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Abstract

We prove that a distance-regular graph with intersection array {22, 16, 5; 1, 2, 20}
does not exist. To prove this, we assume that such a graph exists and derive some
combinatorial properties of its local graph. Then we construct a partial linear space
from the local graph to display the contradiction.
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1 Introduction

One of the main problems in distance-regular graphs is to decide whether a distance-
regular graph with a given intersection array exists. Brouwer, Cohen and Neumaier [3]
have compiled a list of intersection arrays that passed known feasibility conditions, but
the existence of the corresponding distance-regular graphs was unknown for many of those
arrays. Since then the arrays from the list are studied and the existence and nonexistence
of distance-regular graphs associated to many arrays from the list are proved [5, Section
17] but more than half are still unknown.

In this paper we investigate the intersection array {22, 16, 5; 1, 2, 20} [3, pp. 427]. If a
distance-regular graph with such array exists, then the number of vertices is 243 = 35,
which is relatively small, and the valency is 22. Moreover, the parameter µ equals 2,
which is a very interesting case (it means that every two nonadjacent vertices have either
0 or 2 common neighbors). From [3] the spectrum of the graph is 221766(−2)132(−5)44

and the distribution diagram is shown in Figure 1.

∗Corresponding author
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Figure 1: Distribution diagram for a distance-regular graph with intersection array
{22,16,5;1,2,20}.

In addition, the distance-two graph is a strongly regular graph whose parameters
are (243, 176, 130, 120); according to Brouwer [2], it is unknown whether such a strongly
regular graph exists. Incidentally, there is a very interesting strongly regular graph on 243
vertices, valency 22, and µ = 2, the Berlekamp-Van Lint-Seidel graph, that corresponds
to the ternary Golay code [1].

In this paper we prove, however, that a distance-regular graph with intersection array
{22, 16, 5; 1, 2, 20} does not exist. Our method for showing this is inspired by [4] where
the author cleverly partitioned a local graph of a hypothetical distance-regular graph
with intersection array {21, 16, 8; 1, 4, 14} and constructed a partial linear space on the
partition. The paper is organized as follows. In Section 2 we recall some definitions
and properties of distance-regular graphs. In Section 3 we assume that such a distance-
regular graph exists and derive some combinatorial properties of its local graph. Then we
construct a partial linear space from the local graph to display the contradiction.

2 Preliminaries

A simple graph is a graph having no loops or parallel edges. All graphs we consider are
simple. For any graph Γ, we identify Γ with its vertex set V (Γ), and let E(Γ) be its edge
set. We denote the subgraph of Γ induced by a subset S of V (Γ) by S itself. For a subset
S of V (Γ), the neighborhood of S in Γ, denoted by NΓ(S), is the set of all vertices in
Γ− S that are adjacent to at least one vertex of S. For a vertex x in Γ, the subgraph of
Γ induced by the neighbors of x is called the local graph of Γ with respect to x. A walk
C = v0e1v1e2 . . . en−1vn−1env0 is called a cycle if the edges e1, e2, . . . , en and the vertices
v0, v1, . . . , vn−1 of C are distinct and C has at least 3 edges. A cycle C has length n if the
number of edges of C is n. A complete graph is a simple graph in which any two distinct
vertices are adjacent. A complete graph with n vertices is denoted by Kn.

For vertices u and v in Γ, the distance between u and v is the length of a shortest path
between u and v in Γ. The diameter of Γ is the greatest distance between any pair of
vertices in Γ. A clique of a graph Γ is a maximal complete subgraph of Γ. The eigenvalues
of Γ are the eigenvalues of its adjacency matrix.

Let Γ be a connected graph with diameter d and a vertex set V . For x ∈ V let Γi(x)
be the set of vertices at distance i from x. The graph Γ is called distance-regular if for all
vertices x and y at distance i, the numbers bi = |Γi+1(x) ∩ Γ1(y)|, ci = |Γi−1(x) ∩ Γ1(y)|
and ai = |Γi(x) ∩ Γ1(y)| depend only on i. In particular, Γ is a regular graph of degree
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k = b0 and ci + ai + bi = k for all 0 6 i 6 d. The sequence {b0, . . . , bd−1; c1, . . . , cd} is
called the intersection array of Γ.

