeille completion L(P ) of P such that ϕ ◦ ϕ = ϕP .
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By Proposition 34, ϕ ◦ ϕ(Jir(P )) = ϕP (Jir(P )) = Jir(L(P )), so ϕ(Jir(P )) =
ϕ−1(Jir(L(P ))) = Jir(L). In the same way we obtain ϕ(Mir(P )) = Mir(L). Sum-
marizing,

Corollary 36. Let P , L and ϕ be as in Theorem 35. Then Jir(L) = ϕ(Jir(P )) and
Mir(L) = ϕ(Mir(P )).

Taking ϕ = idP in the above two results we obtain that if a poset P is a subposet of a
complete lattice L such that for each l ∈ L, there are X, Y ⊆ P such that l =

∨
X =

∧
Y ,

then there is an isomorphism ϕ : L −→ L(P ) such that ϕ|P = ϕP . Moreover, Jir(L) =
Jir(P ) and Mir(L) = Mir(P ). In fact, in the rest of this section we will use only these
simpler versions of Theorem 35 and Corollary 36.

For a finite lattice (L,6L), its set Jir(L) of all join-irreducible elements is join-dense
in (L,6L) (i.e., each element of L is the join of join-irreducible elements) and its set
Mir(L) of all meet-irreducible elements is meet-dense in (L,6L) (i.e., each element of L
is the meet of meet-irreducible elements). Thus by the above facts we obtain the following
interesting result concerning Dedekind-MacNeille completions, which will be used in the
next subsections.

Corollary 37. Let (L,6L) be a finite lattice and P be a subposet of (L,6L) such that
Jir(L) ⊆ P and Mir(L) ⊆ P . Then (L,6L) ' (L(P ),⊆) (i.e., L is isomorphic to the
Dedekind-MacNeille completion of P ) and Jir(P ) = Jir(L), Mir(P ) = Mir(L).

3.2 Join- and meet-irreducible elements of finite sublattices of (Mm
n (Z),6M)

In the paper [7] (Subsections 4.2, 4.3, 4.4 and 4.5) M. Fortin has described join- and meet-
irreducible elements of lattice (PGn

n,6M). Now we show that his concepts and results
concerning this particular case can be adopted without major changes to arbitrary finite
sublattices of lattice (Mm

n (Z),6M).
In the whole subsection (Lmn ,6M) denotes a finite sublattice of (Mm

n (Z),6M) with
the bottom element 0Lm

n
and the top element 1Lm

n
. Next, for each k = 1, 2, . . . , n and

l = 1, 2, . . . ,m, let π(k,l) : Mm
n (Z) −→ Z be the projection on the (k, l)-coordinate, i.e.,

π(k,l)(A) = A[k, l].

Definition 38. Let 1 6 k 6 n, 1 6 l 6 m and let a ∈ π(k,l)(L
m
n ) \ {0Lm

n
[k, l]}, b ∈

π(k,l)(L
m
n ) \ {1Lm

n
[k, l]}. Then

(a) BL
k,l,a,n×m =

∧
{A ∈ Lmn : A[k, l] = a}, i.e., BL

k,l,a,n×m is the least matrix of (Lmn ,6M)
such that BL

k,l,a,n×m[k, l] = a.

(b) CL
k,l,b,n×m =

∨
{A ∈ Lmn : A[k, l] = b}, i.e., CL

k,l,b,n×m is the greatest matrix of
(Lmn ,6M) such that CL

k,l,b,n×m[k, l] = b.

The assumption a, b ∈ π(k,l)(L
m
n ) implies in particular that 0Lm

n
[k, l] 6 a, b 6 1Lm

n
[k, l],

because 0Lm
n

[k, l] 6 A[k, l] 6 1Lm
n

[k, l] for all matrices A ∈ Lmn . Next, if we take
a = 0Lm

n
[k, l] in the above definition, then 0Lm

n
∈ {A ∈ Lmn : A[k, l] = a}, so

∧
{A ∈
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Lmn : A[k, l] = a} = 0Lm
n

. But the bottom element is not join-irreducible. Similarly, if we
take b = 1Lm

n
[k, l], then 1Lm

n
∈ {A ∈ Lmn : A[k, l] = b}, so

∨
{A ∈ Lmn : A[k, l] = a} = 1Lm

n
.

But the top element is not meet-irreducible.
The following three results are proved in [7] only for the lattice (PGn

n,6M) (Lemmas
4.2(1),(2) and 4.6(1),(2), Theorems 4.3 and 4.7, Theorems 4.12 and 4.13, respectively),
but these proofs can be adopted without major changes for every finite sublattice of
(Mm

n (Z),6M). However, we give simpler and shorter proofs of the first and the third
result. We recall also the short proof of the second result.

Lemma 39. Let 1 6 k 6 n, 1 6 l 6 m and let a ∈ π(k,l)(L
m
n ) \ {0Lm

n
[k, l]}, b ∈

π(k,l)(L
m
n ) \ {1Lm

n
[k, l]}. Then for each A ∈ Lmn ,

(a) a 6 A[k, l] iff BL
k,l,a,n×m 6M A.

(b) A[k, l] 6 b iff A 6M CL
k,l,b,n×m.

Proof. The implication ”⇐= ” is obvious in the both cases.
If a 6 A[k, l], then (BL

k,l,a,n×m ∧ A)[k, l] = min{BL
k,l,a,n×m[k, l], A[k, l]} = a, so

BL
k,l,a,n×m 6M (BL

k,l,a,n×m ∧ A) 6M A.
If A[k, l] 6 b, then (CL

k,l,b,n×m ∨ A)[k, l] = max{CL
k,l,b,n×m[k, l], A[k, l]} = b, so A 6M

(CL
k,l,b,n×m ∨ A) 6M CL

k,l,b,n×m.

Theorem 40. For all A ∈ Lmn ,

(a) A =
∨
A, where A = {BL

k,l,a,n×m : 1 6 k 6 n, 1 6 l 6 m, a = A[k, l] and A[k, l] 6=
0Lm

n
[k, l]},

(b) A =
∧
B, where B = {CL

k,l,b,n×m : 1 6 k 6 n, 1 6 l 6 m, b = A[k, l] and A[k, l] 6=
1Lm

n
[k, l]}.

If A = ∅, i.e., A[k, l] = 0Lm
n

[k, l] for all pairs (k, l), then A = 0Lm
n

=
∨
∅. Similarly, if

B = ∅, i.e., A[k, l] = 1Lm
n

[k, l] for all pairs (k, l), then A = 1Lm
n

[k, l] =
∧
∅.

Proof. Let D =
∨
A. Then D[k, l] > BL

k,l,A[k,l],n×m[k, l] = A[k, l] for pairs (k, l) such that

A[k, l] 6= 0Lm
n

[k, l]. Of course, D[i, j] > 0Lm
n

[i, j] = A[i, j] for all other pairs (i, j). Hence
A 6M D. Next, if A[k, l] 6= 0Lm

n
[k, l], then BL

k,l,A[k,l],n×m 6M A by Lemma 39. Thus
B 6M A for all B ∈ A, so D 6M A.

Let D =
∧
B. Then D[k, l] 6 CL

k,l,A[k,l],n×m[k, l] = A[k, l] for pairs (k, l) such that

A[k, l] 6= 1Lm
n

[k, l]. Of course, D[i, j] 6 1Lm
n

[i, j] = A[i, j] for all other pairs (i, j). So
D 6M A. Next, if A[k, l] 6= 1Lm

n
[k, l], then A 6M CL

k,l,A[k,l],n×m by Lemma 39. Thus
A 6M C for all C ∈ B, so A 6M D.

Theorem 41.

Jir(Lmn ) = {BL
k,l,a,n×m : 1 6 k 6 n, 1 6 l 6 m and a ∈ π(k,l)(L

m
n ), a 6= 0Lm

n
[k, l]},

Mir(Lmn ) = {CL
k,l,b,n×m : 1 6 k 6 n, 1 6 l 6 m and b ∈ π(k,l)(L

m
n ), b 6= 1Lm

n
[k, l]}.

the electronic journal of combinatorics 23(1) (2016), #P1.3 31



Proof. The inclusion ” ⊆ ” follows from Theorem 40 in the both cases.
Since BL

k,l,a,n×m 6= 0Lm
n

, we can assume that BL
k,l,a,n×m = A1∨A2 for some A1, A2 ∈ Lmn .

Then a = BL
k,l,a,n×m[k, l] = max{A1[k, l], A2[k, l]}. So a = Ai[k, l], where i = 1 or i = 2.

Hence and by Lemma 39, BL
k,l,a,n×m 6M Ai 6M A1 ∨ A2. Thus BL

k,l,a,n×m = Ai, so
BL
k,l,a,n×m is join-irreducible.

Since CL
k,l,a,n×m 6= 1Lm

n
, we can assume that CL

k,l,a,n×m = A1∧A2 for some A1, A2 ∈ Lmn .
Then a = Cp

k,l,a,n×m[k, l] = min{A1[k, l], A2[k, l]}. So a = Ai[k, l], where i = 1 or i = 2.

Hence and by Lemma 39, A1∧A2 6M Ai 6M CL
k,l,a,n×m. Thus CL

k,l,a,n×m = Ai, so CL
k,l,a,n×m

is meet-irreducible.

3.3 Join-irreducible elements of the lattice (PGm
n ,6M)

In this and the next subsections we will use Theorem 41 to show interesting informations
about join-irreducible and meet-irreducible elements in lattices (FGm

n ,6M), (PGm
n ,6M),

(TGm
n ,6M), (IGm

n ,6M) and posets (Fm
n ,6M), (Pm

n ,6M), (Tmn ,6M), (Imn ,6M), thus also
posets (F (n,m),6F ), (P (n,m),6F ), (T (n,m),6F ), (I(n,m),6F ).

We start with the lattice (PGm
n ,6M). By the definition of the set PGm

n (see Definition
9) and properties of the bottom 0mn and the top element ∇m

n of the lattice (PGm
n ,6M) (see

the last part of Subsection 2.3) we obtain π(k,l)(PG
m
n ) = {0mn [k, l],0mn [k, l]+1, . . . ,∇m

n [k, l]}
for all k = 1, 2, . . . , n and l = 1, 2, . . . ,m. Hence and by Theorem 41 we have that all join-
irreducible elements of the lattice (PGm

n ,6M) are of the form BPG
k,l,a,n×m, where 1 6 k 6 n,

1 6 l 6 m and 1 = 0mn [k, l] + 1 6 a 6 ∇m
n [k, l] = min{k, m+ 1− l} 6 min{n,m}. These

matrices will be denoted by Bp
k,l,a,n×m to simplify notation. In other words, we have

Jir(PGm
n ) = {Bp

k,l,a,n×m : 1 6 k 6 n, 1 6 l 6 m and 1 6 a 6 min{k, m+ 1− l}}.

Since Bp
k,l,a,n×m is the least matrix of (PGm

n ,6M) with the entry a in the position (k, l),
we obtain that the matrix Bp

k,l,a,n×m looks as follows (note that l + a− 1 6 m)

l l + a m

0
...
0
1
2
...

a− 1
a
a
...
a

0
...
0
1
2
...

a− 1
a
a
...
a

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
...
0
1
2
...

a− 1
a
a
...
a

0
...
0
0
1
...

a− 2
a− 1
a− 1

...
a− 1

0
...
0
0
0
...

a− 3
a− 2
a− 2

...
a− 2

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
...
0
0
0
...
1
2
2
...
2

0
...
0
0
0
...
0
1
1
...
1

0
...
0
0
0
...
0
0
0
...
0

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
...
0
0
0
...
0
0
0
...
0



k − a

k − 1
k

n
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Thus the matrix Or(Bp
k,l,a,n×m) equals

l · · · l + a m

0
...
0
1
1
...
1
1
0
...
0

0
...
0
1
1
...
1
1
0
...
0

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
...
0
1
1
...
1
1
0
...
0

0
...
0
0
1
...
1
1
0
...
0

0
...
0
0
0
...
1
1
0
...
0

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
...
0
0
0
...
1
1
0
...
0

0
...
0
0
0
...
0
1
0
...
0

0
...
0
0
0
...
0
0
0
...
0

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
...
0
0
0
...
0
0
0
...
0



k − a

k − 1
k

n

Hence (see also Remark 8) we obtain the following result, which is proved in [7], Lemma
4.2(3), for n = m. The proof given in [7] can be easily adopted for arbitrary n,m ∈ N,
but our proof is simpler.

Proposition 42. Let 1 6 k 6 n, 1 6 l 6 m and 1 6 a 6 min{k, m+ 1− l}. Then

(a) Bp
k,l,a,n×m ∈ Pm

n .

(b) fBp
k,l,a,n×m

=
(

1 2 . . . k − a k − a+ 1 k − a+ 2 . . . k k + 1 . . . n
0 0 . . . 0 l l + 1 . . . l + a− 1 0 . . . 0

)
.

Of course, for f =
(

1 2 . . . r − 1 r r + 1 . . . s s+ 1 . . . n
0 0 . . . 0 x x+ 1 . . . x+ s− r 0 . . . 0

)
, where 1 6 r 6

s 6 n and 1 6 x 6 m− s+ r, we have f = fBp
s,x,s−r+1,n×m

. So M(f) = Bp
s,x,s−r+1,n×m; this

fact follows also from the equality M c(f) = Or(Bp
s,x,s−r+1,n×m). Note that 1 6 s− r+ 1 6

min{s, m+ 1− x}.
Now we precisely describe the structure of the poset (Jir(PGm

n ),6M). To this purpose
we first prove the following technical lemma.

Lemma 43. Let 1 6 k1, k2 6 n, 1 6 l1, l2 6 m and 1 6 a1 6 min{k1, m + 1 − l1},
1 6 a2 6 min{k2, m+ 1− l2}. Then

(a) Bp
k1,l1,a1,n×m 6M Bp

k2,l2,a2,n×m iff


k1 − a1 > k2 − a2

l1 + a1 6 l2 + a2

a1 6 a2

a1 + l1 − k1 6 a2 + l2 − k2

.

(b) Bp
k1,l1,a1,n×m = Bp

k2,l2,a2,n×m iff (k1, l1, a1) = (k2, l2, a2).

the electronic journal of combinatorics 23(1) (2016), #P1.3 33



Proof. Note first that (b) is implied by (a). This fact may be also easily obtained by using
the form of matrices Or(Bp

k,l,a,n×m).
(a): Let C1 = Bp

k1,l1,a1,n×m and C2 = Bp
k2,l2,a2,n×m. Observe that the first non-zero rows

in C1 and C2 lie in the positions k1 − a1 + 1 and k2 − a2 + 1, respectively, and similarly,
the last non-zero columns in C1 and C2 lie in the positions l1 + a1 − 1 and l2 + a2 − 1,
respectively.

By Lemma 39 we have the equivalence

C1 6M C2 iff a1 6 C2[k1, l1].

We divide our proof into the following four cases:
(a.1): k1 > k2 and l1 6 l2. Then C2[k1, l1] = C2[k2, l2] = a2, so C1 6M C2 iff a1 6 a2. All
other inequalities (from the right-hand side of our equivalence) are implied by the proved
inequality a1 6 a2 and our assumptions of this case. The similar situation will hold in
the next cases, therefore we will not explicit formulate it later.
(a.2): k1 6 k2 and l1 6 l2. Then C2[k1, l1] = C2[k1, l2] = C2[k2 − (k2 − k1), l2] =
max{C2[k2, l2]− (k2 − k1), 0} = max{a2 − (k2 − k1), 0}, so C1 6M C2 iff a1 6 max{a2 −
(k2 − k1), 0}. The last inequality is equivalent to a1 6 a2 − (k2 − k1), because a1 > 1.
Thus C1 6M C2 iff a1 − k1 6 a2 − k2.
(a.3): k1 > k2 and l1 > l2. Then C2[k1, l1] = C2[k2, l1] = C2[k2, l2 + (l1 − l2)] =
max{C2[k2, l2] − (l1 − l2), 0} = max{a2 − (l1 − l2), 0}, so C1 6M C2 iff a1 6 max{a2 −
(l1− l2), 0}. The last inequality is equivalent to a1 6 a2− (l1− l2), because a1 > 1. Thus
C1 6M C2 iff a1 + l1 6 a2 + l2.
(a.4): k1 6 k2 and l1 > l2. Then C2[k1, l1] = C2[k2 − (k2 − k1), l2 + (l1 − l2)] =
max{C2[k2, l2] − (k2 − k1) − (l1 − l2), 0} = max{a2 − (k2 − k1) − (l1 − l2), 0}, so
C1 6M C2 iff a1 6 max{a2 − (k2 − k1)− (l1 − l2), 0}. The last inequality is equivalent to
a1 6 a2−(k2−k1)−(l1−l2), because a1 > 1. Thus C1 6M C2 iff a1+l1−k1 6 a2+l2−k2.

Theorem 44. (Jir(PGm
n ),6M) is isomorphic to a subposet of the poset (N4,6prod) in-

duced by the set Tn,m = {(x, y, z, t) ∈ N4 : 1 6 x 6 n, 1 6 y 6 m, 1 6 z 6
min{x, y} and t = x+ y − z}. Moreover, this isomorphism is given by the function

Bp
k,l,a,n×m 7−→ (n− k + a, l + a− 1, a, a− k + l + n− 1).

Note that Tn,m ⊆ {1, 2, . . . , n}×{1, 2, . . . ,m}×{1, 2, . . . ,min{n,m}}×{1, 2, . . . , n+m−1}.

Proof. Having Lemma 43(b) we can take a function Ψ: Jir(PGm
n ) −→ N4 such that

Ψ(Bp
k,l,a,n×m) = (n− k + a, l + a− 1, a, a+ l − k) + (0, 0, 0, n− 1).

Lemma 43(a) implies that Ψ is an embedding of (Jir(PGm
n ),6M) into (N4,6prod). Next,

for each Bp
k,l,a,n×m we have that 1 6 a 6 n−k+a 6 n and 1 6 a 6 l+a−1 6 m, because

a 6 min{k, m+ 1− l}. Moreover, a+ l− k+n− 1 = (n− k+ a) + (l+ a− 1)− a. Hence
Ψ(Jir(PGm

n )) ⊆ Tn,m. On the other hand, take (x, y, z, t) ∈ Tn,m. Applying inequalities
which define the set Tn,m, it can be shown (simple details are left to the reader) that

1 6 n−x+z 6 n, 1 6 y−z+1 6 m and 1 6 z 6 min{n−x+z, m+1− (y−z+1)}.
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Thus we can take the matrix Bp
n−x+z,y−z+1,z,n×m. Of course, Ψ(Bp

n−x+z,y−z+1,z,n×m) =
(x, y, z, x + y − z) = (x, y, z, t). Hence Tn,m ⊆ Ψ(Jir(PGm

n )), because (x, y, z, t) ∈ Tn,m
was arbitrarily chosen.

