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Abstract

We study a birational map associated to any finite poset P . This map is a far-
reaching generalization (found by Einstein and Propp) of classical rowmotion, which
is a certain permutation of the set of order ideals of P . Classical rowmotion has been
studied by various authors (Fon-der-Flaass, Cameron, Brouwer, Schrijver, Striker,
Williams and many more) under different guises (Striker-Williams promotion and
Panyushev complementation are two examples of maps equivalent to it). In contrast,
birational rowmotion is new and has yet to reveal several of its mysteries. In this
paper, we set up the tools for analyzing the properties of iterates of this map, and
prove that it has finite order for a certain class of posets which we call “skeletal”.
Roughly speaking, these are graded posets constructed from one-element posets by
repeated disjoint union and “grafting onto an antichain”; in particular, any forest
having its leaves all on the same rank is such a poset. We also make a parallel
analysis of classical rowmotion on this kind of posets, and prove that the order in
this case equals the order of birational rowmotion.
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1 Introduction

The present paper, and its continuation [GrRo14], had originally been intended as com-
panion papers to David Einstein’s and James Propp’s work [EiPr13, EiPr14], which in-
troduced piecewise-linear and birational rowmotion as extensions of the classical concept
of rowmotion on order ideals. While the present paper is mathematically self-contained,
it provides only a modicum of motivation and applications for the results it discusses. For
the latter, the reader may consult [EiPr13].

Let P be a finite poset, and J (P ) the set of the order ideals1 of P . Rowmotion is
a classical map J (P ) → J (P ) which can be defined in various ways, one of which is as
follows: For every v ∈ P , let tv : J (P ) → J (P ) be the map sending every order ideal
S ∈ J (P ) to 

S ∪ {v} , if v /∈ S and S ∪ {v} ∈ J (P ) ;
S \ {v} , if v ∈ S and S \ {v} ∈ J (P ) ;
S, otherwise.

These maps tv are called classical toggles2, since all they do is “toggle” an element into
or out of an order ideal. Let (v1, v2, . . . , vm) be a linear extension of P (see Definition

1An order ideal of a poset P is a subset S of P such that every s ∈ S and p ∈ P with p 6 s satisfy
p ∈ S.

2or just toggles in literature which doesn’t occupy itself with birational rowmotion
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2 for the meaning of this). Then, (classical) rowmotion is defined as the composition
tv1 ◦ tv2 ◦ . . . ◦ tvm (which turns out to be independent of the choice of linear extension
(v1, v2, . . . , vm)). This rowmotion map has been studied from various perspectives; in
particular, it is isomorphic3 to the map f of Fon-der-Flaass [Flaa93]4, the map F−1

of Brouwer and Schrijver [BrSchr74], and the map f−1 of Cameron and Fon-der-Flaass
[CaFl95]5. More recently, it has been studied (and christened “rowmotion”) in Striker and
Williams [StWi11], where further sources and context are also given. Since so much has
already been said about this rowmotion map, we will only briefly touch on its properties
in Section 11, while most of this paper will be spent studying a much more general
construction.

Among the questions that have been posed about rowmotion, the most prevalent was
probably that of its order: While it clearly has finite order (being a bijective map from the
finite set J (P ) to itself), it turns out to have a much smaller order than one would naively
expect when the poset P has certain “special” forms (e.g., a rectangle, a root poset, a
product of a rectangle with a 2-chain, or – apparently first considered in this paper – a
forest). Most strikingly, when P is the rectangle [p] × [q], then the (p+ q)-th power of
the rowmotion operator is the identity map. This is proven in [BrSchr74, Theorem 3.6]
and [Flaa93, Theorem 2], and a proof can also be constructed from the ideas given in
[PrRo13, §3.3.1]. In Section 11 we give a simple algorithm to find the order of rowmotion
on graded forests and similar posets.