The following proposition gives an upper bound of the size of a clique of a distance-
regular graph in terms of its smallest and largest eigenvalues.

Proposition 1. [3, Proposition 4.4.6] Let Γ be a distance-regular graph of diameter d > 2
with eigenvalues k = θ0 > θ1 > · · · > θd. Then the size of a clique K in Γ is bounded by

|K| 6 1− k/θd.

An incidence geometry (P,L) consists of a set P whose elements are called points and
a set L whose elements are called lines together with an incidence relation between points
and lines, that is, a subset of P ×L. A partial linear space is an incidence geometry such
that every pair of distinct points lie on at most one common line and every line has at
least two points.

3 Main results

From now on we assume that Γ is a distance-regular graph with intersection array
{22,16,5;1,2,20}. Then Γ has eigenvalues 22, 7,−2 and −5. Fix a vertex x of Γ. Let
∆ = Γ1(x) be the subgraph of Γ induced by all vertices of Γ adjacent to x. Then ∆ is a
regular graph with 22 vertices and degree 5. The following results give some combinatorial
properties of the local graph ∆.

Corollary 2. ∆ does not contain a complete subgraph Ki for all i > 5.

Proof. By Proposition 1, the size of a clique in Γ is at most 5. Thus the size of a clique
in ∆ is at most 4.

Lemma 3. If ∆ contains a cycle C of length 4, then the subgraph induced by C is a
complete graph K4.

Proof. Suppose that ∆ contains a cycle C of length 4. Suppose there exist vertices u and
v of C that are not adjacent in ∆. Then the distance between u and v is 2 and there exist
two distinct paths from u to v of length 2 in C and a path uxv in Γ which contradicts
the fact that c2 = 2. Thus any two distinct vertices of C are adjacent. Therefore the
subgraph induced by C is a complete graph K4.

Lemma 4. Each vertex in ∆ is on at least two subgraphs K3’s of ∆.

Proof. Suppose there exists a vertex v ∈ ∆ which is on at most one subgraph K3 of ∆.
Let v1, v2, v3, v4 and v5 be the distinct neighbors of v in ∆. Then there is at most one
edge joining these neighbors of v. By Lemma 3, v is the only common neighbor of vi and
vj for all 1 6 i < j 6 5. Therefore the vertex set of ∆ contains v, its neighbors, and at
least (3× 2) + (4× 3) vertices at distance 2 from v. Hence the number of vertices of ∆ is
at least 24, a contradiction. Therefore each vertex in ∆ is on at least two subgraphs K3’s
of ∆.
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Figure 2: The 3 possibilities for the subgraph of ∆ induced by a vertex u and its neighbors.

By Corollary 2 and Lemma 4, there are 3 possibilities for the subgraph of ∆ induced
by a vertex u and its neighbors as shown in Figure 2.

Lemma 5. ∆ contains a complete subgraph K4.

Proof. Suppose not. Then the subgraph of ∆ induced by a vertex in ∆ and its neighbors
must be isomorphic to the graph on the right in Figure 1. Thus each vertex in ∆ is
on exactly two K3’s so |{(u,K3)|K3 ⊆ ∆, u ∈ K3}| = 22 × 2 = 44. Since the number
of vertices of K3 is three, 3|44, a contradiction. Thus ∆ contains a complete subgraph
K4.

Now we partition the vertex set of the local graph ∆. For the rest of the paper, fix a
complete subgraph K on four vertices of ∆. Let S = ∆1(K) = {y ∈ ∆−K|y is adjacent
to some vertices in K} be the neighborhood of K in ∆ and define R = ∆−K − S.

Lemma 6. K has size 4, S has size 8, and R has size 10.