Proposition 45. |Jir(PGm
n )| = α(α+1)(2α+1)

6
+ α(α+1)

2
· (β−α), where α = min{n,m} and

β = max{n,m}. In particular, |Jir(PGn
n)| = n(n+1)(2n+1)

6
.

Proof. By Lemma 43(b) we have

|Jir(PGm
n )| = |S|,

where S = {(k, l, a) ∈ N3 : 1 6 k 6 n, 1 6 l 6 m, 1 6 a 6 α, a 6 k and l 6 m− a+ 1}.
Next, |{(k, l, a) ∈ S : a = i}| = (n− i+ 1) · (m− i+ 1) for 1 6 i 6 α. So

|S| =
min{n,m}∑

i=1

(n− i+ 1) · (m− i+ 1).

Assume n 6 m (the case m 6 n is analogous, it is sufficient to replace m by n and vice
versa). Then

∑n
i=1(n− i+ 1) · (m− i+ 1) =

∑n
i=1(n− i+ 1) · ((m− n) + (n− i+ 1)) =∑n

i=1((n− i+1) · (m−n)+(n− i+1)2) =
∑n

i=1((n− i+1) · (m−n))+
∑n

i=1(n− i+1)2 =

(m−n) · (1+2+3+ · · ·+n)+(12 +22 +32 + · · ·+n2) = n(n+1)
2
· (m−n)+ n(n+1)(2n+1)

6
.

Since (PGm
n ,6M) is a finite distributive lattice, it is isomorphic to the lattice of all

order ideals of Jir(PGm
n ) (see [4] and Subsection 1.1). Hence and by Theorem 44 (see

also Subsection 1.1 for the second part of this fact) we obtain

Corollary 46. (PGm
n ,6M) ' (OI(Tn,m),⊆). In particular, |PGm

n | is equal to the cardi-
nality of the family of all anti-chains of (Tn,m,6prod).

3.4 Meet-irreducible elements of the lattice (PGm
n ,6M)

At the beginning of Subsection 3.3 we have shown π(k,l)(PG
m
n ) = {0mn [k, l],0mn [k, l] +

1, . . . ,∇m
n [k, l]} for all k = 1, 2, . . . , n and l = 1, 2, . . . ,m. Thus by Theorem 41 we have

that all meet-irreducible elements of the lattice (PGm
n ,6M) are of the form CPG

k,l,a,n×m,
where 1 6 k 6 n, 1 6 l 6 m and 0 = 0mn [k, l] 6 a 6 ∇m

n [k, l]−1 = min{k, m+1−l}−1 6
min{n,m}−1. These matrices will be denoted by Cp

k,l,a,n×m to simplify notation. In other
words, we have

Mir(PGm
n ) = {Cp

k,l,a,n×m : 1 6 k 6 n, 1 6 l 6 m and 0 6 a 6 min{k, m+ 1− l} − 1}.

Unfortunately, matrices of the form Cp
k,l,a,n×m have more complicated structure than ma-

trices of the form Bp
k,l,a,n×m. Therefore the proof of an analogous result to Proposition 42

is technically more complicated.

the electronic journal of combinatorics 23(1) (2016), #P1.3 35



Take A = Cp
k,l,a,n×m and observe that the first k + 2 rows of the matrix A look as

follows (note that l < m− a+ 1):

l m−a m−a+1 m

1
2
...

a− 1
a

a+ 1
a+ 2

...
x

x+ 1
x+ 2

...

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...

1
2
...

a− 1
a

a+ 1
a+ 2

...
a+ 2
a+ 3
a+ 4

...

1
2
...

a− 1
a

a+ 1
a+ 1

...
a+ 1
a+ 2
a+ 3

...

1
2
...

a− 1
a
a
a
...
a

a+ 1
a+ 2

...

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...

1
2
...

a− 1
a
a
a
...
a

a+ 1
a+ 2

...

1
2
...

a− 1
a
a
a
...
a

a+ 1
a+ 1

...

1
2
...

a− 1
a
a
a
...
a
a
a
...

1
2
...

a− 1
a− 1
a− 1
a− 1

...
a− 1
a− 1
a− 1

...

1
2
...

a− 2
a− 2
a− 2
a− 2

...
a− 2
a− 2
a− 2

...

· · ·
· · ·
...
· · ·
· · ·
· · ·
. . .
...
· · ·
· · ·
· · ·
...

1
2
...
2
2
2
2
...
2
2
2
...

1
1
...
1
1
1
1
...
1
1
1
...


where x = a+ min{l − 1, k − a}.

Of course, for a = 1 we have A[i, j] = 1 for all i 6 k and j > l. Similarly, if a = 0,
then A[i, j] = 0 for all i 6 k and j > l.

Thus the first k + 2 rows of the matrix Or(A) look as follows:

l m−a m−a+1 m

1
1
...
1
1
1
1
...
y
1
1

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·

1
1
...
1
1
1
1
...
0
1
1

1
1
...
1
1
1
0
...
0
1
1

1
1
...
1
1
0
0
...
0
1
1

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·

1
1
...
1
1
0
0
...
0
1
1

1
1
...
1
1
0
0
...
0
1
0

1
1
...
1
1
0
0
...
0
0
0

1
1
...
1
0
0
0
...
0
0
0

1
1
...
0
0
0
0
...
0
0
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·

1
1
...
0
0
0
0
...
0
0
0

1
0
...
0
0
0
0
...
0
0
0



a− 1
a

k

where y = 0 if l 6 k − a and y = 1 if k − a 6 l − 1.
If k−a 6 l−1, then the maximal number j such that A[k, j] = 1 is equal l− (k−a) =

a+ l− k. If l 6 k− a, then the first row of A which consists of only zeros has the number
a+ l. Thus the first k + 2 rows of A correspond to one of the following two functions:
If l 6 k − a, then

(
1 . . . a a+ 1 . . . a+ l − 1 a+ l . . . k k + 1 k + 2
m . . . m− a+ 1 l − 1 . . . 1 0 . . . 0 m− a m− a− 1

.

If k − a 6 l − 1, then
(

1 . . . a a+ 1 . . . k k + 1 k + 2
m . . . m− a+ 1 l − 1 . . . l − (k − a) m− a m− a− 1

.

To describe the rest rows of matrices A and Or(A) we consider three cases.
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Case 1: m− a− (n− k) > l − 1.
Then the last n− k rows of A looks as follows:

(1) (2) (3)
x+ 1
x+ 2

...
α

· · ·
· · ·
· · ·
· · ·

a+ 2
a+ 3

...
β + 1

a+ 1
a+ 2

...
β

· · ·
· · ·
· · ·
· · ·

a+ 1
a+ 2

...
β

· · ·
· · ·
· · ·
· · ·

a+ 1
a+ 2

...
a+ 2

a+ 1
a+ 1

...
a+ 1

a
a
...
a

a− 1
a− 1

...
a− 1

· · ·
· · ·
· · ·
· · ·

2
2
...
2

1
1
...
1


k + 1
k + 2

n

(1) it is the l-th column; (2) it is (m− a+ 1− (n− k))-th column (note that m− a+ 1−
(n−k) > l); (3) it is (m−a+1)-th column. Next, α = min{x+n−k, m}, β = a+n−k.

Take 1 6 i 6 n− k. Then first,

A[k+ i, l] = a+ i, A[k+ i,m−a+ 1− i] = a+ i and A[k+ i,m−a+ 1− i+ 1] = a+ i− 1.

Secondly, the part of the k+ i-th row of A between the l-th and (m−a+1− i)-th columns
is non-empty and each entry of this part equals a+i. Thirdly, the last m−(m−a+1−i) =
a+ i− 1 elements of this row forms a strictly decreasing sequence ending by 1. Moreover,
for each 1 6 j 6 l, the last n − k elements of the j-th column form a strictly increasing
sequence. Thus the last n− k rows of Or(A) look as follows:

(1) (2) (3)
1
1
...
1

· · ·
· · ·
· · ·
· · ·

1
1
...
1

1
1
...
1

· · ·
· · ·
· · ·
· · ·

1
1
...
1

· · ·
· · ·
· · ·
· · ·

1
1
...
0

1
0
...
0

0
0
...
0

0
0
...
0

· · ·
· · ·
· · ·
· · ·

0
0
...
0

0
0
...
0


k + 1
k + 2

n

Thus in this case A ∈ Pm
n and the last n − k rows of A corresponds to the following

function:
k + 1 k + 2 k + 3 . . . n
m− a m− a− 1 m− a− 2 . . . m− a− (n− k − 1)

)
,

note that m− a− (n− k − 1) > l.

Case 2: m− a− (n− k) 6 l − 2.
Let r = m−a+1− l, s = m−a+1− (n−k) and z = l−s = l− (m−a+1− (n−k)).

Note that r 6 n− k − 1. Then for all 1 6 i 6 r,

A[k + i, l] = A[k + i, l + 1] = A[k + i, l + 2] = . . . = A[k + i,m− a+ 1− i] = a+ i

and for all r + 1 6 i 6 n− k,

A[k + i, l] = A[k + r, l].

Say very informally, these equalities follow from the fact that the segment connecting
points (n, s) and (k,m− a+ 1) intersects with the l-th column of A in the point (k+ r, l)
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(note that s may be negative integer, so (n, s) may lie to the left to the first column of
A). Hence the last n− k rows of A look as follows:

(1) (2)

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

a+ 3
a+ 4

...
a+ r + 1
a+ r + 2
a+ r + 2

...
a+ r + 2

a+ 2
a+ 3

...
a+ r

a+ r + 1
a+ r + 1

...
a+ r + 1

a+ 1
a+ 2

...
a+ r − 1
a+ r
a+ r

...
a+ r

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

a+ 1
a+ 2

...
a+ 2
a+ 2
a+ 2

...
a+ 2

a+ 1
a+ 1

...
a+ 1
a+ 1
a+ 1

...
a+ 1

a
a
...
a
a
a
...
a

a− 1
a− 1

...
a− 1
a− 1
a− 1

...
a− 1

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

2
2
...
2
2
2
...
2

1
1
...
1
1
1
...
1



k + 1

k + r

n

(1) it is the l-th column; (2) it is (m− a+ 1)-th column.

Case 2.1: l − 1 6 k − a
Then x = a + min{l − 1, k − a} = a + l − 1. Thus the first l entries of the k-

th row form the following strictly decreasing sequence a + l − 1, a + l − 2, . . . , a + 1, a.
Hence, for each i = 1, 2, . . . , r, the first l entries of the (k + i)-th row are equal to
a+l−1+i, a+l−2+i, . . . , a+1+i, a+i, respectively. Moreover, for all i = r, r+1, . . . , n−k,
the first l entries of the (k+i)-th row are equal to a+l−1+r, a+l−2+r, . . . , a+r+1, a+r,
respectively, because the last n − (k + r) entries of the l-th column are equal to a + r.
These facts imply that the last n− k rows of Or(A) look as follows:

(1) (2)

1
1
...
1
1
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

1
1
...
1
1
0
...
0

1
1
...
1
1
0
...
0

1
1
...
1
1
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

1
1
...
0
0
0
...
0

1
0
...
0
0
0
...
0

0
0
...
0
0
0
...
0

0
0
...
0
0
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
0
0
...
0

0
0
...
0
0
0
...
0



k + 1

k + r

n

.

(1) it is the l-th column; (2) it is (m− a+ 1)-th column.
Thus in this case A ∈ Pm

n and the last n− k rows of the matrix A correspond to the
following function:

k + 1 k + 2 . . . k +m− a+ 1− l − 1 k +m− a+ 1− l k +m− a+ 1− l + 1 . . . n
m− a m− a− 1 . . . l + 1 l 0 . . . 0

)
,

note that k +m− a+ 1− l = k + r 6 k + n− k − 1 = n− 1.

Case 2.2: k − a 6 l − 2.
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Then l− (k− a) > 2 and x = a+ min{l− 1, k− a} = k. Thus the first l entries of the
k-th row form the following decreasing sequence k, k, . . . , k︸ ︷︷ ︸

l−(k−a)

, k− 1, . . . , a+ 1, a. Hence, for

each 1 6 i 6 r, the first l entries of the (k+i)-th row are equal to k + i, k + i, . . . , k + i︸ ︷︷ ︸
l−(k−a)

, k−

1+i, . . . , a+1+i, a+i, respectively. Thus for each 1 6 i 6 min{l−(k−a)−1, n−(k+r)},
the first l entries of the (k+r+i)-th row are equal to k + r + i, k + r + i, . . . , k + r + i︸ ︷︷ ︸

l−(k−a)−i

, k+

r + i− 1, . . . , a+ r + 1, a+ r, respectively, because the last n− (k + r) entries of the l-th
column are equal to a+ r. Moreover, if l− (k− a) 6 n− (k+ r) (which is equivalent with
n−m−1 > 0), then for each l−(k−a) 6 i 6 n−(k+r), the (k+r+i)-th row is a strictly
decreasing sequence ending by 1. So in this case the last n−(k+r+l−(k−a)−1) = n−m
rows of A are equal. All these facts imply that the last n−k rows of Or(A) look as follows:

(0) (1) (2)

1
1
...
1
1
1
1
...
1
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

1
1
...
1
1
1
1
...
0
0
...
0

1
1
...
1
1
1
0
...
0
0
...
0

1
1
...
1
1
0
0
...
0
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

1
1
...
1
1
0
0
...
0
0
...
0

1
1
...
1
1
0
0
...
0
0
...
0

1
1
...
1
1
0
0
...
0
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

1
1
...
0
0
0
0
...
0
0
...
0

1
0
...
0
0
0
0
...
0
0
...
0

0
0
...
0
0
0
0
...
0
0
...
0

0
0
...
0
0
0
0
...
0
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

0
0
...
0
0
0
0
...
0
0
...
0

0
0
...
0
0
0
0
...
0
0
...
0



k + 1
k + 2

k + r(a)

m(b)

n

(0) it is the (l− (k − a)− 1)-th column; (1) it is the l-th column; (2) it is (m− a+ 1)-th
column. Next, (a)k + r = k +m− a+ 1− l and (b)k + r + l − (k − a)− 1 = m.

Thus in this case A ∈ Pm
n and the last n− k rows of the matrix A correspond to one

of the following three functions:
If m+ 1 6 n, then

k + 1 k + 2 . . . k +m− a+ 1− l − 1 k +m− a+ 1− l k +m− a+ 1− l + 1 . . . m m+ 1 . . . n
m−a m−a−1 . . . l + 1 l l− (k − a)− 1 . . . 1 0 . . . 0

)
,

because (k+m− a+ 1− l) + (l− k+ a− 1) = m. Our assumption k− a 6 l− 2 implies
l − (k − a)− 1 > 1 and k +m− a+ 1− l + 1 6 m.

If n 6 m, then

k + 1 k + 2 . . . k +m− a+ 1− l − 1 k +m− a+ 1− l k +m− a+ 1− l + 1 . . . n
m− a m− a− 1 . . . l + 1 l l− (k − a)− 1 . . . m− n+ 1

)
,

because l−(k−a)−(n−(k+m−a+1−l)) = m−n+1. Our assumptionm−a−(n−k) 6 l−2
implies k +m− a+ 1− l 6 n− 1.

Summarizing we have proved the following result (see also Remark 8).
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Proposition 47. Let 1 6 k 6 n, 1 6 l 6 m and 0 6 a 6 min{k, m+ 1− l} − 1. Then

(a) Cp
k,l,a,n×m ∈ Pm

n .

(b) fCp
k,l,a,n×m

is such that

(b.1) if m−n+k−a > l−1 and l 6 k−a, then fCp
k,l,a,n×m

=
(

1 . . . a a+ 1 . . .
m . . . m− a+ 1 l − 1 . . .

a+ l . . . k k + 1 k + 2 . . . n
0 . . . 0 m− a m− a− 1 . . . m− n+ k − a+ 1

)
(note that a+ l 6 k and m− n+ k − a+ 1 > l),

(b.2) if m−n+k−a > l−1 and k−a 6 l−1 (in particular, n 6 m), then fCp
k,l,a,n×m

=(
1 . . . a a+ 1 . . . k k + 1 k + 2 . . . n
m . . . m− a+ 1 l − 1 . . . l − (k − a) m− a m− a− 1 . . . m− n+ k − a+ 1

)
(note that l − (k − a) > 1 and m− n+ k − a+ 1 > l),

(b.3) if m−n+k−a 6 l−2 and l 6 k−a (in particular, m 6 n−2), then fCp
k,l,a,n×m

=(
1 . . . a a+ 1 . . . a+ l . . . k k + 1 k + 2 . . . m+ k − a− l + 1
m . . . m− a+ 1 l − 1 . . . 0 . . . 0 m− a m− a− 1 . . . l

m+ k − a− l + 2 . . . n
0 . . . 0

)
(note that a+ l 6 k and m+ k − a− l + 2 6 n),

(b.4) if m−n+ k− a 6 l− 2 and l− 1 = k− a (equivalently, m 6 n− 1 and l− 1 =

k − a), then fCp
k,l,a,n×m

=
(

1 . . . a a+ 1 . . . k k + 1 k + 2 . . .
m . . . m− a+ 1 l − 1 . . . 1 m− a m− a− 1 . . .

m+ k − a− l + 1 m+ k − a− l + 2 . . . n
l 0 . . . 0

)
(note that m+ k − a− l + 2 6 n),

(b.5) if m+ 1 6 n, m−n+ k− a 6 l− 2 and k− a 6 l− 2 (equivalently, m 6 n− 1
and k−a 6 l−2; moreover, these two conditions imply m−n+k−a 6 l−3),

then fCp
k,l,a,n×m

=
(

1 . . . a a+ 1 . . . k k + 1 k + 2 . . .
m . . . m− a+ 1 l − 1 . . . l − (k − a) m− a m− a− 1 . . .

m+ k − a− l + 1 m+ k − a− l + 2 . . . m m+ 1 . . . n
l l− (k − a)− 1 . . . 1 0 . . . 0

)
(note that l − (k − a) > 2 and m+ k − a− l + 2 6 m),

(b.6) if n 6 m, m−n+k−a 6 l−2 and k−a 6 l−2 (equivalently, n 6 m and m−n+

k − a 6 l − 2), then fCp
k,l,a,n×m

=
(

1 . . . a a+ 1 . . . k k + 1
m . . . m− a+ 1 l − 1 . . . l − (k − a) m− a

k + 2 . . . m+ k − a− l + 1 m+ k − a− l + 2 . . . n
m− a− 1 . . . l l − (k − a)− 1 . . . m− n+ 1

)
(note that l − (k − a) > 2 and m− n+ 1 > 1).