Proof. Clearly, |K| = 4. Let u1, u2, u3 and u4 be the vertices in K. Since ∆ is a regular
graph of degree 5, for each 1 6 i 6 4 there exist two vertices in S which are adjacent to
ui. If ui and uj have a common neighbor s in S for some 1 6 i < j 6 4, then by Lemma
3, s is adjacent to ul for all 1 6 l 6 4 and hence {s, u1, u2, u3, u4} induces a K5 in ∆
which contradicts Corollary 2. Thus ui and uj have no common neighbors in S for all
1 6 i < j 6 4. Therefore |S| = 8, and hence |R| = |∆| − |K| − |S| = 22− 4− 8 = 10.

Let u1, u2, u3 and u4 be the vertices of K. For 1 6 i 6 4 let s2i−1 and s2i be the
vertices of S which are adjacent to ui.

Lemma 7. The only possible edges in S are s2i−1s2i for 1 6 i 6 4. Moreover, the vertices
s2i−1 and s2i have no common neighbors in R.

Proof. The result follows from Lemma 3.

To further investigate the structure of R we define an incidence geometry G = (R, S)
where elements of R are regarded as points and elements of S are regarded as lines, and
a point r ∈ R is on a line s ∈ S if and only if the vertices r and s are adjacent in Γ.
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Lemma 8. G is a partial linear space. Moreover each line in G is incident with at least
3 points.

Proof. Suppose two distinct points r and r′ of R are incident with two distinct lines s
and s′. Then the vertices s, r, s′ and r′ form a cycle in ∆. By Lemma 3, the vertices s
and s′ are adjacent. Thus by Lemma 7 the vertices s and s′ are adjacent to a common
vertex u in K. Now u, s, r and s′ form a cycle in ∆. By Lemma 3, the vertices u and r are
adjacent, a contradiction. Thus every pair of distinct points lie on at most one common
line.

By Lemma 7 and since ∆ is a regular graph of degree 5, it follows that each vertex of
S is adjacent to at least 3 vertices of R, that is, each line in S is incident with at least 3
points in R. Therefore G is a partial linear space.

Lemma 9. One of the following two conditions holds:
1). The number of edges in S is 3. The number of edges in R is 12. The number of edges
between S and R is 26.
2). The number of edges in S is 4. The number of edges in R is 13. The number of edges
between S and R is 24.

Proof. First we will show that the subgraph induced by S contains at least 3 edges.
Without loss of generality, we may assume that s7 and s8 are not adjacent. Then s7

and s8 are lines of size 4 in G. By Lemma 7, the lines s7 and s8 have no common points.
Suppose that s1 is a line of size 4 in G. Then s1 and s2 are not adjacent and hence

s2 is also a line of size 4 in G. By Lemma 7, the lines s1 and s2 have no common points.
Since every pair of distinct points lie on at most one common line and |R| = 10, the line
s1 is incident with one point of s7, one point of s8 and other two points not on s7 or s8.
Similarly, the line s2 is incident with one point of s7, one point of s8 and two points not
on s1, s7 or s8. Thus G has more than 10 points, a contradiction. Therefore s1 is a line of
size 3 in G. Similarly, si is a line of size 3 in G for all 2 6 i 6 6.

Thus s2i−1 is adjacent to s2i for all 1 6 i 6 3 and hence the subgraph induced by S
contains at least 3 edges.

If S contains exactly 4 edges, then the number of edges between S and R is 3×8 = 24
and the number of edges in R is (5× 10− 24)/2 = 13. If S contains exactly 3 edges, then
the number of edges between S and R is (3× 6) + (4× 2) = 26 and the number of edges
in R is (5× 10− 26)/2 = 12.

Lemma 10. Each vertex in R has degree at least 2 in R. Moreover there are at least 4
vertices in R with degree 2 in R.

Proof. If a vertex r in R is adjacent to 5 vertices in S, then r is adjacent to s2i−1 and s2i

for some 1 6 i 6 4. The vertices r, s2i−1, ui and s2i form a cycle in ∆. By Lemma 3, the
vertices ui and r are adjacent, a contradiction. Thus each vertex in R is adjacent to at
most 4 vertices in S.