The proof of the particular case of the above result for n = m is sketched in [7]
(Subsection 4.5, Examples 4.18, 4.19, 4.20). Of course, this particular case has a much
simpler form and easily follows from Proposition 47. More precisely, if n = m, then
assumptions of (b.3), (b.4), (b.5) are not satisfied, so by (b.1), (b.2) and (b.6) we obtain
the following fact.

Corollary 48 ([7]). Let 1 6 k, l 6 n and 0 6 a 6 min{k, n+ 1− l} − 1. Then
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(a) if l 6 k−a, then fCp
k,l,a,n×n

=
(

1 2 . . . a a+ 1 a+ 2 . . . a+ l − 1 a+ l . . .
n n− 1 . . . n− a+ 1 l − 1 l − 2 . . . 1 0 . . .

k k + 1 k + 2 . . . n
0 n− a n− a− 1 . . . k − a+ 1

)
,

note that k − a+ 1 > l + 1,

(b) if k − a = l − 1, then fCp
k,l,a,n×n

=
(

1 2 . . . a a+ 1 a+ 2 . . . k k + 1
n n− 1 . . . n− a+ 1 l − 1 l − 2 . . . 1 n− a

k + 2 k + 3 . . . n
n− a− 1 n− a− 2 . . . l

)
,

(c) if k − a 6 l − 2, then fCp
k,l,a,n×n

=
(

1 2 . . . a a+ 1 a+ 2 . . . k
n n− 1 . . . n− a+ 1 l − 1 l − 1 . . . l − (k − a)

k + 1 k + 2 . . . n+ k − a− l + 1 n+ k − a− l + 2 n+ k − a− l + 3 . . . n
n− a n− a− 1 . . . l l − (k − a)− 1 l − (k − a)− 2 . . . 1

)
,

note that l − (k − a) > 2 and n+ k − a− l + 1 6 n− 1.

Of course, (b) is a particular case of (c).

Now we precisely describe the structure of the poset (Mir(PGm
n ),6M). To this pur-

pose we first prove the following technical lemma.

Lemma 49. Let 1 6 k1, k2 6 n, 1 6 l1, l2 6 m and 0 6 a1 6 min{k1, m + 1 − l1} − 1,
0 6 a2 6 min{k2, m+ 1− l2} − 1. Then

(a) Cp
k1,l1,a1,n×m 6M Cp

k2,l2,a2,n×m iff


k1 − a1 > k2 − a2

l1 + a1 6 l2 + a2

a1 6 a2

a1 + l1 − k1 6 a2 + l2 − k2

.

(b) Cp
k1,l1,a1,n×m = Cp

k2,l2,a2,n×m iff (k1, l1, a1) = (k2, l2, a2).

Proof. Note first that (b) is implied by (a). This fact may be also obtained by using the
form of matrices Or(Cp

k,l,a,n×m), which is described in the proof of Proposition 47. But it
is a very complicated method in this case.

(a): We will apply the description of matrices Cp
k,l,a,n×m given in the proof of Propo-

sition 47. Our proof is similar to the proof of Theorem 44, but unfortunately technically
more complicated (because matrices of the form Cp

k,l,a,n×m have more complicated struc-
ture than matrices of the form Bp

k,l,a,n×m).
Let C1 = Cp

k1,l1,a1,n×m and C2 = Cp
k2,l2,a2,n×m. By Lemma 39 we have the equivalence

C1 6M C2 iff C1[k2, l2] 6 a2.

We divide our proof into the following several cases:
(a.1): k2 6 a1 or l2 > m−a1 +1. If k2 + l2 6 m+1 (i.e., the position (k2, l2) lies to the left
from the line connecting positions (a1,m−a1+1) and (1,m)), then C1[k2, l2] = k2 > a2+1.
Similarly, if k2 + l2 > m + 1 (i.e., (k2, l2) lies to the right from the line connecting
(a1,m− a1 + 1) and (1,m)), then C1[k2, l2] = m− l2 + 1 > a2 + 1. In both these cases C2

cannot be greater than or equal to C1 for any value of a2.
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(a.2): k1 > k2 > a1 + 1 and l1 6 l2 6 m − a1. Then C1[k2, l2] = C1[k1, l1] = a1,
so C1 6M C2 iff a1 6 a2. All other inequalities (from the right-hand side of the first
equivalence) are implied by the proved inequality a1 6 a2 and our assumptions of this
case. Similar facts will hold in the next cases, therefore we will not explicit formulate
their later.
(a.3): k1 > k2 > a1 + 1, l1 > l2 and k2 + l2 6 a1 + l1 (i.e., the position (k2, l2) lies
to the left from the line passing through positions (a1, l1) and (a1 + 1, l1 − 1)). Then
C1[k2, l2] = k2 > a2 + 1.
(a.4): k1 > k2 > a1 + 1, l1 > l2 and k2 + l2 > a1 + l1 (i.e., (k2, l2) lies to the right from
the line passing through (a1, l1) and (a1 + 1, l1 − 1)). Then C1[k2, l2] = a1 + l1 − l2, so
C1 6M C2 iff a1 + l1 6 a2 + l2.
(a.5): k1 6 k2, l1 6 l2 and k2 + l2 < k1 + m− a1 + 1 (i.e., the position (k2, l2) lies to the
left from the line passing through positions (k1,m− a1 + 1) and (k1 + 1,m− a1)). Then
C1[k2, l2] = a1 + k2 − k1, so C1 6M C2 iff a1 − k1 6 a2 − k2 iff k1 − a1 > k2 − a2.
(a.6): k1 6 k2, l1 6 l2 and k2+l2 > k1+m−a1+1 (i.e., (k2, l2) lies to the right from the line
passing through (k1,m−a1 +1) and (k1 +1,m−a1)). Then C1[k2, l2] = m−l2 +1 > a2 +1.
(a.7): k1 6 k2, l1 > l2. Take lines K and L passing through positions (a1, l1), (a1+1, l1−1)
and (k1,m− a1 + 1), (k1 + 1,m− a1), respectively. Next, let i be a non-negative integer
such that (k1, i) is the common position of K and the k1-th row if such a position exists,
otherwise i = 0. Similarly, let j be a non-negative integer such that (j, l1) is a common
position of L and the l1-th column if such a position exists, otherwise j = m + 1. Then
we have the following four cases (of course, some of this cases do not hold if i = 0 or
j = m+ 1):
If k2 6 j and k2 +l2 > k1 +i (i.e., the position (k2, l2) lies to the right from the line passing
through positions (k1, i) and (k1 + 1, i − 1)), then C1[k2, l2] = a1 + (k2 − k1) + (l1 − l2).
Hence C1 6M C2 iff a1 + (k2 − k1) + (l1 − l2) 6 a2 iff a1 + l1 − k1 > a2 + l2 − k2.
If k2 6 j and k2 + l2 6 k1 + i (i.e., the position (k2, l2) lies to the left from the line passing
through positions (k1, i) and (k1 + 1, i− 1)), then C1[k2, l2] = k2 > a2 + 1.
If k2 > j and k2 + l2 > k1 + i (i.e., the position (k2, l2) lies to the right from the line
passing through positions (k1, i) and (k1 + 1, i− 1)), then C1[k2, l2] = m− l2 + 1 > a2 + 1.
If k2 > j and k2 + l2 6 k1 + i (i.e., the position (k2, l2) lies to the left from the line passing
through positions (k1, i) and (k1 + 1, i− 1)), then C1[k2, l2] = k2 > a2 + 1.

Theorem 50. (Mir(PGm
n ),6M) is isomorphic to the poset (Tn,m,6prod) defined in The-

orem 44, recall that (Tn,m,6prod) is a subposet of the poset (N4,6prod) such that Tn,m =
{(x, y, z, t) ∈ N4 : 1 6 x 6 n, 1 6 y 6 m, 1 6 z 6 min{x, y} and t = x + y − z}.
Moreover, this isomorphism is given by the function

Cp
k,l,a,n×m 7−→ (n− k + a+ 1, l + a, a+ 1, a− k + l + n).

Proof. Having Lemma 49(b) we can take a function Ψ: Mir(PGm
n ) −→ N4 such that

Ψ(Cp
k,l,a,n×m) = (n− k + a+ 1, l + a, a+ 1, a− k + l) + (0, 0, 0, n).

Lemma 49(a) implies that Ψ is an embedding of (Mir(PGm
n ),6M) into (N4,6prod). For

each Cp
k,l,a,n×m we have 1 6 a+ 1 6 n− k+ a+ 1 6 n and 1 6 a+ 1 6 l+ a 6 m, because
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a 6 min{k, m+ 1− l}− 1. Next, a−k+ l+n = (n−k+a+ 1) + (l+a)− (a+ 1). Hence
Ψ(Mir(PGm

n )) ⊆ Tn,m. On the other hand, take (x, y, z, t) ∈ Tn,m. By the last part of
the proof of Theorem 44 we have that

1 6 n−x+z 6 n, 1 6 y−z+1 6 m and 0 6 z−1 6 min{n−x+z, m+1−(y−z+1)}−1.

Thus we can that the matrix Cp
n−x+z,y−z+1,z−1,n×m. Of course, Ψ(Cp

n−x+z,y−z+1,z−1,n×m) =
(x, y, z, x + y − z) = (x, y, z, t). Hence Tn,m ⊆ Ψ(Mir(PGm

n )), because (x, y, z, t) ∈ Tn,m
was arbitrarily chosen.

Proposition 51. |Mir(PGm
n )| = α(α+1)(2α+1)

6
+ α(α+1)

2
· (β − α), where α = min{n,m}

and β = max{n,m}. In particular, |Mir(PGn
n)| = n(n+1)(2n+1)

6
.

Proof. By Lemma 49(b) we have |Mir(PGm
n )| = |{(k, l, a) ∈ N3 : 1 6 k 6 n, 1 6 l 6

m, 0 6 a 6 α− 1, a 6 k− 1 and l 6 m− a}| = |{(k, l, a+ 1) ∈ N3 : 1 6 k 6 n, 1 6 l 6
m, 1 6 a+ 1 6 α, a+ 1 6 k and l 6 m− (a+ 1) + 1}|. Thus by the proof of Proposition
45 we have our result.

By Theorems 44 and 50 we have that functions Bp
k,l,a,n×m 7−→ (n−k+a, l+a−1, a, a−

k+l+n−1) and Cp
k,l,a−1,n×m 7−→ (n−k+(a−1)+1, l+(a−1), (a−1)+1, (a−1)−k+l+n) =

(n−k+a, l+a−1, a, a−k+ l+n−1), where 1 6 a 6 min{k, m+1− l}, are isomorphisms
of (Jir(PGm

n ),6M) and (Mir(PGm
n ),6M) onto (Tn,m,6prod), respectively. Hence obtain

the following result.

Corollary 52. Posets (Jir(PGm
n ),6M) and (Mir(PGm

n ),6M) are isomorphic. Moreover,
this isomorphism is given by the function Bp

k,l,a,n×m 7−→ Cp
k,l,a−1,n×m for all 1 6 k 6 n,

1 6 l 6 m and 1 6 a 6 min{k, m+ 1− l}.

Since (PGm
n ,6M) is a finite distributive lattice, its dual (PGm

n ,6
d
M) is isomorphic to

the lattice of all order filters of Mir(PGm
n ) (see [4] and Subsection 1.1). Hence and by

Theorem 50 we obtain

Corollary 53. (PGm
n ,6

d
M) ' (OF (Tn,m),⊆).

By this corollary (see also Subsection 1.1) we obtain another proof of the fact that
|PGm

n | is equal to the cardinality of the family of all anti-chains of (T,6prod) (see Corollary
46).

3.5 Dedekind-MacNeille completions of posets (Pm
n ,6M) and (P (n,m),6F )

By Corollary 37 and Propositions 42(a), 47(a) we obtain the following description of
Dedekind-MacNeille completion of the poset (Pm

n ,6M) (see also Proposition 10).

Theorem 54. (L(Pm
n ),⊆) ' (PGm

n ,6M) (i.e., the Dedekind-MacNeille completion of the
poset (Pm

n ,6M) is isomorphic to the lattice (PGm
n ,6M)), in particular, (L(Pm

n ),⊆) is a
finite distributive lattice. Moreover, Jir(Pm

n ) = Jir(PGm
n ) and Mir(Pm

n ) = Mir(PGm
n ).
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Since the function f 7−→ M(f) is an isomorphism between posets (P (n,m),6F ) and
(Pm

n ,6M), the following properties of the poset (P (n,m),6F ) are obtained by Theorem
54 and Propositions 42(b), 47(b).

Corollary 55.

(a) (L(P (n,m)),⊆) ' (PGm
n ,6M), i.e., the Dedekind-MacNeille completion of the poset

(P (n,m),6F ) is isomorphic to (PGm
n ,6M). In particular, (L(P (n,m)),⊆) is a

finite distributive lattice.

(b) Jir(P (n,m)) = {fBp
k,l,a,n×m

: 1 6 k 6 n, 1 6 l 6 m and 1 6 a 6 min{k, m − l +

1}} = {
(

1 2 . . . r − 1 r r + 1 . . . s s+ 1 . . . n
0 0 . . . 0 x x+ 1 . . . x+ s− r 0 . . . 0

)
: 1 6 r 6 s 6 n, 1 6

x 6 m− s+ r}.

(c) Mir(P (n,m)) = {fCp
k,l,a,n×m

: 1 6 k 6 n, 1 6 l 6 m and 0 6 a 6 min{k, m − l +

1} − 1} = {f ∈ P (n,m) : f has one of the six forms given in Proposition 47(b) }.

By Corollary 55, Theorems 44, 50 and Corollary 52 we obtain the following result
which describes the structure of subposets of (P (n,m),6F ) induced by join- and meet-
irreducible elements.

Corollary 56. Let Tn,m = {(x, y, z, t) ∈ N4 : 1 6 x 6 n, 1 6 y 6 m, 1 6 z 6
min{x, y} and t = x+ y − z}. Then

(a) (Jir(P (n,m)),6F ) and (Mir(P (n,m)),6F ) are isomorphic to (Tn,m,6prod). More-
over, these isomorphisms are given by functions

Θ1 : fBp
k,l,a,n×m

7−→ (n− k + a, l + a− 1, a, a− k + l + n− 1)

and
Θ2 : fCp

k,l,a,n×m
7−→ (n− k + a+ 1, l + a, a+ 1, a− k + l + n).

(b) The function fBp
k,l,a,n×m

7−→ fCp
k,l,a−1,n×m

is an isomorphism of (Jir(P (n,m)),6F )

onto (Mir(P (n,m)),6F ).

Since join-irreducible elements of the poset (P (n,m),6F ) have a simple structure,
the function Θ1 can be described without using the isomorphism Bp

k,l,a,n×m 7−→ fBp
k,l,a,n×m

between posets (Jir(PGm
n ),6M) and (Jir(P (n,m)),6F ). Take an arbitrary function

f =
(

1 2 . . . r − 1 r r + 1 . . . s s+ 1 . . . n
0 0 . . . 0 x x+ 1 . . . x+ s− r 0 . . . 0

)
∈ Jir(P (n,m)). We know that

M(f) = Bp
s,x,s−r+1,n×m, so

Θ1(f) = Θ1(fBp
s,x,s−r+1,n×m

) =

(n− s+ (s− r + 1), x+ (s− r + 1)− 1, s− r + 1, (s− r + 1)− s+ x+ n− 1) =

(n− r + 1, x− r + s, s− r + 1, x− r + n) = (n− r + 1, f(s), s− r + 1, f(r)− r + n).
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Unfortunately, it is not possible to obtain such a formula for the function Θ2, because
meet-irreducible elements of (P (n,m),6F ) have a much more complicated structure than
join-irreducible elements (see Proposition 47). In fact, several partial formulas can be
given, each of them is defined on some part of Mir(P (n,m)) and together give the function
Θ2.

3.6 Join-irreducible elements of the lattice (FGm
n ,6M)

By the definition of the set FGm
n (see Definition 9) and properties of the bottom 0mn and

the top element 1Fm
n

of the lattice (FGm
n ,6M) (see the last part of Subsection 2.3) we

obtain that π(k,l)(FG
m
n ) = {0mn [k, l],0mn [k, l] + 1, . . . ,1Fm

n
[k, l]} for all k = 1, 2, . . . , n and

l = 1, 2, . . . ,m. Hence and by Theorem 41 we have that all join-irreducible elements of
the lattice (FGm

n ,6M) are of the form BFG
k,l,a,n×m, where 1 6 k 6 n, 1 6 l 6 m and

1 = 0mn [k, l] + 1 6 a 6 1Fm
n

[k, l] = k. These matrices will be denoted by Bf
k,l,a,n×m to

simplify notation. In other words, we have

Jir(FGm
n ) = {Bf

k,l,a,n×m : 1 6 k 6 n, 1 6 l 6 m and 1 6 a 6 k}.

Since Bf
k,l,a,n×m is the least matrix of FGm

n with the entry a in the position (k, l), we
obtain

Bf
k,l,a,n×m[i, j] =


0 if 1 6 i 6 k − a
0 if l + 1 6 j 6 m
a+ i− k if k − a 6 i 6 k and 1 6 j 6 l
a if k 6 i 6 n and 1 6 j 6 l

,

i.e.,

Bf
k,l,a,n×m =

l l + 1 m

0
...
0
1
2
...
a
a
...
a

0
...
0
1
2
...
a
a
...
a

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

0
...
0
1
2
...
a
a
...
a

0
...
0
0
0
...
0
0
...
0

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

0
...
0
0
0
...
0
0
...
0



1

k − a
k − a+ 1

k
k + 1

n
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Thus

Or(Bf
k,l,a,n×m) =

l l + 1 m

0
...
0
1
1
...
1
0
...
0

0
...
0
1
1
...
1
0
...
0

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

0
...
0
1
1
...
1
0
...
0

0
...
0
0
0
...
0
0
...
0

· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

0
...
0
0
0
...
0
0
...
0



1

k − a
k − a+ 1

k
k + 1

n

Hence (see also Remark 8) we obtain the following result.

Proposition 57. Let 1 6 k 6 n, 1 6 l 6 m and 1 6 a 6 k. Then

(a) Bf
k,l,a,n×m ∈ Fm

n .

(b) fBf
k,l,a,n×m

=
(

1 2 . . . k − a k − a+ 1 k − a+ 2 . . . k k + 1 . . . n
0 0 . . . 0 l l . . . l 0 . . . 0

)
.

Of course, for f =
(

1 2 . . . r − 1 r r + 1 . . . s s+ 1 . . . n
0 0 . . . 0 x x . . . x 0 . . . 0

)
, where 1 6 r 6 s 6 n

and 1 6 x 6 m, we have f = fBf
s,x,s−r+1,n×m

. So M(f) = Bf
s,x,s−r+1,n×m; this fact follows

also from the equality M c(f) = Or(Bp
s,x,s−r+1,n×m). Note that 1 6 s− r + 1 6 s.

Now we precisely describe the structure of the poset (Jir(FGm
n ),6M). To this purpose

we first prove the following technical lemma.

Lemma 58. Let 1 6 k1, k2 6 n, 1 6 l1, l2 6 m and 1 6 a1 6 k1, 1 6 a2 6 k2. Then

(a) Bf
k1,l1,a1,n×m 6M Bf

k2,l2,a2,n×m iff


k2 − a2 6 k1 − a1

l1 6 l2

a1 6 a2

.

(b) Bf
k1,l1,a1,n×m = Bf

k2,l2,a2,n×m iff (k1, l1, a1) = (k2, l2, a2).

Proof. Note first that (b) is implied by (a). This fact may be also easily obtained by using
the form of matrices Or(Bf

k,l,a,n×m).

(a): Let C1 = Bf
k1,l1,a1,n×m and C2 = Bf

k2,l2,a2,n×m. Assume that C1 6M C2. Then
k2− a2 + 1 6 k1− a1 + 1, because the first non-zero rows in C1 and C2, respectively, lie in
the positions k1− a1 + 1 and k2− a2 + 1, respectively. Next, a1 6 C2[k1, l1] 6 a2, because
all entries of C2 are not greater than a2. Moreover, l1 6 l2, because the last non-zero
columns in C1 and C2, respectively, lie in the positions l1 and l2, respectively.
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Assume that k2 − a2 6 k1 − a1, l1 6 l2 and a1 6 a2. In particular, 1 6 a1 6
a2 − (k2 − k1). Then C2[k1, l1] = C2[k1, l2] = (because l1 6 l2) = C2[k2 − (k2 − k1), l2] ={
a2 − (k2 − k1) if k1 6 k2

a2 if k2 6 k1

. Thus a1 6 C2[k1, l1], so C1 6M C2 by Lemma 39(a).

Theorem 59. (Jir(FGm
n ),6M) is isomorphic to a subposet of the poset (N3,6prod) in-

duced by the set Sn,m = {(x, y, z) ∈ N3 : 1 6 z 6 x 6 n and 1 6 y 6 m}. Moreover, this
isomorphism is given by the function

Bf
k,l,a,n×m 7−→ (n− k + a, l, a).

Note that Sn,m ⊆ {1, 2, . . . , n} × {1, 2, . . . ,m} × {1, 2, . . . , n}.

Proof. Having Lemma 58(b) we can take a function Ψ: Jir(FGm
n ) −→ N3 such that

Ψ(Bf
k,l,a,n×m) = (n− k + a, l, a).

By Lemma 58(b) we obtain that Ψ is an embedding of (Jir(FGm
n ),6M) into (N3,6prod).

Next, Ψ(Jir(FGm
n )) ⊆ Sn,m, because 1 6 a 6 n − k + a = n − (k − a) 6 n. On the

other hand, take (x, y, z) ∈ Sn,m. Applying inequalities which define the set Sn,m, it can
be shown (simple details are left to the reader) that

1 6 n− x+ z 6 n, 1 6 y 6 m and 1 6 z 6 n− x+ z.

Thus we can take the matrix Bf
n−x+z,y,z,n×m. Of course, Ψ(Bf

n−x+z,y,z,n×m) = (x, y, z).
Hence, Sn,m ⊆ Ψ(Jir(FGm

n )), because (x, y, z) ∈ Sn,m was arbitrarily chosen.

Proposition 60. |Jir(FGm
n )| = n(n+1)

2
m. In particular, |Jir(FGn

n)| = n2(n+1)
2

.

Proof. By Lemma 58(b) we have

|Jir(FGm
n )| = |{(k, a, l) ∈ N3 : 1 6 a 6 k 6 n, 1 6 l 6 m}| =

|{(k, a) : 1 6 a 6 k 6 n}| ·m = (
n2 − n

2
+ n) ·m =

n(n+ 1)

2
·m.

Since (FGm
n ,6M) is a finite distributive lattice, it is isomorphic to the lattice of all

order ideals of Jir(FGm
n ) (see [4] and Subsection 1.1). Hence and by Theorem 59 (see

also Subsection 1.1 for the second part of this fact) we obtain

Corollary 61. (FGm
n ,6M) ' (OI(Sn,m),⊆). In particular, |FGm

n | is equal to the cardi-
nality of the family of all anti-chains of (Sn,m,6prod).

The following fact shows that the poset (Sn,m,6prod) introduced in Theorem 59 is
self-dual. Its simple proof is left to the reader.

Lemma 62. Let ϕ : Sn,m −→ Sn,m be a function such that ϕ((x, y, z)) = (n− z + 1,m−
y + 1, n − x + 1) for all (x, y, z) ∈ Sn,m. Then ϕ is an involutive anti-automorphism of
(Sn,m,6prod). In particular, (Sn,m,6prod) is self-dual.
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By Theorem 59 and Lemma 62 we have that Bf
k,l,a,n×m 7−→ (n − k + a, l, a)

ϕ7−→
(n − a + 1,m − l + 1, n − (n − k + a) + 1 = (n − a + 1,m − l + 1, k − a + 1) and
Bf
k,m−l+1,k−a+1,n×m 7−→ (n−k+(k−a+1),m−l+1, k−a+1) = (n−a+1,m−l+1, k−a+1).

Thus we have obtained the following fact.

Corollary 63. The function Bf
k,l,a,n×m 7−→ Bf

k,m−l+1,k−a+1,n×m is an involutive anti-
automorphism of (Jir(FGm

n ),6M). In particular, the poset (Jir(FGm
n ),6M) is self-dual.

Since the poset (Mir(FGm
n ),6M) is isomorphic to the dual of (Jir(FGm

n ),6M) (The-
orem 15), we obtain by the above corollary that (Mir(FGm

n ),6M) is also isomorphic to
(Jir(FGm

n ),6M), thus also to (Sn,m,6M). But in the next subsection we describe meet-
irreducible elements of the lattice (FGm

n ,6M) and consequently, we will be able to give
formulas for these isomorphisms.

3.7 Meet-irreducible elements of the lattice (FGm
n ,6M)

At the beginning of Subsection 3.6 we have shown π(k,l)(FG
m
n ) = {0mn [k, l],0mn [k, l] +

1, . . . ,1Fm
n

[k, l]} for all k = 1, 2, . . . , n and l = 1, 2, . . . ,m. Thus by Theorem 41 we have
that all meet-irreducible elements of the lattice (FGm

n ,6M) are of the form CFG
k,l,a,n×m,

where 1 6 k 6 n, 1 6 l 6 m and 0 = 0mn [k, l] 6 a 6 1Fm
n

[k, l]− 1 = k− 1. These matrices

will be denoted by Cf
k,l,a,n×m to simplify notation. In other words, we have

Mir(FGm
n ) = {Cf

k,l,a,n×m : 1 6 k 6 n, 1 6 l 6 m and 0 6 a 6 k − 1}.

Since Cf
k,l,a,n×m is the greatest matrix of (FGm

n ,6M) with the entry a in the position (k, l),
we obtain

Cf
k,l,a,n×m[i, j] =


i if 1 6 i 6 a
i if a 6 i and j 6 l − 1
a if a 6 i 6 k and j > l
a+ i− k if i > k and j > l

,

i.e.,

Cf
k,l,a,n×m =

l m

1
2
...
a

a+ 1
...
k

k + 1
...
n

· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

1
2
...
a

a+ 1
...
k

k + 1
...
n

1
2
...
a
a
...
a

a+ 1
...

n− k + a

· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

1
2
...
a
a
...
a

a+ 1
...

n− k + a



a

k

n
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Thus

Or(Cf
k,l,a,n×m) =

l m

1
1
...
1
1
...
1
1
...
1

· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

1
1
...
1
1
...
1
1
...
1

1
1
...
1
0
...
0
1
...
1

· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
...
· · ·

1
1
...
1
0
...
0
1
...
1



a

k

n

Hence (see also Remark 8) we obtain the following result.

Proposition 64. Let 1 6 k 6 n, 1 6 l 6 m and 0 6 a 6 k − 1. Then

(a) Cf
k,l,a,n×m ∈ Fm

n .

(b) fCf
k,l,a,n×m

=
(

1 2 . . . a a+ 1 . . . k k + 1 . . . n
m m . . . m l − 1 . . . l − 1 m . . . m

)
.

Of course, for f =
(

1 2 . . . r − 1 r r + 1 . . . s s+ 1 . . . n
m m . . . m x x . . . x m . . . m

)
, where 1 6 r 6

s 6 n and 0 6 x 6 m − 1, we have f = fCf
s,x+1,r−1,n×m

. So M(f) = Cf
s,x+1,r−1,n×m; this

fact follows also from the equality M c(f) = Or(Cp
s,x+1,r−1,n×m). Note that 1 6 x+ 1 6 m

and 0 6 r − 1 6 s− 1.
The function A 7−→ Ad is an isomorphism between (FGm

n ,6M) and (FGm
n ,6

d
M) (see

Theorem 15). In particular, we have some correspondence between join- and meet-
irreducible elements of (FGm

n ,6M). The following lemma precisely describes this con-
nection.

Lemma 65. (Bf
k,l,a,n×m)d = Cf

k,m−l+1,k−a,n×m and (Cf
k,l,a,n×m)d = Bf

k,m−l+1,k−a,n×m.

Proof. Recall Ad[i, j] = i− A[i,m− j + 1], so Ad[i,m− j + 1] = i− A[i, j]. Thus {Ad ∈
FGm

n : A[k, l] = a} = {Ad ∈ FGm
n : Ad[k,m − l + 1] = k − a} = {B ∈ FGm

n : B[k,m −
l + 1] = k − a} the last equality follows from the fact that A 7−→ Ad is a bijection of
FGm

n . Hence (Bf
k,l,a,n×m)d = (

∧
{A ∈ FGm

n : A[k, l] = a})d =
∨
{Ad ∈ FGm

n : A[k, l] = a}
=
∨
{B ∈ FGm

n : B[k,m− l + 1] = k − a} = Cf
k,m−l+1,k−a,n×m.

Using the first equality we obtain (Bf
k,m−l+1,k−a,n×m)d = Cf

k,l,a,n×m, so by Lemma 14

we have (Cf
k,l,a,n×m)d = ((Bf

k,m−l+1,k−a,n×m)d)d = Bf
k,m−l+1,k−a,n×m.

Applying Lemma 65, and also results from Subsection 2.4, to Proposition 57 we
obtain another proof of Proposition 64. Take a matrix Cf

k,l,a,n×m. Then Cf
k,l,a,n×m =

(Bf
k,m−l+1,k−a,n×m)d. Hence Cf

k,l,a,n×m ∈ Fm
n by Lemma 17(b) and Proposition 57. Next,
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M(mn−fCf
k,l,a,n×m

) = M(fCf
k,l,a,n×m

)d = Bf
k,m−l+1,k−a,n×m by Lemma 14 and Lemma 17(a).

Thus mn − fCf
k,l,a,n×m

=
(

1 2 . . . a = k − (k − a) a+ 1 . . . k k + 1 . . . n
0 0 . . . 0 m− l + 1 . . . m− l + 1 0 . . . 0

)
by

Proposition 57. Hence we obtain (b) of Proposition 64.

Take f =
(

1 2 . . . r − 1 r . . . s k + 1 . . . n
m m . . . m y . . . y m . . . m

)
, where 1 6 r 6 s 6 n and 0 6

y 6 m − 1. Then M(mn − f) = Bf
s,m−y,s−r+1,n×m (see Proposition 57). Hence and by

Lemmas 14 and 17(b), M(f) = (M(f)d)d = (M(mn − f))d = (Bf
s,m−y,s−r+1,n×m)d =

Cf
s,m−(m−y)+1,s−(s−r+1),n×m = Cf

s,y+1,r−1,n×m.

Observe also that in the case of lattice (FGm
n ,6M) it is sufficient to prove Lemma

39 and Theorems 40, 41 only for one of two kinds of matrices, because then the second
case is obtained by Lemma 65. For example, assume that these results hold for Bf

k,l,a,n×m,
because proofs of second implications are similar.

Lemma 39: A 6M Cf
k,l,a,n×m iff Bf

k,m−l+1,k−a,n×m = (Cf
k,l,a,n×m)d 6M Ad iff (Lemma

39(a)) k− a 6 Ad[k,m− l+ 1] = k−A[k,m− (m− l+ 1) + 1] = k−A[k, l] iff A[k, l] 6 a.
Theorem 40: By (a) and Lemma 14 we have A = (Ad)d = (

∨
{Bf

k,l,a,n×m : 1 6 k 6

n, 1 6 l 6 m and a = Ad[k, l] 6= 0})d =
∧
{(Bf

k,l,a,n×m)d : 1 6 k 6 n, 1 6 l 6 m and a =

k − A[k,m − l + 1] 6= 0} =
∧
{Cf

k,m−l+1,k−a,n×m : 1 6 k 6 n, 1 6 l 6 m and k − a =

A[k,m − l + 1] 6= k} =
∧
{Cf

k′,l′,a′,n×m : 1 6 k′ 6 n, 1 6 l′ 6 m and a′ = A[k′, l′] 6= k′}
(taking k′ = k, l′ = m− l + 1 and a′ = k − a).

Theorem 41: Mir(FGm
n ) = {Ad : A ∈ Jir(FGm

n )} = {(Bf
k,l,a,n×m)d : 1 6 k 6 n, 1 6

l 6 m and 1 6 a 6 k} = {Cf
k,m−l+1,k−a,n×m : 1 6 k 6 n, 1 6 l 6 m and 1 6 a 6 k} =

(taking k′ = k, l′ = m − l + 1 and a′ = k − a) = {Cf
k′,l′,a′,n×m : 1 6 k′ 6 n, 1 6 l′ 6

m and 0 6 a′ 6 k − 1}.
Applying Lemma 65 to Lemma 58, Theorem 59 and Proposition 60 we obtain the

following three results for meet-irreducible elements of the lattice (FGm
n ,6M).

Lemma 66. Let 1 6 k1, k2 6 n, 1 6 l1, l2 6 m and 0 6 a1 6 k1 − 1, 0 6 a2 6 k2 − 1.
Then

(a) Cf
k1,l1,a1,n×m 6M Cf

k2,l2,a2,n×m iff


k2 − a2 6 k1 − a1

l1 6 l2

a1 6 a2

.

(b) Cf
k1,l1,a1,n×m = Cf

k2,l2,a2,n×m iff (k1, l1, a1) = (k2, l2, a2).

Proof. (a): By Theorem 15 and Lemma 65 we obtain Cf
k1,l1,a1,n×m 6M Cf

k2,l2,a2,n×m iff

(Cf
k2,l2,a2,n×m)d 6M (Cf

k1,l1,a1,n×m)d iff Bf
k2,m−l2+1,k2−a2,n×m 6M Bf

k1,m−l1+1,k1−a1,n×m. Next,

by Lemma 58(a) we have Bf
k2,m−l2+1,k2−a2,n×m 6M Bf

k1,m−l1+1,k1−a1,n×m iff
k1 − (k1 − a1) 6 k2 − (k2 − a2)

m− l2 + 1 6 m− l1 + 1

k2 − a2 6 k1 − a1

iff


a1 6 a2

l1 6 l2

k2 − a2 6 k1 − a1

.
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The point (b) follows from (a). Of course, it is also implied by Lemmas 58(b) and 65. Note
that this fact may be easily obtained by using the form of matrices Or(Cf

k,l,a,n×m).

Theorem 67. (Mir(FGm
n ),6M) is isomorphic to the poset (Sn,m,6prod) defined in The-

orem59, recall that (Sn,m,6prod) is a subposet of the poset (N3,6prod) such that Sn,m =
{(x, y, z) ∈ N3 : 1 6 z 6 x 6 n and 1 6 y 6 m}. Moreover, this isomorphism is given by
the function

Cf
k,l,a,n×m 7−→ (n− k + a+ 1, l, a+ 1).

Proof. It follows from Theorems 15, 59 and Lemmas 62, 65. More precisely, we know
that Cf

k,l,a,n×m 7−→ (Cf
k,l,a,n×m)d = Bf

k,m−l+1,k−a,n×m is an anti-isomorphism of the poset

(Mir(FGm
n ),6M) onto the poset (Jir(FGm

n ),6M) and Bf
k,l,a,n×m 7−→ (n − k + a, l, a) is

an isomorphism of (Jir(FGm
n ),6M) onto the poset (Sn,m,6prod). Thus their composition

Cf
k,l,a,n×m 7−→ (n − k + (k − a),m − l + 1, k − a) = (n − a,m − l + 1, k − a) is an

anti-isomorphism of (Mir(FGm
n ),6M) onto (Sn,m,6prod). Composing the last function

with the anti-automorphism ϕ of (Sn,m,6prod) defined in Lemma 62 (recall ϕ((x, y, z)) =

(n− z+ 1,m− y+ 1, n− x+ 1)) we obtain that Cf
k,l,a,n×m 7−→ (n− (k− a) + 1,m− (m−

l+1)+1, n− (n−a)+1) = (n−k+a+1, l, a+1) is an isomorphism of (Mir(FGm
n ),6M)

onto (Sn,m,6prod).