Suppose that there exists a vertex r1 in R such that the number of edges from r1 to S
is 4. By Lemma 3, we may assume that r1 is adjacent to s1, s3, s5 and s7. By Lemma 4
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applied to r1, there exist i, j ∈ {1, 3, 5, 7}, i 6= j, such that si and sj are adjacent which
contradicts Lemma 7. Thus there are no vertices in R which are adjacent to 4 vertices in
S. That is each vertex in R has degree at least 2 in R.

If there are at most 3 vertices in R with degree 2 in R, then the number of edges
between R and S is less than or equal to (3× 3) + (7× 2) = 23 which contradicts Lemma
9. Thus there are at least 4 vertices in R with degree 2 in R.

By Lemma 9 and Lemma 10, there are 8 possibilities for the degree sequence of R as
shown in Table 1.

The number of vertices in
the induced subgraph R with degree i |E(R)|
i = 2 i = 3 i = 4 i = 5

4 6 0 0 13
5 4 1 0 13
6 3 0 1 13
6 2 2 0 13
6 4 0 0 12
7 2 1 0 12
8 0 2 0 12
8 1 0 1 12

Table 1: The 8 possibilities for the degree sequence of R.

By Lemma 9, either |E(R)| = 12 or |E(R)| = 13. We now rule out both possibilities.
We start with the latter.

Lemma 11. |E(R)| 6= 13.

Proof. Suppose that |E(R)| = 13. By Lemma 9, the subgraph induced by S contains 4
edges and the number of edges between S and R is 24. Thus each vertex in S is adjacent
to 3 vertices in R. By Lemma 3 and Lemma 4, there are 8 distinct edges e1, e2, ldots, e8

in R such that si is adjacent to both ends of ei for 1 6 i 6 8. Let T = {e1, e2, . . . , e8}.
Suppose that there exists a vertex r ∈ R which has degree 5 in R. Let r1, r2, r3, r4

and r5 be the distinct neighbors of r in R. Then for each i ∈ {1, 2, 3, 4, 5}, rri /∈ T . Since
R has 13 edges, E(R) − {rr1, rr2, rr3, rr4, rr5} = T . By Lemma 4 applied to r, we may
assume that r1 and r2 are adjacent. Thus ei = r1r2 for some 1 6 i 6 8. So the vertices
si, r1, r and r2 form a cycle in ∆ and hence r is adjacent to si, a contradiction. Therefore
each vertex in R has degree at most 4 in R. By Lemma 10, each vertex in R is adjacent
to 1, 2 or 3 vertices in S.

Now suppose that r is a vertex in R with degree 3 in R. Let NR(r) = {r1, r2, r3}.
Without loss of generality, we may assume that NS(r) = {s1, s3}.
Case 1 : si and rj are not adjacent for all i ∈ {1, 3} and j ∈ {1, 2, 3}.

Then rj and rk are adjacent for all 1 6 j < k 6 3 by Lemma 4 applied to r.
By Lemma 3, the edges rr1, rr2, rr3, r1r2, r1r3, r2r3 /∈ T . Since R contains 13 edges,
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8 = |T | 6 |E(R) − {rr1, rr2, rr3, r1r2, r1r3, r2r3}| = 7, a contradiction. Thus Case 1
cannot occur.
Case 2 : s1 is adjacent to exactly one vertex in {r1, r2, r3}.

Without loss of generality, we may assume that s1 is adjacent to r3. Then s1 is
not adjacent to r1 and r2. Since s1 is adjacent to 3 vertices in R, there exists a vertex
r4 ∈ R − {r, r1, r2, r3} such that r4 is adjacent to s1. By Lemma 3, the vertex s2 is
not adjacent to ri for 1 6 i 6 4. Since s2 is adjacent to 3 vertices in R, there exist
r5, r6, r7 ∈ R − {r, r1, r2, r3, r4} such that r5, r6, r7 are adjacent to s2. Since R has 10
vertices, there exist r8, r9 ∈ R − {r, ri|1 6 i 6 7}. By Lemma 3, r4 is not adjacent to ri
for 1 6 i 6 7. By Lemma 10, r4 is adjacent to r8 and r9. By Lemma 3, r3 is not adjacent
to ri for 1 6 i 6 9. Thus r3 has degree 1 in R, a contradiction to Lemma 10. Hence Case
2 cannot occur.
Case 3 : s1 is adjacent to exactly two vertices in {r1, r2, r3}.