Proposition 68. |Mir(FGm
n )| = n(n+1)

2
m. In particular, |Mir(FGn

n)| = n2(n+1)
2

.

Proof. It is obtained by Proposition 60, since |Mir(FGm
n )| = |{Ad : A ∈ Jir(FGm

n )}| =
|Jir(FGm

n )| (see Theorem 15).

Lemma 66(a) can be also proved in a similar way as Lemma 58(a) (details are left to
the reader). Next, Theorem 67 can be easily obtained by Lemma 66(a) (see the proof of
Theorem 59). Thus we can obtain alternative proofs of these two results, which do not
use the self-duality of lattice (FGm

n ,6M) (i.e., Theorem 15 and Lemma 65). Of course,
Proposition 68 can be also shown without using this self-duality in the same way as
Proposition 60.

By Theorems 59 and 67 we have that functions Bf
k,l,a,n×m 7−→ (n − k + a, l, a) and

Cf
k,l,a−1,n×m 7−→ (n−k+ (a−1) + 1, l, (a−1) + 1) = (n−k+a, l, a), where 1 6 a 6 k, are

isomorphisms of (Jir(FGm
n ),6M) and (Mir(FGm

n ),6M) onto (Sn,m,6prod), respectively.
Hence obtain the following result.

Corollary 69. Posets (Jir(FGm
n ),6M) and (Mir(FGm

n ),6M) are isomorphic and this
isomorphism is given by the function Bf

k,l,a,n×m 7−→ Cf
k,l,a−1,n×m for all 1 6 k 6 n,

1 6 l 6 m and 1 6 a 6 k.

Take the involutive anti-automorphism Ψ: Bf
k,l,a,n×m 7−→ Bf

k,m−l+1,k−a+1,n×m of the

poset (Jir(FGm
n ),6M) (see Corollary 63). By Corollary 69 we have that Θ: Cf

k,l,a,n×m 7−→
Bf
k,l,a+1,n×m is an isomorphism of (Mir(FGm

n ),6M) onto (Jir(FGm
n ),6M). Hence Θ−1◦Ψ◦

Θ: Cf
k,l,a,n×m 7−→ Bf

k,l,a+1,n×m 7−→ Bf
k,m−l+1,k−(a+1)+1,n×m 7−→ Cf

k,m−l+1,k−(a+1)+1−1,n×m =

Cf
k,m−l+1,k−a−1,n×m is an anti-automorphism of the poset (Mir(FGm

n ),6M), which is also
an involution. Summarizing, we have shown
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Corollary 70. The function Cf
k,l,a,n×m 7−→ Cf

k,m−l+1,k−a−1,n×m is an involutive anti-
automorphism of (Mir(FGm

n ),6M). In particular, the poset (Mir(FGm
n ),6M) is self-

dual.

Since (FGm
n ,6M) is a finite distributive lattice, its dual (FGm

n ,6
d
M) is isomorphic to

the lattice of all order filters of (Mir(FGm
n ),6M) (see [4] and Subsection 1.1). Hence and

by Theorem 67, since (FGm
n ,6M) is self-dual (see Theorem 15), we obtain

Corollary 71. (FGm
n ,6M) ' (OF (Sn,m),⊆).

By this corollary (see also Subsection 1.1) we obtain another proof of the fact that
|FGm

n | is equal to the cardinality of the family of all anti-chains of (Sn,m,6prod) (see
Corollary 61).

Since Theorem 67 can be shown without using the self-duality of lattice (FGm
n ,6M),

we can apply this result to obtain another proof of the self-duality of this lattice. More
precisely, the lattice (FGm

n ,6M) is isomorphic to (OI(Sn,m),⊆) (see Corollary 61), its
dual (FGm

n ,6
d
M) is isomorphic to (OF (Mir(FGm

n ),⊆) (see [4] and Subsection 1.1) and
(OF (Mir(FGm

n ),⊆) ' (OF (Sn,m),⊆) (by Theorem 67). Next, the poset (Sn,m,6prod) is
self-dual (see Lemma 62), so (OI(Sn,m),⊆) ' (OI(Sdn,m),⊆), where Sdn,m is the dual of
Sn,m. Of course, OI(Sdn,m) = OF (Sn,m).

3.8 Dedekind-MacNeille completions of posets (Fm
n ,6M) and (F (n,m),6F )

By Corollary 37 and Propositions 57(a), 64(a) we obtain the following description of
Dedekind-Macneille completion of the poset (Fm

n ,6M) (see also Proposition 10 and The-
orem 15).

Theorem 72. (L(Fm
n ),⊆) ' (FGm

n ,6M) (i.e., the Dedekind-MacNeille completion of the
poset (Fm

n ,6M) is isomorphic to (FGm
n ,6M)), in particular, (L(Fm

n ),⊆) is a finite self-
dual distributive lattice. Moreover, Jir(Fm

n ) = Jir(FGm
n ) and Mir(Fm

n ) = Mir(FGm
n ).

We know that the poset (F (n,m),6F ), thus also (Fm
n ,6M), is self-dual (see Proposi-

tion 2), so their Dedekind-MacNeille completions are also self-dual (see Proposition 33).
Hence we obtain another proof of the fact that the lattice (FGm

n ,6M) is self-dual (Theo-
rem 15). But this proof does not give a formula for any involutive anti-automorphism of
(FGm

n ,6M).
Since the function f 7−→ M(f) is an isomorphism between posets (F (n,m),6F ) and

(Fm
n ,6M), the following properties of the poset (F (n,m),6F ) are obtained by Theorem

72 and Propositions 57(b), 64(b).

Corollary 73.

(a) (L(F (n,m)),⊆) ' (FGm
n ,6M), i.e., the Dedekind-MacNeille completion of the poset

(F (n,m),6F ) is isomorphic to (FGm
n ,6M). In particular, (L(F (n,m)),⊆) is a

finite self-dual distributive lattice.
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(b) Jir(F (n,m)) = {fBf
k,l,a,n×m

: 1 6 k 6 n, 1 6 l 6 m, 1 6 a 6 k} =

{
(

1 2 . . . r − 1 r . . . s k + 1 . . . n
0 0 . . . 0 y . . . y 0 . . . 0

)
∈ F (n,m) : 1 6 r 6 s 6 n, 1 6 y 6 m}.

(c) Mir(F (n,m)) = {fCf
k,l,a,n×m

: 1 6 k 6 n, 1 6 l 6 m, 0 6 a 6 k − 1} =

{
(

1 2 . . . r − 1 r . . . s k + 1 . . . n
m m . . . m y . . . y m . . . m

)
∈ F (n,m) : 1 6 r 6 s 6 n, 0 6 y 6

m− 1}.

By Corollary 73, Theorems 59, 67 and Corollaries 63, 69, 70 we obtain the following
result which describes the structure of subposets of (F (n,m),6F ) induced by join- and
meet-irreducible elements.

Corollary 74. Let Sn,m = {(x, y, z) ∈ N3 : 1 6 z 6 x 6 n, 1 6 y 6 m}. Then

(a) (Jir(F (n,m)),6F ) and (Mir(F (n,m)),6F ) are isomorphic to (Sn,m,6prod). More-
over, these isomorphisms are given by functions

gr,s,y =
(

1 2 . . . r − 1 r . . . s k + 1 . . . n
0 0 . . . 0 y . . . y 0 . . . 0

)
7−→ (n− r + 1, y, s− r + 1)

and

hr,s,y =
(

1 2 . . . r − 1 r . . . s k + 1 . . . n
m m . . . m y . . . y m . . . m

)
7−→ (n− s+ r, y + 1, r);

equivalently, by functions

fBf
k,l,a,n×m

7−→ (n− k + a, l, a) and fCf
k,l,a,n×m

7−→ (n− k + a+ 1, l, a+ 1).

(b) The function gr,s,y 7−→ hs−r+1,s,y−1 (equivalently, fBf
k,l,a,n×m

7−→ fCf
k,l,a−1,n×m

) is an

isomorphism of (Jir(F (n,m)),6F ) onto (Mir(F (n,m)),6F ).

(c) Functions gr,s,y 7−→ gs−r+1,s,m−y+1 and hr,s,y 7−→ hs−r+1,s,m−y−1 (equivalently, func-
tions fBf

k,l,a,n×m
7−→ fBf

k,m−l+1,k−a+1,n×m
and fCf

k,l,a,n×m
7−→ fCf

k,m−l+1,k−a−1,n×m
) are in-

volutive anti-automorphisms of posets (Jir(F (n,m)),6F ) and (Mir(F (n,m)),6F ),
respectively. In particular, (Jir(F (n,m)),6F ) and (Mir(F (n,m)),6F ) are self-
dual posets.

Proof. Let Φ denote the isomorphism f 7−→M(f) between (F (n,m),6F ) and (Fm
n ,6M).

Next, we know

M(gr,s,y) = Bf
s,y,s−r+1,n×m and M(hr,s,y) = Cf

s,y+1,r−1,n×m,

i.e., gr,s,y = fBf
s,y,s−r+1,n×m

and hr,s,y = fCf
s,y+1,r−1,n×m

.

(a): Isomorphisms of (Jir(F (n,m)),6F ) and (Mir(F (n,m)),6F ) onto (Sn,m,6prod)
are given by compositions of Φ with isomorphisms Ψ1 : (Jir(FGm

n ),6M) −→ Sn,m and
Ψ2 : (Mir(FGm

n ),6M) −→ Sn,m defined in Theorems 59 and 67. Next,

Ψ1◦Φ(gr,s,y) = Ψ1(Bf
s,y,s−r+1,n×m) = (n−s+(s−r+1), y, s−r+1) = (n−r+1, y, s−r+1)
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and

Ψ2◦Φ(hr,s,y) = Ψ2(Cf
s,y+1,r−1,n×m) = (n−s+(r−1)+1, y+1, (r−1)+1) = (n−s+r, y+1, r).

(b): By Corollary 69, the composition fBf
k,l,a,n×m

Φ7−→ Bf
k,l,a,n×m 7−→ Cf

k,l,a−1,n×m
Φ−1

7−→
fCf

k,l,a−1,n×m
is an isomorphism of (Jir(F (n,m)),6F ) onto (Mir(F (n,m)),6F ). Hence we

have gr,s,y = fBf
s,y,s−r+1,n×m

7−→ fCf
s,y,s−r,n×m

= hs−r+1,s,y−1.

Of course, this point can be also obtained by (a), because Φ−1 ◦ Ψ−1
2 ◦ Ψ1 ◦ Φ is an

isomorphism of (Jir(F (n,m)),6F ) onto (Mir(F (n,m)),6F ) and Ψ1 ◦ Φ(gr,s,y) = Ψ2 ◦
Φ(hs−r+1,s,y−1).

(c): By Corollary 63 we obtain that the composition fBf
k,l,a,n×m

Φ7−→ Bf
k,l,a,n×m 7−→

Bf
k,m−l+1,k−a+1,n×m

Φ−1

7−→ fBf
k,m−l+1,k−a+1,n×m

is an involutive anti-automorphism of the poset

(Jir(F (n,m)),6F ). Hence we have gr,s,y = fBf
s,y,s−r+1,n×m

7−→ fBf
s,m−y+1,s−(s−r+1)+1,n×m

=

fBf
s,m−y+1,r,n×m

= gs−r+1,s,m−y+1.

Next, by Corollary 70 we obtain that the composition fCf
k,l,a,n×m

Φ7−→ Cf
k,l,a,n×m 7−→

Cf
k,m−l+1,k−a−1,n×m

Φ−1

7−→ fCf
k,m−l+1,k−a−1,n×m

is an involutive anti-automorphism of the poset

(Mir(F (n,m)),6F ). Hence we have hr,s,y = fCf
s,y+1,r−1,n×m

7−→ fCf
s,m−(y+1)+1,s−(r−1)−1,n×m

=

fCf
s,m−y,s−r,n×m

= hs−r+1,s,m−y−1.

Of course, self-duality of (Jir(F (n,m)),6F ) and (Mir(F (n,m)),6F ) is also obtained
by (b) and Proposition 2. But by Corollaries 63 and 70 we have formulas for their anti-
automorphisms.

3.9 Remarks on posets (Tm
n ,6M), (T (n,m),6F ) and the lattice (TGm

n ,6M)

Since TG1
n = T 1

n = {0T 1
n
} = {[1 2 3 . . . n]T} and T (n,m) = {1n} are one-element sets,

we assume here that m > 2. Note that one-element sets form trivial lattices which have
no join- and meet-irreducible elements.

Recall that the function Ψ: A 7−→↓A is an isomorphism of the lattice (TGm
n ,6M)

onto the lattice (FGm−1
n ,6M) and its inverse Ψ−1 is given by the function B 7−→↑ B.

Moreover, Ψ(Tmn ) = Fm−1
n . Thus all results from the last three subsections concerning

the poset (Fm
n ,6M) and the lattice (FGm

n ,6M) can be translated for (Tmn ,6M) and
(TGm

n ,6M).
We start with a description of join- and meet-irreducible elements of the lattice

(TGm
n ,6M). By the definition of the set TGm

n (see Definition 9) and properties of the bot-
tom 0Tm

n
and the top element 1Fm

n
of the lattice (TGm

n ,6M) (see the last part of Subsection
2.3) we obtain π(k,l)(TG

m
n ) = {0Tm

n
[k, l],0Tm

n
[k, l] + 1, . . . ,1Fm

n
[k, l]} for all k = 1, 2, . . . , n

and l = 1, 2, . . . ,m. Hence and by Theorem 41 we have that all join- and meet-irreducible
elements are of the form BTG

k,l,a,n×m and CTG
k,l,b,n×m, respectively, where 1 6 k 6 n, 1 6 l 6 m

and 0Tm
n

[k, l] + 1 6 a 6 1Fm
n

[k, l] = k, 0Tm
n

[k, l] 6 b 6 1Fm
n

[k, l]− 1 = k − 1. These matri-
ces will be denoted by Bt

k,l,a,n×m and Ct
k,l,b,n×m, respectively, to simplify notation. Since
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0Tm
n

[k, 1] = k, there are no integers a and b such that k + 1 6 a 6 k and k 6 b 6 k − 1.
Therefore we can assume that l > 2. Summarizing, we obtain the following facts (recall
that 0Tm

n
[k, l] = 0 for l > 2).

Jir(TGm
n ) = {Bt

k,l,a,n×m : 1 6 k 6 n, 2 6 l 6 m and 1 6 a 6 k},

Mir(TGm
n ) = {Ct

k,l,a,n×m : 1 6 k 6 n, 2 6 l 6 m and 0 6 a 6 k − 1}.

From the other hand, all join- and meet-irreducible elements of (TGm
n ,6M) are of the

form ↑ Bf
k,l,a,n×m−1 and ↑ Cf

k,l,b,n×m−1, respectively, for 1 6 k 6 n, 1 6 l 6 m − 1 and
1 6 a 6 k, 0 6 b 6 k− 1. By Definition 38 we obtain the following relationships between
these two kinds of descriptions of irreducible elements.

For every 1 6 k 6 n, 2 6 l 6 m and 1 6 a 6 k, 0 6 b 6 k − 1 we have that
↓Bt

k,l,a,n×m = ↓
∧
{A ∈ TGm

n : A[k, l] = a} =
∧
{↓A ∈ FGm−1

n : A ∈ TGm
n and A[k, l] =

a} =
∧
{B ∈ FGm−1

n : B[k, l − 1] = a} = Bf
k,l−1,a,n×m−1 and similarly, ↓ Ct

k,l,b,n×m =

Cf
k,l−1,b,n×m−1. Hence

Bt
k,l,a,n×m = ↑Bf

k,l−1,a,n×m−1 and Ct
k,l,a,n×m = ↑Cf

k,l−1,a,n×m−1.

By these equalities and Lemmas 58(b), 66(b) we obtain that matrices Bt
k,l,a,n×m and

Ct
k,l,a,n×m are uniquely determined by the triple (k, l, a). Next, the following facts hold.

(1) The function Bt
k,l,a,n×m 7−→ Bf

k,l−1,a,n×m−1 is an isomorphism of (Jir(TGm
n ),6M)

onto (Jir(FGm−1
n ),6M) and its inverse is Bf

k,l,a,n×m−1 7−→ Bt
k,l+1,a,n×m.

(2) The function Ct
k,l,a,n×m 7−→ Cf

k,l−1,a,n×m−1 is an isomorphism of (Mir(TGm
n ),6M)

onto (Mir(FGm−1
n ),6M) and its inverse is Cf

k,l,a,n×m−1 7−→ Ct
k,l+1,a,n×m.

Thus Theorems 59 and 67 imply that compositions

Bt
k,l,a,n×m 7−→ Bf

k,l−1,a,n×m−1 7−→ (n− k + a, a, l − 1)

and
Ct
k,l,a,n×m 7−→ Cf

k,l−1,a,n×m−1 7−→ (n− k + a+ 1, a+ 1, l − 1)

are isomorphisms of (Jir(TGm
n ),6M) and (Mir(TGm

n ),6M) onto (Sn,m−1,6prod), respec-
tively. Hence posets (Jir(TGm

n ),6M) and (Mir(TGm
n ),6M) are isomorphic and this

isomorphism is given by the function Bt
k,l,a,n×m 7−→ Ct

k,l,a−1,n×m (of course, it follows also
from Corollary 69).

By Propositions 60 and 68 we have |Jir(TGm
n | = |Mir(TGm

n | = n(n+1)
2

(m − 1), in

particular, |Jir(TGn
n| = |Mir(TGn

n| =
n(n2−1)

2
.

By properties (1), (2) and Corollaries 63, 70 we obtain that the following compositions

Bt
k,l,a,n×m 7−→ Bf

k,l−1,a,n×m−1 7−→ Bf
k,m−1−(l−1)+1,k−a+1,n×m−1 =

Bf
k,m−l+1,k−a+1,n×m−1 7−→ Bt

k,m−l+2,k−a+1,n×m
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and
Ct
k,l,a,n×m 7−→ Cf

k,l−1,a,n×m−1 7−→ Cf
k,m−1−(l−1)+1,k−a−1,n×m−1 =

Cf
k,m−l+1,k−a−1,n×m−1 7−→ Ct

k,m−l+2,k−a−1,n×m

are involutive anti-automorphisms of posets (Jir(TGm
n ),6M) and (Mir(TGm

n ),6M), re-
spectively. In particular, (Jir(TGm

n ),6M) and (Mir(TGm
n ),6M) are self-dual posets.

By Corollaries 61 and 71 we have (TGm
n ,6M) ' (OI(Sn,m−1),⊆) and (TGm

n ,6M) '
(OF (Sn,m−1),⊆).

Since Ψ�Tm
n

is an isomorphism between posets (Tmn ,6F ) and (Fm−1
n ,6F ), Theorem 72

implies that the Dedekind-MacNeille completion (L(Tmn ),⊆) of (Tmn ,6M) is isomorphic to
the lattice (FGm−1

n ,6M), so also to the lattice (TGm
n ,6M). In particular, it is a finite self-

dual distributive lattice. Moreover, Jir(Tmn ) = Ψ−1(Jir(Fm−1
n )) = Ψ−1(Jir(FGm−1

n )) =
Jir(TGm

n ) and Mir(Tmn ) = Ψ−1(Mir(Fm−1
n )) = Ψ−1(Mir(FGm−1

n )) = Mir(TGm
n ).

Since the function f 7−→ M(f) is an isomorphism between posets (T (n,m),6F )
and (Tmn ,6M), we obtain by the above fact that the Dedekind-MacNeille completion
(L(T (n,m)),⊆) of the poset (T (n,m),6F ) is isomorphic to the lattice (FGm−1

n ,6M), so
also to the lattice (TGm

n ,6M). In particular, it is a finite self-dual distributive lattice.
To describe join- and meet-irreducible elements of the poset (T (n,m),6F ) observe

that M(f + 1n) = ↑M(f) for all f ∈ FGm−1
n . Hence, for all 1 6 k 6 n, 2 6 l 6 m and

1 6 a 6 k, we have M(fBt
k,l,a,n×m

) = Bt
k,l,a,n×m = ↑Bf

k,l−1,a,n×m−1 = ↑M(fBf
k,l−1,a,n×m−1

) =

M(fBf
k,l−1,a,n×m−1

+ 1n), so by Theorem 6 and Proposition 57 we obtain

fBt
k,l,a,n×m

= fBf
k,l−1,a,n×m−1

+ 1n =
(

1 2 . . . k − a k − a+ 1 k − a+ 2 . . . k k + 1 . . . n
1 1 . . . 1 l l . . . l 1 . . . 1

)
.

Similarly, for all 1 6 k 6 n, 2 6 l 6 m and 0 6 a 6 k − 1 we have the equality
M(fCt

k,l,a,n×m
) = M(fCf

k,l−1,a,n×m−1
+ 1n), so by Theorem 6 and Proposition 64 we obtain

fCt
k,l,a,n×m

= fCf
k,l−1,a,n×m−1

+ 1n =
(

1 2 . . . a a+ 1 a+ 2 . . . k k + 1 . . . n
m m . . . m l − 1 l − 1 . . . l − 1 m . . . m

)
.

By these equalities and Corollary 73(b),(c) we obtain

Jir(T (n,m)) = {fBt
k,l,a,n×m

: 1 6 k 6 n, 2 6 l 6 m, 1 6 a 6 k} =

{fBf
k,l,a,n×m−1

+ 1n : 1 6 k 6 n, 1 6 l 6 m− 1, 1 6 a 6 k} =

{
(

1 2 . . . r − 1 r . . . s k + 1 . . . n
1 1 . . . 1 y . . . y 1 . . . 1

)
∈ T (n,m) : 1 6 r 6 s 6 n, 2 6 y 6 m}.

and
Mir(T (n,m)) = {fCt

k,l,a,n×m
: 1 6 k 6 n, 2 6 l 6 m, 0 6 a 6 k − 1} =

{fCf
k,l,a,n×m−1

+ 1n : 1 6 k 6 n, 1 6 l 6 m− 1, 0 6 a 6 k − 1} =

{
(

1 2 . . . r − 1 r . . . s k + 1 . . . n
m m . . . m y . . . y m . . . m

)
∈ T (n,m) : 1 6 r 6 s 6 n, 1 6 y 6 m−1}.
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Recall (see the end of Subsection 1.2) that we have the isomorphism Θ: (F (n,m −
1),6F ) −→ (T (n,m),6F ) such that Θ(f) = f + 1n for all f ∈ F (n,m − 1). Next, its
inverse Θ−1 is given by the formula Θ−1(g) = g − 1n for all g ∈ T (n,m). Applying the
isomorphism Θ−1, Corollary 73 and the fact (FGm−1

n ,6M) ' (TGm
n ,6M) we also obtain

the above results concerning the poset (T (n,m),6F ) (simple details are left to the reader).
By facts (1), (2) and Corollary 74 we obtain that posets (Jir(T (n,m)),6F ) and

(Mir(T (n,m)),6F ) are isomorphic to the poset (Sn,m−1,6prod) and these isomorphisms
are given by functions

fBt
k,l,a,n×m

7−→ (n− k + a, a, l − 1) and fCt
k,l,a,n×m

7−→ (n− k + a+ 1, a+ 1, l − 1).

In particular, (Jir(T (n,m)),6F ) and (Mir(T (n,m)),6F ) are isomorphic and this iso-
morphism is given by the function fBt

k,l,a,n×m
7−→ fCt

k,l,a−1,n×m
. Next, functions

fBt
k,l,a,n×m

7−→ fBt
k,m−l+2,k−a+1,n×m

and fCt
k,l,a,n×m

7−→ fCt
k,m−l+2,k−a−1,n×m

are involutive anti-automorphisms of (Jir(T (n,m)),6F ) and (Mir(T (n,m)),6F ), re-
spectively, so these posets are self-dual. Observe that applying Corollary 74, the iso-
morphism Θ: (F (n,m − 1),6F ) −→ (T (n,m),6F ) and its inverse Θ−1 we obtain that
all functions given in this paragraph can be expressed directly in terms of elements of
Jir(T (n,m)) and Mir(T (n,m)) (without using isomorphisms Bt

k,l,a,n×m 7−→ fBt
k,l,a,n×m

and Ct
k,l,a,n×m 7−→ fCt

k,l,a,n×m
between posets (Jir(TGm

n ),6M), (Jir(T (n,m)),6F ) and

(Mir(TGm
n ),6M), (Mir(T (n,m)),6F ), respectively), but technical details are left to the

readers.

3.10 Join-irreducible elements of the lattice (IGm
n ,6M)

Since IGm
n = ∅ form < n, we assume in this subsection that n 6 m. Then by the definition

of the set IGm
n (see Definition 9) and properties of the bottom ∆m

n and the top element∇m
n

of the lattice (IGm
n ,6M) (see the last part of Subsection 2.3) we obtain that π(k,l)(IG

m
n ) =

{∆m
n [k, l],∆m

n [k, l] + 1, . . . ,∇m
n [k, l]} for all k = 1, 2, . . . , n and l = 1, 2, . . . ,m. Hence and

by Theorem 41 we have that all join-irreducible elements of the lattice (IGm
n ,6M) are of

the form BIG
k,l,a,n×m, where 1 6 k 6 n, 1 6 l 6 m and max{1, k − l + 2} = max{0, k −

l + 1} + 1 = ∆m
n [k, l] + 1 6 a 6 ∇m

n [k, l] = min{k, m + 1 − l} 6 min{n,m} = n. These
matrices will be denoted by Bi

k,l,a,n×m to simplify notation. Since ∆m
n [k, 1] = ∇m

n [k, 1] = k,
there is no integer a such that ∆m

n [k, 1] + 1 6 a 6 ∇m
n [k, 1]. Therefore we can assume

that l > 2. Summarizing, we obtain

Jir(IGm
n ) =

{Bi
k,l,a,n×m : 1 6 k 6 n, 2 6 l 6 m and max{0, k− l+ 1}+ 1 6 a 6 min{k, m+ 1− l}}.

For the lattice (SGn
n,6M) we have that ∆n

n[n, l] = ∇n
n[n, l] = n− l + 1, so in this case we

can additionally assume that k 6 n − 1. Thus we obtain Jir(SGn
n) = {Bi

k,l,a,n×n : 1 6
k 6 n− 1, 2 6 l 6 n and max{0, k − l + 1}+ 1 6 a 6 min{k, n+ 1− l}}.
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Since Bi
k,l,a,n×m is the least matrix of (IGm

n ,6M) with the entry a in the position (k, l),
we obtain that Bi

k,l,a,n×m looks as follows (note that l + a− 1 6 m):

x x+1 l y n m

1
2
...
x

x+1
x+2

...
k

k+1
...

y−1
y

y+1
...
n

0
1
...

x−1
x

x+1
...

k−1
k
...

y−2
y−1
y
...

n−1

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
1
2
3
...

a+1
a+2

...
z−1
z

z+1
...

n−x+1

0
0
...
0
1
2
...
a

a+1
...

z−2
z−1
z
...

n−x

0
0
...
0
1
2
...
a
a
...

z−3
z−2
z−1

...
n−x−1

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
1
2
...
a
a
...
a

a+1
a+2

...
n−l+1

0
0
...
0
0
1
...

a−1
a−1

...
a−1
a

a+1
...

n−l

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
0
0
...
1
1
...
1
2
3
...

n−y+1

0
0
...
0
0
0
...
0
0
...
0
1
2
...

n−y

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
0
0
...
0
0
...
0
0
0
...
1

0
0
...
0
0
0
...
0
0
...
0
0
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
0
0
...
0
0
...
0
0
0
...
0


where x = k − a, y = k + (l − (k − a)) = l + a and z = y − x+ 1 = l + 2a− k + 1.

Of course, some rows and columns do not appear in the above matrix for some values
of k, l and a. For instance, for a = k or n 6 l + a− 1.

Thus the matrix Or(Bi
k,l,a,n×m) equals

x x+1 l y n m

1
1
...
1
1
1
...
1
1
1
...
1
1
1
...
1

0
1
...
1
1
1
...
1
1
1
...
1
1
1
...
1

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
1
1
1
...
1
1
1
...
1
1
1
...
1

0
0
...
0
1
1
...
1
1
1
...
1
1
1
...
1

0
0
...
0
1
1
...
1
0
1
...
1
1
1
...
1

0
0
...
0
1
1
...
1
0
0
...
1
1
1
...
1

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
1
1
...
1
0
0
...
1
1
1
...
1

0
0
...
0
1
1
...
1
0
0
...
0
1
1
...
1

0
0
...
0
0
1
...
1
0
0
...
0
1
1
...
1

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
0
0
...
1
0
0
...
0
1
1
...
1

0
0
...
0
0
0
...
0
0
0
...
0
1
1
...
1

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
0
0
...
0
0
0
...
0
0
0
...
1

0
0
...
0
0
0
...
0
0
0
...
0
0
0
...
0

· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·
...
· · ·

0
0
...
0
0
0
...
0
0
0
...
0
0
0
...
0



x

k

y
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where x = k − a and y = k + (l − (k − a)) = l + a.
Hence (see also Remark 8) we obtain the following result.

Proposition 75. Let 1 6 k 6 n, 2 6 l 6 m and max{0, k − l + 1} + 1 6 a 6
min{k, m+ 1− l}. Then

(a) Bi
k,l,a,n×m ∈ Imn .

(b) fBi
k,l,a,n×m

is such that

(b.1) if l+a−1 6 n, then fBi
k,l,a,n×m

=
(

1 2 . . . k − a k − a+ 1 k − a+ 2 . . . k
1 2 . . . k − a l l + 1 . . . l + a− 1

k + 1 k + 2 . . . l + a− 1 l + a l + a+ 1 . . . n
k − a+ 1 k − a+ 2 . . . l− 1 l + a l + a+ 1 . . . n

)
,

(note that the inequality max{0, k − l + 1}+ 1 6 a implies k − a 6 l − 2 and
k 6 l + a− 2),

in particular, if l + a − 1 = n, then fBi
k,l,a,n×m

=
(

1 2 . . . k − a k − a+ 1
1 2 . . . k − a l

k − a+ 2 . . . k k + 1 k + 2 . . . l + a− 2 l + a− 1 = n
l + 1 . . . l + a− 1 k − a+ 1 k − a+ 2 . . . l− 2 l − 1

)
,

(b.2) if n+1 6 l+a−1 6 m, then fBi
k,l,a,n×m

=
(

1 2 . . . k − a k − a+ 1 k − a+ 2 . . .
1 2 . . . k − a l l + 1 . . .

k k + 1 k + 2 . . . n
l + a− 1 k − a+ 1 k − a+ 2 . . . (k − a) + (n− k) = n− a

)
.

Take f =
(

1 2 . . . r − 1 r r + 1 . . . s s+ 1 s+ 2 . . . s+ y − r y + s− r + 1 . . . n
1 2 . . . r − 1 y y + 1 . . . y + s− r r r + 1 . . . y − 1 y + s− r + 1 . . . n

)
for some 1 6 r 6 s 6 n and r + 1 6 y 6 m − s + r; of course, if s + y − r >
n and s < n, then the tail of f equals . . . s+ 1 s+ 2 . . . n

. . . r r + 1 . . . r + (n− s)− 1

)
. Then f =

fBi
s,y,s−r+1,n×m

. So M(f) = Bi
s,y,s−r+1,n×m; this fact follows also from the equality M c(f) =

Or(Bi
s,y,s−r+1,n×m). Note that max{0, s− y + 1}+ 1 6 s− r + 1 6 min{s, m+ 1− y}.

If n = m, then the case (b.2) of Proposition 75 does not hold. Thus by this propo-
sition we obtain the following fact describing bijections corresponding to join-irreducible
elements of the lattice (SGn

n,6M).

Corollary 76. Let 1 6 k 6 n − 1, 2 6 l 6 n and max{0, k − l + 1} + 1 6 a 6
min{k, n+ 1− l}. Then

(a) Bi
k,l,a,n×n ∈ Inn .

(b) fBi
k,l,a,n×n

=
(

1 2 . . . k − a k − a+ 1 k − a+ 2 . . . k k + 1 k + 2 . . .
1 2 . . . k − a l l + 1 . . . l + a− 1 k − a+ 1 k − a+ 2 . . .

l + a− 1 l + a l + a+ 1 . . . n
l − 1 l + a l + a+ 1 . . . n

)
.

Now we precisely describe the structure of the poset (Jir(IGm
n ),6M). To this purpose

we first prove the following technical lemma.
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Lemma 77. Let 1 6 k1, k2 6 n, 2 6 l1, l2 6 m and max{0, k1 − l1 + 1} + 1 6 a1 6
min{k1, m+ 1− l1}, max{0, k2 − l2 + 1}+ 1 6 a2 6 min{k2, m+ 1− l2}. Then

(a) Bi
k1,l1,a1,n×m 6M Bi

k2,l2,a2,n×m iff


k1 − a1 > k2 − a2

l1 + a1 6 l2 + a2

a1 6 a2

a1 + l1 − k1 6 a2 + l2 − k2

.

(b) Bi
k1,l1,a1,n×m = Bi

k2,l2,a2,n×m iff (k1, l1, a1) = (k2, l2, a2).

Proof. Note first that (b) is implied by (a). This fact may be also obtained by using the
form of the matrix Or(Bi

k,l,a,n×m), but this is a quite complicated method in this case.
(a): Let C1 = Bi

k1,l1,a1,n×m and C2 = Bi
k2,l2,a2,n×m. By Lemma 39(a) we have the

equivalence
C1 6M C2 iff a1 6 C2[k1, l1].

If k1 6 k2 − a2 or l1 6 k2 − a2 + 1 or l1 > l2 + a2 or k1 > l2 + a2 − 1, then C2[k1, l1] =
max{0, k1 − l1 + 1} < max{0, k1 − l1 + 1} + 1 6 a1. Thus we have the following four
cases:
(a.1): k2 − a2 + 1 6 k1 6 k2 and k2 − a2 + 2 6 l1 6 l2. Then C2[k1, l1] = C2[k1, l2] =
C2[k2−(k2−k1), l2] = a2−(k2−k1), so C1 6M C2 iff a1 6 a2−(k2−k1) iff k2−a2 6 k1−a1.
All other inequalities (from the right-hand side of first equivalence) are implied by the
proved inequality k2 − a2 6 k1 − a1 and our assumptions in this case. More precisely,
k1 6 k2 and k2 − a2 6 k1 − a1 imply a1 6 a2; hence l1 + a1 6 l2 + a2, because l1 6 l2;
finally, l1 6 l2 and a1−k1 6 a2−k2 imply a1 + l1−k1 6 a2 + l2−k2. The similar situation
will hold in the next three cases, therefore we will not explicit formulate it later.
(a.2) k2− a2 + 1 6 k1 6 k2 and l2 6 l1 6 l2 + a2− 1. If k1− l1 < k2− a2 + 1− l2 (i.e., the
position (k1, l1) lies to the right from the line passing through positions (k2−a2 +1, l2) and
(k2, l2 +a2−1)), then C2[k1, l1] = 0. Thus we can assume that k1−l1 > k2−a2 +1−l2 (i.e.,
the position (k1, l1) lies to the left from the line passing through positions (k2− a2 + 1, l2)
and (k2, l2+a2−1)). Then C2[k1, l1] = C2[k2−(k2−k1), l2+(l1−l2)] = a2−(k2−k1)−(l1−l2).
Hence C1 6M C2 iff a1 6 a2 − (k2 − k1)− (l1 − l2) iff a1 + l1 − k1 6 a2 + l2 − k2.
(a.3): k2 6 k1 6 l2 + a2 − 2 and k2 − a2 + 2 6 l1 6 l2. If k1 − l1 > a2 − 1 (i.e., the
position (k1, l1) lies to the left from the line passing through positions (k2, k2−a2 +1) and
(l2 + a2− 1, l2)), then C2[k1, l1] = k1− l1 + 1 < k1− l1 + 2 6 a1. Thus we can assume that
k1 − l1 < a2 − 1 (i.e., the position (k1, l1) lies to the right from the line passing through
positions (k2, k2 − a2 + 1) and (l2 + a2 − 1, l2)). Then C2[k1, l1] = a2, so C1 6M C2 iff
a1 6 a2.
(a.4): k2 6 k1 6 l2+a2−2 and l2 6 l1 6 l2+a2−1. Then C2[k1, l1] = C2[k1, l2+(l1−l2)] =
a2 − (l1 − l2), so C1 6M C2 iff a1 6 a2 − (l1 − l2) iff l1 + a1 6 l2 + a2.