Without loss of generality, we may assume that s1 is adjacent to r2 and r3. Then s1

is not adjacent to r1. By Lemma 3, r2 is adjacent to r3, and s3 is not adjacent to r2

and r3. By Case 2 applied to r and s3, the vertex s3 is not adjacent to r1. By Lemma
3, r1 is not adjacent to s2 and s4. So r1 has at most two neighbors in S by Lemma
7 that is r1 has degree at least 3 in R. By Lemma 3, r1 is not adjacent to r2 and r3.
Then there exist r4, r5 ∈ R − {r, r1, r2, r3} such that r4, r5 are adjacent to r1. Since each
vertex in R is adjacent to at least one vertex in S, we may assume that r1 is adjacent
to s5. By Lemma 3, s3 is not adjacent to r4 and r5. Since s3 is adjacent to 3 vertices
in R, there exist r6, r7 ∈ R − {r, r1, r2, r3, r4, r5} such that r6, r7 is adjacent to s3. By
Lemma 4 applied to s3, the vertex r6 is adjacent to r7. By Lemma 3, s4 is not adjacent to
r, r1, r2, r3, r6, r7, and s4 is adjacent to at most one vertex in {r4, r5}. Since s4 is adjacent
to 3 vertices in R and |R| = 10, we may assume that s4 is adjacent to r4, r8 and r9 where
{r8, r9} = R− {r, r1, r2, . . . , r7}. Then r1 and r8 are not adjacent; otherwise r1, r8, s4 and
r4 form a cycle in ∆ and hence r1 is adjacent to s4, a contradiction. Similarly, r1 and
r9 are not adjacent. By Lemma 3, r1 is not adjacent to r6 and r7. Thus r1 has degree
3 in R. By Lemma 3, we may assume that r1 is adjacent to s7. By Case 1 and Case
2 appiled to r1 and s5, we may assume that s5 is adjacent to r4 and r5. Then r4 and
r5 are adjacent by Lemma 3. Since s2 is adjacent to 3 vertices in R and by Lemma 3,
s2 is adjacent to one vertex in {r4, r5}, one vertex in {r6, r7} and one vertex in {r8, r9}.
Without loss of generality, we may assume that s2 is adjacent to r6 and r8. Then s2 and
r4 are not adjacent; otherwise s2, r4, s4 and r8 form a cycle in ∆ and hence s2 is adjacent
to s4, a contradiction. Thus s2 is adjacent to r5. The vertices s7 and r4 are not adjacent;
otherwise the vertices s7, r4, s5 and r1 form a cycle in ∆ and hence s5 is adjacent to s7,
a contradiction. By Lemma 3, r4 is not adjacent to s6 and s8. Thus r4 has degree 3 in
R. The vertex r4 is not adjacent to r2 and r3; otherwise the vertices r4, ri, r and r1 form
a cycle in ∆ where i ∈ {2, 3} and hence r4 is adjcent to r, a contradiction. The vertices
r4 and r6 are not adjcent; otherwise the vertices r4, r6, s3 and s4 form a cycle in ∆ and
hence r4 is adjcent to s3, a contradiction. Similarly, r4 is not adjacent to r7. Hence r4 is
adjacent to either r8 or r9. The vertices r4 and r8 are not adjacent; otherwise r4, r8, s2

and r5 form a cycle in ∆ and hence r4 is adjacent to s2, a contradiction. It follows that r4
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is adjacent to r9. By Case 2 appiled to r4 and s4, the vertex s4 is adjacent to r5. Hence
s4 has degree more than 5 in ∆, a contradiction. Therefore Case 3 cannot occur.