Theorem 78. (Jir(IGm
n ),6M) is isomorphic to a subposet of the poset (N4,6prod) induced

by the set Rn,m = {(x, y, z, t) ∈ N4 : 1 6 x 6 n, 2 6 y 6 m, 1 6 z 6 min{x, y− 1}, n+
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1 6 x+ y − z and t = x+ y − z}. Moreover, this isomorphism is given by the function

Bi
k,l,a,n×m 7−→ (n− k + a, l + a− 1, a, a+ l − k + n− 1).

Note that Rn,m ⊆ {1, 2, . . . , n}×{2, 3, . . . ,m}×{1, 2, . . . , n}×{n+1, n+2, . . . ,m+n−1}
(recall, n 6 m).

Proof. Having Lemma 77(b) we can take a function Ψ: Jir(IGm
n ) −→ N4 such that

Ψ(Bi
k,l,a,n×m) = (n− k + a, l + a− 1, a, a+ l − k) + (0, 0, 0, n− 1).

Lemma 77(a) implies that Ψ is an embedding of (Jir(IGm
n ),6M) into (N4,6prod). Next,

for each Bi
k,l,a,n×m we have 1 6 a 6 n−k+a 6 n and 2 6 a+1 = 2+a−1 6 l+a−1 6 m,

because a 6 min{k, m+ 1− l}. Moreover, (n− k+ a) + (l+ a− 1)− a = a+ l− k+n− 1
and a+ l−k > 2, because a > max{1, k− l+2}. Note also a+ l−k 6 l 6 m. By all these
facts we obtain that Ψ(Jir(IGm

n )) ⊆ Rn,m. On the other hand, take (x, y, z, t) ∈ Rn,m.
Applying inequalities which define the set Rn,m, it can be shown (technical details are left
to the reader) that

1 6 n− x+ z 6 n, 2 6 y − z + 1 6 m

and

max{0, (n− x+ z)− (y − z + 1) + 1}+ 1 6 z 6 min{n− x+ z, m+ 1− (y − z + 1)}

(for example, the inequality n+ 1 6 x+ y− z implies n−x+ z− y+ z− 1 + 1 + 1 6 z, so
(n−x+z)−(y−z+1)+2 6 z). Thus we can take the matrix Bi

n−x+z,y−z+1,z,n×m. Of course,
Ψ(Bi

n−x+z,y−z+1,z,n×m) = (x, y, z, x + y − z) = (x, y, z, t). Hence Rn,m ⊆ Ψ(Jir(IGm
n )),

because (x, y, z, t) ∈ Rn,m was arbitrarily chosen.

Proposition 79. |Jir(IGm
n )| = 3mn(m−n)+(n−1)n(n+1)

6
.

In particular, |Jir(SGn
n)| = (n−1)n(n+1)

6
.

Proof. By Lemma 77(b) we have
|Jir(IGm

n )| =∣∣{(k, l, a) ∈ N3 : 1 6 k 6 n, 2 6 l 6 m, k − l + 2 6 a 6 k and 1 6 a 6 m+ 1− l}
∣∣ =∣∣{(k, l, a) ∈ N3 : 1 6 k 6 n, 2 6 l 6 m, k−a+2 6 l, 1 6 k−a+1 and 1 6 a 6 m+1−l}
∣∣.

Hence, setting x = k − a+ 1, y = l and z = a, we obtain

|Jir(IGm
n )| = |S|,

where S = {(x, y, z) ∈ N3 : 1 6 x 6 n, 2 6 y 6 m, x+ 1 6 y and 1 6 z 6 m− y + 1}.
Next, |S| =

∑n
y=2(y − 1)(m − y + 1) +

∑m
y=n+1 n(m − y + 1) =

∑n
y=2(m − (y −

1))(y − 1) + n
∑m

y=n+1(m − y + 1) =
∑n

y=2(m(y − 1) − (y − 1)2) + n
∑m

y=n+1(m − y +

1) = m
∑n

y=2(y − 1) −
∑n

y=2(y − 1)2 + n
∑m−n

t=1 t = m (n−1)n
2
− (n−1)(n−1+1)(2(n−1)+1)

6
+

n (m−n)(m−n+1)
2

= 3mn(m−n)+(n−1)n(n+1)
6

.
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Since (IGm
n ,6M) is a finite distributive lattice, it is isomorphic to the lattice of all

order ideals of Jir(IGm
n ) (see [4] and Subsection 1.1). Hence and by Theorem 78 (see also

Subsection 1.1 for the second part of this fact) we obtain

Corollary 80. (IGm
n ,6M) ' (OI(Rn,m),⊆). In particular, |IGm

n | is equal to the cardi-
nality of the family of all anti-chains of (Rn,m,6prod).

3.11 Meet-irreducible elements of the lattice (IGm
n ,6M)

Similarly as in the previous subsection we assume here that n 6 m. Recall also that at the
beginning of the previous subsection we have shown π(k,l)(IG

m
n ) = {∆m

n [k, l],∆m
n [k, l] +

1, . . . ,∇m
n [k, l]} for all k = 1, 2, . . . , n and l = 1, 2, . . . ,m. Thus by Theorem 41 we have

that all meet-irreducible elements of the lattice (IGm
n ,6M) are of the form CIG

k,l,a,n×m,
where 1 6 k 6 n, 1 6 l 6 m and max{0, k − l + 1} = ∆m

n [k, l] 6 a 6 ∇m
n [k, l] − 1 =

min{k, m+ 1− l}− 1 = min{k− 1, m− l}. These matrices will be denoted by Ci
k,l,a,n×m

to simplify notation. Of course, the inequality max{0, k− l+ 1} 6 min{k, m+ 1− l}−1
does not hold for l = 1, because k 6 n 6 m (see also the beginning of the previous
subsection). Thus we can assume that l > 2. Summarizing, we obtain

Mir(IGm
n ) ={

Ci
k,l,a,n×m : 1 6 k 6 n, 2 6 l 6 m and max{0, k− l+ 1} 6 a 6 min{k, m+ 1− l}−1

}
.

For the lattice SGn
n, similarly as in the case of join-irreducible elements (see the beginning

of the previous subsection), we can additionally assume that k 6 n−1. Thus Mir(SGn
n) =

{Ci
k,l,a,n×n : 1 6 k 6 n−1, 2 6 l 6 m and max{0, k−l+1} 6 a 6 min{k, m+1−l}−1}.
The function A 7−→ Atd is an involutive anti-automorphism of the lattice (IGm

n 6M)
(see Corollary 22). In particular, we have some correspondence between join- and meet-
irreducible elements of IGm

n . The following lemma precisely describes this connection.

Lemma 81. (Bi
k,l,a,n×m)td = Ci

k,m−l+2,k−a,n×m and (Ci
k,l,a,n×m)td = Bi

k,m−l+2,k−a,n×m.

Proof. Take k, l, a such that 1 6 k 6 n, 2 6 l 6 m and max{0, k − l + 1} + 1 6
a 6 min{k, m + 1 − l}. Recall that if j > 2, then Atd[i, j] = i − A[i,m − j + 2]. So
Atd[k,m− l+2] = k−A[k,m− (m− l+2)+2] = k−A[k, l]. Thus {Atd ∈ IGm

n : A[k, l] =
a} = {Atd ∈ IGm

n : Atd[k,m − l + 2] = k − a} = {B ∈ IGm
n : B[k,m − l + 2] = k − a},

the second equality follows from the fact that A 7−→ Atd is a bijection of IGm
n . Hence

(Bi
k,l,a,n×m)td =

(∧{
A ∈ IGm

n : A[k, l] = a
})td

=
∨{

Atd ∈ IGm
n : A[k, l] = a

}
=
∨{

B ∈ IGm
n : B[k,m− l + 2] = k − a

}
= Ci

k,m−l+2,k−a,n×m.

The inequalities max{1, k− l+ 2} 6 a 6 min{k, m+ 1− l} imply max{0, k− (m− l+
2)+1} = max{0, k+l−m−1} 6 k−a 6 min{k−1, l−2} = min{k−1, m−(m−l+2)}.

Take k, l, a such that 1 6 k 6 n, 2 6 l 6 m and max{0, k − l + 1} 6 a 6 min{k −
1, m − l}. Then it is easy to see that max{1, k − (m − l + 2) + 2} = max{1, k +
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l − m} 6 k − a 6 min{k, l − 1} = min{k, m + 1 − (m − l + 2)}. Thus we can take
the matrix Bi

k,m−l+2,k−a,n×m. Then (Bi
k,m−l+2,k−a,n×m)td = Ci

k,l,a,n×m, so (Ci
k,l,a,n×m)td =

((Bi
k,m−l+2,k−a,n×m)td)td = Bi

k,m−l+2,k−a,n×m by Lemma 20.

By Lemma 81 we obtain that in the case of the lattice (IGm
n ,6M) it is sufficient to

show Lemma 39 and Theorems 40, 41 only for one of two kinds of matrices. Proofs of
these equivalences are similar to proofs of analogous results for the lattice (FGm

n ,6M)
(see Subsection 3.7). For example, assume that these results hold for Bi

k,l,a,n×m, because
proofs of second implications are similar.

Lemma 39: A 6M Ci
k,l,a,n×m iff Bi

k,m−l+2,k−a,n×m = (Ci
k,l,a,n×m)td 6M Atd iff (Lemma

39(a)) k − a 6 Atd[k,m − l + 2] = k − A[k,m − (m − l + 2) + 2] = k − A[k, l] (because
l > 2) iff A[k, l] 6 a.

Theorem 40: By (a) and Lemma 20 we have A = (Atd)td = (
∨
{Bi

k,l,a,n×m : 1 6
k 6 n, 2 6 l 6 m and a = Atd[k, l] 6= 0})td =

∧
{(Bi

k,l,a,n×m)td : 1 6 k 6 n, 2 6 l 6
m and a = k−A[k,m−l+2] 6= 0} =

∧
{Ci

k,m−l+2,k−a,n×m : 1 6 k 6 n, 2 6 l 6 m and k−
a = A[k,m− l+2] 6= k} =

∧
{Ci

k′,l′,a′,n×m : 1 6 k′ 6 n, 2 6 l′ 6 m and a′ = A[k′, l′] 6= k′}
(taking k′ = k, l′ = m− l + 2 and a′ = k − a).

Theorem 41: Mir(IGm
n ) =

{
Atd : A ∈ Jir(IGm

n )} = {(Bi
k,l,a,n×m)id : 1 6 k 6 n, 2 6

l 6 m and max{0, k − l + 1} + 1 6 a 6 min{k, m + 1− l}
}

=
{
Ci
k,m−l+2,k−a,n×m : 1 6

k 6 n, 2 6 l 6 m and max{1, k − l + 2} 6 a 6 min{k, m + 1 − l}
}

= (taking
k′ = k, l′ = m − l + 2 and a′ = k − a) =

{
Ci
k′,l′,a′,n×m : 1 6 k′ 6 n, 2 6 l′ 6

m and max{0, k′ − l′ + 1} 6 a′ 6 min{k′ − 1, m− l′}
}

.
By Lemmas 24, 81 and Proposition 75 we obtain that Ci

k,l,a,n×m ∈ Imn . Next,

Ci
k,l,a,n×m =

(
Bi
k,m−l+2,k−a,n×m

)td
=(

M(fBi
k,m−l+2,k−a,n×m

)
)td

= M(mn − fBi
k,m−l+2,k−a,n×m

+ 1n).

Hence (see also Remark 8)

fCi
k,l,a,n×m

= mn − fBi
k,m−l+2,k−a,n×m

+ 1n.

This equality and Proposition 75(b) may be used to described injective functions corre-
sponding to matrices Ci

k,l,a,n×m. But we want also to describe the structure of matrices
Ci
k,l,a,n×m. Of course, matrices Ci

k,l,a,n×m and Cp
k,l,a,n×m have similar forms. Thus we

can use results given in Subsection 3.4 for Cp
k,l,a,n×m (see the proof of Proposition 47) to

sketch the structure of matrices Ci
k,l,a,n×m. In particular, we obtain formulas for functions

fCi
k,l,a,n×m

.

By the inequality max{0, k − l + 1} 6 a we have that k − a 6 l − 1, so x =
a+min{l−1, k−a} = k, where x is the parameter in the first matrix given in Subsection
3.4. This matrix describes the first k + 2 rows of Ci

k,l,a,n×m. Moreover, these first k + 2
rows correspond to the following function (recall that l 6 m− a):

(
1 2 . . . a a+ 1 . . . k k + 1 k + 2
m m− 1 . . . m− a+ 1 l − 1 . . . l − (k − a) m− a m− a− 1

.
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Assume that m − a + 1 − l > n − k or equivalently m − a − (n − k) > l − 1 (i.e., the
distance between the l-th and the m−a+1-th column of Ci

k,l,a,n×m is not less than n−k).

Then Case 1 considered in Subsection 3.4 describes the rest rows of Ci
k,l,a,n×m and these

rows correspond to the following function:

k + 3 k + 4 . . . n
m− a− 2 m− a− 3 . . . m− a− (n− k − 1)

)

note that m− a− (n− k − 1) > l.
Assume that m−a+ 1− l 6 n−k−1 or equivalently m−a− (n−k) 6 l−2 (i.e., the

distance between the l-th and the m − a + 1-th column of Ci
k,l,a,n×m is less than n − k).

Since each entry of the first column of Or(Ci
k,l,a,n×m) equals 1, Case 2.1 considered in

Subsection 3.4 (more precisely, the equality l−1 = k−a) does not hold. So the inequality
k − a 6 l − 2 must hold. Then Case 2.2 considered in Subsection 3.4 describes the rest
rows of Ci

k,l,a,n×m and these rows correspond to the following function:

k + 3 k + 4 . . . k +m− a+ 1− l − 1 k +m− a+ 1− l k +m− a+ 1− l + 1 . . . n
m− a− 2 m− a− 3 . . . l + 1 l l− (k − a)− 1 . . . m− n+ 1

)
,

note that the inequality m− a− (n− k) 6 l − 2 implies k +m− a+ 1− l 6 n− 1.
Summarizing, we have proved the following result.

Proposition 82. Let 1 6 k 6 n, 2 6 l 6 m and max{0, k − l + 1} 6 a 6 min{k, m +
1− l} − 1. Then

(a) Ci
k,l,a,n×m ∈ Imn .

(b) fCi
k,l,a,n×m

is such that

(b.1) if m − a − (n − k) > l − 1, then fCi
k,l,a,n×m

=
(

1 2 . . . a a+ 1
m m− 1 . . . m− a+ 1 l − 1

a+ 2 . . . k k + 1 k + 2 . . . n
l − 2 . . . l − (k − a) m− a m− a− 1 . . . m− a− (n− k − 1)

)
.

Note that m− a− (n− k − 1) > l.

(b.2) if m − a − (n − k) 6 l − 2, then fCi
k,l,a,n×m

=
(

1 2 . . . a a + 1 . . .
m m− 1 . . . m− a + 1 l− 1 . . .

k k + 1 k + 2 . . . m + k − a− l m + k − a− l + 1 m + k − a− l + 2 . . . n
l− (k − a) m− a m− a− 1 . . . l + 1 l l− (k − a)− 1 . . . m− n + 1

)
.

Note that m − a − (n − k) 6 l − 2 implies k − a 6 l − 2 (because n 6 m),
l − (k − a)− 1 6 m− n+ 1 and m+ k − a− l + 1 6 n− 1.

If n = m, then inequalities m− a− (n− k) > l − 1 and m− a− (n− k) 6 l − 2 are
equivalent with k−a = l−1 (because k− l+1 6 max{0, k− l+1} 6 a) and k−a 6 l−2,
respectively. Hence for n = m, cases (b.1) and (b.2) of Proposition 82 take the following
forms:

(1) If k − a = l − 1, then fCi
k,l,a,n×m

=
(

1 2 . . . a a+ 1 a+ 1 . . . k k + 1
n n− 1 . . . n− a+ 1 l − 1 l − 2 . . . 1 n− a

k + 2 . . . n
n− a− 1 . . . l

)
.
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(2) If k − a 6 l − 2, then fCi
k,l,a,n×m

=
(

1 2 . . . a a+ 1 . . . k k + 1
n n− 1 . . . n− a+ 1 l − 1 . . . l − (k − a) n− a

k + 2 . . . n+ k − a− l n+ k − a− l + 1 n+ k − a− l + 2 . . . n
n− a− 1 . . . l + 1 l l− (k − a)− 1 . . . 1

)
.

Of course, these two cases can be joined in one, because the equality k−a = l− 1 implies
that l − (k − a) = 1 and n + k − a + 1 − l = n. Next, the inequality k − a 6 l − 1
holds for all matrices Ci

k,l,a,n×n. Thus we obtain the following result describing bijections
corresponding to meet-irreducible elements of the lattice (SGn

n,6M).

Corollary 83. Let 1 6 k 6 n− 1, 2 6 l 6 n and max{0, k − l + 1} 6 a 6 min{k, n +
1− l} − 1. Then

(a) Ci
k,l,a,n×n ∈ Inn .

(b) fCi
k,l,a,n×n

=
(

1 2 . . . a a+ 1 . . . k k + 1 k + 2 . . . n+ k − a− l
n n− 1 . . . n− a+ 1 l − 1 . . . l − (k − a) n− a n− a− 1 . . . l + 1

n+ k − a− l + 1 n+ k − a− l + 2 . . . n
l l− (k − a)− 1 . . . 1

)
.

Applying Lemma 81 to Lemma 77, Theorem 78 and Proposition 79 we obtain the
following three results for meet-irreducible elements of the lattice (IGm

n ,6M).

Lemma 84. Let 1 6 k1, k2 6 n, 2 6 l1, l2 6 m and max{0, k1 − l1 + 1} 6 a1 6
min{k1, m+ 1− l1} − 1, max{0, k2 − l2 + 1} 6 a2 6 min{k2, m+ 1− l2} − 1. Then

(a) Ci
k1,l1,a1,n×m 6M Ci

k2,l2,a2,n×m iff


k1 − a1 > k2 − a2

l1 + a1 6 l2 + a2

a1 6 a2

a1 + l1 − k1 6 a2 + l2 − k2

.

(b) Ci
k1,l1,a1,n×m = Ci

k2,l2,a2,n×m iff (k1, l1, a1) = (k2, l2, a2).

Proof. (a): By Corollary 22 and Lemma 81 we have that Ci
k1,l1,a1,n×m 6M Ci

k2,l2,a2,n×m
iff (Ci

k1,l1,a1,n×m)td 6M (Ci
k2,l2,a2,n×m)td iff Bi

k2,m−l2+2,k2−a2,n×m 6M Bi
k1,m−l1+2,k1−a1,n×m.

Next, by Lemma 77(a) we obtain

Bi
k2,m−l2+2,k2−a2,n×m 6M Bi

k1,m−l1+2,k1−a1,n×m

iff 
k2 − (k2 − a2) > k1 − (k1 − a1)

(m− l2 + 2) + (k2 − a2) 6 (m− l1 + 2) + (k1 − a1)

k2 − a2 6 k1 − a1

(k2 − a2) + (m− l2 + 2)− k2 6 (k1 − a1) + (m− l1 + 2)− k1

iff 
a1 6 a2

a1 + l1 − k1 6 a2 + l2 − k2

k1 − a1 > k2 − a2

l1 + a1 6 l2 + a2

.
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The point (b) follows from (a). Of course, it is also implied by Lemmas 77(b) and 81.
Note that this fact may be obtained by using the form of matrices Or(Cp

k,l,a,n×m), which
is described above. But this is a very complicated method in this case.

Theorem 85. (Mir(IGm
n ),6M) is isomorphic to the poset (Rn,m,6prod) defined in The-

orem 78, recall that (Rn,m,6prod) is a subposet of the poset (N4,6prod) such that Rn,m =
{(x, y, z, t) ∈ N4 : 1 6 x 6 n, 2 6 y 6 m, 1 6 z 6 min{x, y−1}, n+1 6 x+y−z and t =
x+ y − z}. Moreover, this isomorphism is given by the function

Ci
k,l,a,n×m 7−→ (n− k + a+ 1, l + a, a+ 1, a+ l − k + n).

Proof. Having Lemma 84(b) we can take a function Ψ: Mir(IGm
n ) −→ N4 such that

Ψ(Ci
k,l,a,n×m) = (n− k + a+ 1, l + a, a+ 1, a+ l − k) + (0, 0, 0, n).

Lemma 84(a) implies that Ψ is an embedding of (Mir(IGm
n ),6M) into (N4,6prod). Next,

inequalities max{0, k−l+1} 6 a 6 min{k−1, m−l} imply 1 6 a+1 6 n−k+a+1 6 n,
2 6 2 + a 6 l+ a 6 m and a+ l− k > 1. Moreover, (n− k + a+ 1) + (l+ a)− (a+ 1) =
a + l − k + n > 1 + n. Hence it follows that Ψ(Mir(IGm

n )) ⊆ Rn,m. On the other hand,
take (x, y, z, t) ∈ Rn,m. By the last part of the proof of Theorem 78 we have that

1 6 n− x+ z 6 n, 2 6 y − z + 1 6 m

and

max{0, (n− x+ z)− (y− z+ 1) + 1} 6 z− 1 6 min{n− x+ z, m+ 1− (y− z+ 1)}− 1.

Thus we can take the matrix Ci
n−x+z,y−z+1,z−1,n×m. Of course, Ψ(Ci

n−x+z,y−z+1,z−1,n×m) =
(x, y, z, x + y − z) = (x, y, z, t). Hence Rn,m ⊆ Ψ(Mir(IGm

n )), because (x, y, z, t) ∈ Rn,m

was arbitrarily chosen.

Proposition 86. |Mir(IGm
n )| = 3mn(m−n)+(n−1)n(n+1)

6
.

In particular, |Mir(SGn
n)| = (n−1)n(n+1)

6
.

Proof. It is obtained by Proposition 79, because |Mir(IGm
n )| = |{Ad : A ∈ Jir(IGm

n )}| =
|Jir(IGm

n )| (see Corollary 22).

Lemma 84(a) can be proved without using the self-duality of lattice (IGm
n ,6M) in a

similar way as Lemma 77(a) (technically complicated details are left to the reader). Thus
we can also obtain an alternative proof of Theorem 85, which do not use this self-duality
(i.e., Corollary 22 and Lemma 81). Of course, Proposition 86 can be also shown without
using this self-duality in the same way as Proposition 79.

By Theorems 78 and 85, functions Bi
k,l,a,n×m 7−→ (n−k+a, l+a−1, a, a+ l−k+n−1)

and Ci
k,l,a−1,n×m 7−→ (n − k + (a − 1) + 1, l + (a − 1), (a − 1) + 1, (a − 1) + l − k + n) =

(n−k+a, l+a−1, a, a+ l−k+n−1), where max{0, k− l+1}+1 6 a 6 min{k, m+1−
l}, are isomorphisms of posets (Jir(IGm

n ),6M) and (Mir(IGm
n ),6M) onto (Rn,m,6prod),

respectively. Hence we obtain the following result.
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Corollary 87. Posets (Jir(IGm
n ),6M) and (Mir(IGm

n ),6M) are isomorphic and this
isomorphism is given by the function Bi

k,l,a,n×m 7−→ Ci
k,l,a−1,n×m for all 1 6 k 6 n,

2 6 l 6 m and max{0, k − l + 1}+ 1 6 a 6 min{k, m+ 1− l}.

Since (Jir(IGm
n ),6M) is isomorphic to the dual of (Mir(IGm

n ),6M) and vice versa
(see Corollary 22), we obtain by the above corollary that the following fact holds.

Corollary 88.

(a) The function Bi
k,l,a,n×m 7−→ Bi

k,m−l+2,k−a+1,n×m is an involutive anti-automorphism
of (Jir(IGm

n ),6M). In particular, the poset (Jir(IGm
n ),6M) is self-dual.

(b) The function Ci
k,l,a,n×m 7−→ Ci

k,m−l+2,k−a−1,n×m is an involutive anti-automorphism
of the poset (Mir(IGm

n ),6M). In particular, the poset (Mir(IGm
n ),6M) is self-dual.

c) The function (x, y, z, t) 7−→ (n−z+1,m+n−x−y+z+1, n−x+1,m+n−y+1) is
an involutive anti-automorphism of the poset (Rn,m,6prod). In particular, the poset
(Rn,m,6prod) is self-dual.

Proof. (a) and (b): Take the isomorphism Ψ: Bi
k,l,a,n×m 7−→ Ci

k,l,a−1,n×m between posets
(Jir(IGm

n ),6M) and (Mir(IGm
n ),6M) defined in Corollary 87. Next, by Corollary 22

we have that the function Φ: Ci
k,l,a,n×m 7−→ (Ci

k,l,a,n×m)td = Bi
k,m−l+2,k−a,n×m is an iso-

morphism of (Mir(IGm
n ),6M) onto the dual of (Jir(IGm

n ),6M). Thus the composi-
tion Φ ◦ Ψ is an anti-automorphism of (Jir(IGm

n ),6M). Moreover, Φ(Ψ(Bi
k,l,a,n×m)) =

Bi
k,m−l+2,k−a+1,n×m. It is easy to verify that Φ ◦Ψ is an involution.

The composition Φ−1 ◦ Ψ−1 is an anti-automorphism of (Mir(IGm
n ),6M). Since

Φ−1 : Bi
k,l,a,n×m 7−→ (Bi

k,l,a,n×m)td = Ci
k,m−l+2,k−a,n×m and Ψ−1 : Ci

k,l,a,n×m 7−→ Bi
k,l,a+1,n×m,

we have Φ−1(Ψ−1(Ci
k,l,a,n×m)) = Ci

k,m−l+2,k−a−1,n×m. It is easy to verify that Φ−1 ◦Ψ−1 is
an involution.

(c): Let Θ: Bi
k,l,a,n×m 7−→ (n − k + a, l + a − 1, a, a + l − k + n − 1) be the isomor-

phism between posets (Jir(IGm
n ),6M) and (Rn,m,6prod) defined in Theorem 78. Then

the composition Θ ◦ (Φ ◦Ψ) ◦Θ−1 is an anti-automorphism of (Rn,m,6prod).
Next, take (x, y, z, t) ∈ Rn,m. It is easy to see Θ−1((x, y, z, t)) = Bi

n−x+z,y−z+1,z,n×m
(recall that t = x+ y − z). Thus

Θ((Φ ◦Ψ)(Θ−1((x, y, z, t)))) = Θ((Φ ◦Ψ)(Bi
n−x+z,y−z+1,z,n×m)) =

Θ(Bi
n−x+z,m−(y−z+1)+2,(n−x+z)−z+1,n×m) = Θ(Bi

n−x+z,m−y+z+1,n−x+1,n×m) =

(n− (n− x+ z) + (n− x+ 1), (m− y + z + 1) + (n− x+ 1)− 1,

n− x+ 1, (n− x+ 1) + (m− y + z + 1)− (n− x+ z) + n− 1) =

(n− z + 1,m+ n− x− y + z + 1, n− x+ 1,m+ n− y + 1).

Using this formula it is not difficult to verify that Θ◦(Φ◦Ψ)◦Θ−1 is also an involution.
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Since (IGm
n ,6M) is a finite distributive lattice, its dual (IGm

n ,6
d
M) is isomorphic to

the lattice of all order filters of (Mir(IGm
n ),6M) (see [4] and Subsection 1.1). Hence and

by Theorem 85, since (IGm
n ,6M) is self-dual (see Corollary 22), we obtain

Corollary 89. (IGm
n ,6M) ' (OF (Rn,m),⊆).

By this corollary we obtain another proof of the fact that |IGm
n | is equal to the cardi-

nality of the family of all anti-chains of (Rn,m,6prod) (see Corollary 80).
Since Theorem 85 can be shown without using the self-duality of lattice (IGm

n ,6M),
we can apply this result to obtain another proof of the self-duality of this lattice. More
precisely, the lattice (IGm

n ,6M) is isomorphic to (OI(Rn,m),⊆) (see Corollary 80), its
dual (IGm

n ,6
d
M) is isomorphic to (OF (Mir(IGm

n ),⊆) (see [4] and Subsection 1.1) and
(OF (Mir(IGm

n ),⊆) ' (OF (Rn,m),⊆) (by Theorem 85). Next, the poset (Rn,m,6prod) is
self-dual (see Corollary 88), so (OI(Rn,m),⊆) ' (OI(Rd

n,m),⊆), where Rd
n,m is the dual of

Rn,m. Of course, OI(Rd
n,m) = OF (Rn,m).

3.12 Dedekind-MacNeille completion of posets (Im
n ,6M) and (I(n,m),6F )

Similarly as in two previous subsections we also assume here that n 6 m. Then by Corol-
lary 37 and Propositions 75(a), 82(a) we obtain the following description of Dedekind-
MacNeille completion of the poset (Imn ,6M) (see also Proposition 10 and Corollary 22).

Theorem 90. (L(Imn ),⊆) ' (IGm
n ,6M) (i.e., the Dedekind-MacNeille completion of the

poset (Imn ,6M) is isomorphic to (IGm
n ,6M)), in particular, (L(Imn ),⊆) is a finite self-dual

distributive lattice. Moreover, Jir(IGm
n ) = Jir(Imn ) and Mir(IGm

n ) = Mir(Imn ).

We know that the poset (I(n,m),6F ), thus also (Imn ,6M), is self-dual (see Corol-
lary 3), so their Dedekind-MacNeille completions are also self-dual (see Proposition 33).
Hence we obtain another proof of the fact that the lattice (IGm

n ,6M) is self-dual (see
Corollary 22). But this proof does not give a formula for any involutive anti-isomorphism
of (IGm

n ,6M).
Since the function f 7−→ M(f) is an isomorphism between posets (I(n,m),6F ) and

(Imn ,6M), the following properties of (I(n,m),6F ) are obtained by Theorem 90 and
Propositions 75(b), 82(b).

Corollary 91.

(a) (L(I(n,m)),⊆) ' (IGm
n ,6M), i.e., the Dedekind-MacNeille completion of the poset

(I(n,m),6F ) is isomorphic to (IGm
n ,6M). In particular, (L(I(n,m)),⊆) is a finite

self-dual distributive lattice.

(b) Jir(I(n,m)) =
{
fBi

k,l,a,n×m
: 1 6 k 6 n, 2 6 l 6 m, max{0, k − l + 1} + 1 6

a 6 min{k,m+ 1− l}
}

=
{ (

1 2 . . . k − a k − a+ 1 k − a+ 2 . . . k k + 1
1 2 . . . k − a l l + 1 . . . l + a− 1 k − a+ 1

k + 2 . . . l + a− 1 l + a l + a+ 1 . . . n
k − a+ 2 . . . l− 1 l + a l + a+ 1 . . . n

)
: 1 6 k 6 n, 2 6 l 6 m, max{0, k −

l+1}+1 6 a 6 min{k, m+1− l} and l+a−1 6 n
}
∪
{ (

1 2 . . . k − a k − a+ 1
1 2 . . . k − a l
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k − a+ 2 . . . k k + 1 k + 2 . . . n
l + 1 . . . l + a− 1 k − a+ 1 k − a+ 2 . . . (k − a) + (n− k) = n− a

)
: 1 6 k 6 n, 2 6

l 6 m, max{0, k − l + 1}+ 1 6 a 6 min{k, m+ 1− l} and l + a− 1 > n+ 1
}

.

(c) Mir(I(n,m)) =
{
fCi

k,l,a,n×m
: 1 6 k 6 n, 2 6 l 6 m, max{0, k − l + 1} 6

a 6 min{k,m + 1 − l} − 1
}

=
{ (

1 2 . . . a a+ 1 a+ 2 . . . k
m m− 1 . . . m− a+ 1 l − 1 l − 2 . . . l − (k − a)

k + 1 k + 2 . . . n
m− a m− a− 1 . . . m− a− (n− k − 1)

)
: 1 6 k 6 n, 2 6 l 6 m, max{0, k−l+1} 6

a 6 min{k, m+1− l}−1 and m−a−(n−k) > l−1
}
∪
{ (

1 2 . . . a
m m− 1 . . . m− a+ 1

a+ 1 . . . k k + 1 k + 2 . . . m+ k − a− l m+ k − a− l + 1 m+ k − a− l + 2 . . .
l − 1 . . . l − (k − a) m− a m− a− 1 . . . l + 1 l l− (k − a)− 1 . . .

n
m− n+ 1

)
: 1 6 k 6 n, 2 6 l 6 m, max{0, k − l + 1} 6 a 6 min{k, m + 1 −

l} − 1 and m− a− (n− k) 6 l − 2
}

.

By Corollary 91, Theorems 78, 85 and Corollaries 87, 88 we obtain the following
result which describes the structure of subposets of (I(n,m),6F ) induced by join- and
meet-irreducible elements.

Corollary 92. Let Rn,m = {(x, y, z, t) : 1 6 x 6 n, 2 6 y 6 m, 1 6 z 6 min{x, y −
1}, n+ 1 6 x+ y − z and t = x+ y − z}. Then

(a) (Jir(I(n,m)),6F ) and (Mir(I(n,m)),6F ) are isomorphic to (Rn,m,6prod). More-
over, these isomorphisms are given by functions

fBi
k,l,a,n×m

7−→ (n− k + a, l + a− 1, a, a+ l − k + n− 1)

and
fCi

k,l,a,n×m
7−→ (n− k + a+ 1, l + a, a+ 1, a+ l − k + n).

(b) The function fBi
k,l,a,n×m

7−→ fCi
k,l,a−1,n×m

is an isomorphism of (Jir(I(n,m)),6F )

onto (Mir(I(n,m)),6F ).

(c) Functions fBi
k,l,a,n×m

7−→ fBi
k,m−l+2,k−a+1,n×m

and fCi
k,l,a,n×m

7−→ fCi
k,m−l+2,k−a−1,n×m

are

involutive anti-automorphisms of (Jir(I(n,m)),6F ) and (Mir(I(n,m)),6F ), re-
spectively. In particular, (Jir(I(n,m)),6F ) and (Mir(I(n,m)),6F ) are self-dual
posets.

Of course, self-duality of posets (Jir(I(n,m)),6F ) and (Mir(I(n,m)),6F ) follows
also from (b) and Corollary 3. But by Corollary 88 we have formulas for their anti-
automorphisms.

Finally, note that taking n = m we obtain particular cases of all the above re-
sults for posets (Snn ,6M) and (S(n),6B). For example, (SGn

n,6M) is (up to isomor-
phism) Dedekind-MacNeille completion of these two posets. In particular, (L(Snn),⊆)
and (L(S(n)),⊆) are finite self-dual distributive lattices. Next,

Jir(Snn) = Jir(SGn
n), Mir(Snn) = Mir(SGn

n)
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and

Jir(S(n)) = {fA : A ∈ Jir(Snn)} =
{
fBi

k,l,a,n×n
: 1 6 k 6 n−1, 2 6 l 6 n, max{0, k− l+

1}+1 6 a 6 min{k, n+1−l}
}

=
{ (

1 2 . . . k − a k − a+ 1 k − a+ 2 . . . k k + 1
1 2 . . . k − a l l + 1 . . . l + a− 1 k − a+ 1

k + 2 . . . l + a− 1 l + a l + a+ 1 . . . n
k − a+ 2 . . . l− 1 l + a l + a+ 1 . . . n

)
: 1 6 k 6 n− 1, 2 6 l 6 n, max{0, k − l +

1}+ 1 6 a 6 min{k, n+ 1− l}
}

,

Mir(S(n)) = {fA : A ∈Mir(Snn)} =
{
fCi

k,l,a,n×n
: 1 6 k 6 n− 1, 2 6 l 6 n, max{0, k−

l+ 1} 6 a 6 min{k, n+ 1− l}− 1
}

=
{ (

1 2 . . . a a+ 1 . . . k k + 1
n n− 1 . . . n− a+ 1 l − 1 . . . l − (k − a) n− a

k + 2 . . . n+ k − a− l n+ k − a− l + 1 n+ k − a− l + 2 . . . n
n− a− 1 . . . l + 1 l l− (k − a)− 1 . . . 1

)
: 1 6 k 6 n − 1, 2 6 l 6

n, max{0, k − l + 1} 6 a 6 min{k, n+ 1− l} − 1
}

.
Moreover, posets (Jir(S(n)),6B) and (Mir(S(n)),6B) are self-dual and isomorphic

to (Rn,n,6prod), in particular, (Jir(S(n)),6B) ' (Mir(S(n)),6B).
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