By Case 1, Case 2 and Case 3, |E(R)| 6= 13.

Lemma 12. |E(R)| 6= 12.

Proof. Suppose that |E(R)| = 12. Then the subgraph induced by S contains 3 edges.
Without loss of generality, we may assume that s2i−1 and s2i are adjacent for i ∈ {1, 2, 3}
but s7 and s8 are not adjacent. By Lemma 9, the number of edges between S and R is
26. By Lemma 3 and Lemma 4, there are 10 distinct edges e1, e2, . . . , e10 in R such that
si is adjacent to both ends of ei for 1 6 i 6 6, s7 is adjacent to both ends of e7 and e8 and
s8 is adjacent to both ends of e9 and e10. Let T = {e1, e2, . . . , e10}. By similar arguments
as in Lemma 11, each vertex in R has degree at most 4 in R.

Suppose that there exists a vertex r in R which has degree 4 in R. Let r1, r2, r3 and r4

be distinct neighbors of r in R. Since |E(R)− T | = 2, we may assume that rr1, rr2 ∈ T
and r is adjacent to s7. By Lemma 3, r1 is adjacent to r2. By construction, r1r2 /∈ T .
Since rr1 and rr2 are two edges with both ends adjacent to s7, it follows that rr3, rr4 /∈ T .
Hence 13 = |T ∪ {r1r2, rr3, rr4}| 6 |E(R)| = 12, a contradiction.

Thus there are no vertices in R which has degree 4 in R. By Table 1, there exist 6
vertices in R with degree 2 in R, and 4 vertices in R with degree 3 in R. By Lemma
8, each line in G is incident with at least 3 points. Since s7 and s8 are not adjacent, s7

and s8 are lines of size 4 in G. By Lemma 7, the lines s7 and s8 have no common points.
Let the point set of G be {ri|1 6 i 6 10} such that r3, r4, r5, r6 lie on s7 and r7, r8, r9, r10

lie on s8. Note that any line other than s7 and s8 must be incidence with either r1 or
r2. If r1 lies on exactly 2 lines, then G has at most 7 lines, a contradiction. Since every
vertex in R is adjacent to 2 or 3 vertices in S, r1 lies on 3 lines in G. Similarly, r2 lies on
3 lines in G. The points r1 and r2 are not on the same line; otherwise G has at most 7
lines, a contradiction. If there exist at least 3 points in s7 each of which lies on exactly
two lines, then G has at most 7 lines, a contradiction. So there are 2 points on the line
s7 which lie on exactly two lines. Similarly, there are 2 points on the line s8 which lie on
exactly two lines. Without loss of generality, we may assume that each of r5, r6, r9 and
r10 lies on exactly 2 lines and each of r3, r4, r7 and r8 lies on exactly 3 lines. Then there
are 3 possibilities for the incidence geometry G on 10 points and 8 lines satisfying these
properties as shown in Figure 3.

In each figure a pair of solid lines represents s7 and s8, and each pair of nonsolid lines
of same style represents s2i−1 and s2i for 1 6 i 6 3. If a point r is on a line s2i−1 and a
point r′ is on a line s2i, then the vertex r is not adjacent to r′; otherwise r, r′, s2i and s2i−1

form a cycle in ∆, and by Lemma 3, the point r is on both s2i−1 and s2i, a contradiction.
For convenience we call this the parallelity of lines.

In Figure 3a, by the parallelity of lines, the vertex r3 is not adjacent to r4, r6, and the
vertex r5 is not adjacent to r4. Suppose that the vertices r5 and r6 are adjacent. The
vertices r3 and r5 are not adjacent; otherwise the vertices r3, r5, r6 and s7 form a cycle in
∆, and by Lemma 3, the vertices r3 and r6 are adjacent, a contradiction. The vertices r4

and r6 are not adjacent; otherwise the vertices r4, r6, r5 and s7 form a cycle in ∆, and by

the electronic journal of combinatorics 23(1) (2016), #P1.32 8



(a) (b)

(c)

Figure 3: The 3 possibilities for the incidence geometry G.

Lemma 3, the vertices r4 and r5 are adjacent, a contradiction. Thus the vertex s7 is on
exactly one subgraph K3 of ∆ which contradicts Lemma 4. Hence the vertices r5 and r6

are not adjacent. The vertex r6 is not adjacent to ri for i ∈ {1, 2}; otherwise the vetices
r6, ri, sj and r4 form a cycle in ∆ where sj is the line containing both ri and r4, and by
Lemma 3, the point r6 is on sj, a contradiction. Since r6 has degree 3 in R, the vertex
r6 is adjacent to 2 vertices u, v in {r7, r8, r9, r10}. Thus the vertices r6, u, s8 and v form a
cycle in ∆, and by Lemma 3, the point r6 is on s8, a contradiction.

In Figure 3b, by the parallelity of lines, the vertex r3 is not adjacent to r4, and the
vertex r5 is not adjacent to r6. Since r2 has degree 2 in R, the vertex r2 is adjacent to
r6 and r9 by the parallelity of lines. The vertices r4 and r6 are not adjacent; otherwise
the vertices r4, r6, r2 and sj forms a cycle in ∆ where sj is the line containing both r2

and r4, and by Lemma 3, the point r6 is on sj, a contradiction. Suppose that the vertices
r3 and r5 are adjacent. The vertices r3 and r6 are not adjacent; otherwise the vertices
r3, r6, s7 and r5 form a cycle in ∆, and by Lemma 3, the vertices r5 and r6 are adjacent, a
contradiction. The vertices r4 and r5 are not adjacent; otherwise the vertices r4, r5, r3 and
s7 form a cycle in ∆, and by Lemma 3, the vertices r3 and r4 are adjacent, a contradiction.
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Hence the vertex s7 is on exactly one subgraph K3 of ∆ which contradicts Lemma 4. Thus
the vertices r3 and r5 are not adjacent. The vertex r5 is not adjacent to ri for i ∈ {1, 2};
otherwise the vertices r5, ri, sj and r4 form a cycle in ∆ where sj is the line containing
both ri and r4, and by Lemma 3, the point r5 is on sj, a contradiction. Since r5 has degree
3 in R, the vertex r5 is adjacent to 2 vertices u, v in {r7, r8, r9, r10}. Thus the vertices
r5, u, s8 and v form a cycle in ∆, and by Lemma 3, the point r5 is on s8, a contradiction.

In Figure 3c, by the parallelity of lines, the vertex r7 is not adjacent to r8, r10, and the
vertex r9 is not adjacent to r8. Suppose that the vertices r9 and r10 are adjacent. The
vertices r7 and r9 are not adjacent; otherwise the vertices r7, r9, r10 and s8 form a cycle in
∆, and by Lemma 3, the vertices r7 and r10 are adjacent, a contradiction. The vertices
r8 and r10 are not adjacent; otherwise the vertices r8, r10, r9 and s8 form a cycle in ∆,
and by Lemma 3, the vertices r8 and r9 are adjacent, a contradiction. Thus the vertex
s8 is on exactly one subgraph K3 of ∆ which contradicts Lemma 4. Hence the vertices
r9 and r10 are not adjacent. The vertex r10 is not adjacent to ri for i ∈ {1, 2}; otherwise
the vertices r10, ri, sj and r8 form a cycle in ∆ where sj is the line containing both ri and
r8, and by Lemma 3, the point r10 is on sj, a contradiction. Since r10 has degree 3 in R,
the vertex r6 is adjacent to 2 vertices u, v in {r3, r4, r5, r6}. Thus the vertices r10, u, s7

and v form a cycle in ∆, and by Lemma 3, the point r10 is on s7, a contradiction. Hence
|E(R)| 6= 12.

By Lemma 9, Lemma 11 and Lemma 12, we have our main result.

Theorem 13. A distance-regular graph with intersection array {22, 16, 5; 1, 2, 20} does
not exist.
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