In [EiPr13], David Einstein and James Propp (inspired by work of Arkady Berenstein
and Anatol Kirillov) have lifted the rowmotion map from the set J (P ) of order ideals to
the progressively more general setups of:

(a) the order polytope O (P ) of the poset P (as defined in [Stan11, Example 4.6.17]
or [Stan86, Definition 1.1]), and

(b) even more generally, the affine variety of K-labellings of P for K an arbitrary
infinite field.

In case (a), order ideals of P are replaced by points in the order polytope O (P ), and
the role of the map tv (for a given v ∈ P ) is assumed by the map which reflects the
v-coordinate of a point in O (P ) around the midpoint of the interval of all values it could
take without the point leaving O (P ) (while all other coordinates are considered fixed).
The operation of “piecewise linear” rowmotion is still defined as the composition of these
reflection maps in the same way as rowmotion is the composition of the toggles tv. This
“piecewise linear” rowmotion extends (interpolates, even) classical rowmotion, as order
ideals correspond to the vertices of the order polytope O (P ) (see [Stan86, Corollary 1.3]).
We will not study case (a) here, since all of the results we could find in this case can be

3By this, we mean that there exists a bijection φ from J (P ) to the set of all antichains of P such that
rowmotion is φ−1 ◦ f ◦ φ.

4Indeed, let A (P ) denote the set of all antichains of P . Then, the map J (P ) → A (P ) which sends
every order ideal I ∈ J (P ) to the antichain of the maximal elements of I is a bijection which intertwines
rowmotion and Fon-der-Flaass’ map f .

5This time, the intertwining bijection from rowmotion to the map f−1 of [CaFl95] is given by mapping
every order ideal I to its indicator function. This is a bijection from J (P ) to the set of Boolean monotonic
functions P → {0, 1}.
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obtained by tropicalization from similar results for case (b).

In case (b), instead of order ideals of P one considers maps from the poset P̂ :=
{0} ⊕ P ⊕ {1} (where ⊕ stands for the ordinal sum; see Definition 7 ) to a given infinite
field K (or, to speak more graphically, of all labellings of the elements of P by elements
of K, along with two additional labels “at the very bottom” and “at the very top”). The
maps tv are then replaced by certain birational maps which we call birational v-toggles
(Definition 11); the resulting composition is called birational rowmotion and denoted by
R. By a careful limiting procedure (the tropical limit), we can “degenerate” R to the
“piecewise linear” rowmotion of case (a), and thus it can be seen as an even higher
generalization of classical rowmotion. We refer to the body of this paper for precise
definitions of these maps. Note that birational v-toggles (but not birational rowmotion)
in the case of a rectangle poset have also appeared in [OSZ13, (3.5)], but (apparently)
have not been composed there in a way that yields birational rowmotion.

As in the case of classical rowmotion on J (P ), the most interesting question is the
order of this map R, which in general no longer has an obvious reason to be finite (since
the affine variety of K-labellings is not a finite set like J (P )). Indeed, for some posets P
this order is infinite (examples of these can be found in [GrRo14, §12]). In this paper we
will prove the following facts:

• Birational rowmotion (i.e., the map R) on any graded poset (in the meaning of this
word introduced in Definition 26) has a very simple effect (namely, cyclic shifting)
on the so-called “w-tuple” of a labelling (a rather simple fingerprint of the labelling).
This does not mean R itself has finite order (but turns out to be crucial in proving
this in several cases).

• Birational rowmotion on graded forests and, slightly more generally, skeletal posets
(Definition 69) has finite order (which can be bounded from above by an iterative
lcm, and also easily computed algorithmically). Moreover, its order in these cases
coincides with the order of classical rowmotion (Section 11).

The following results will be proven in the second paper [GrRo14]:

• Birational rowmotion on a p × q-rectangle has order p + q and satisfies a further
symmetry property. These results were originally conjectured by James Propp and
the second author, and can be used as an alternative route to certain properties of
(Schützenberger’s) promotion map on semistandard Young tableaux.

• Birational rowmotion on certain triangle-shaped posets – more precisely, posets
which can be obtained from the p× p-square by cutting it along either diagonal, or
along both diagonals at once – also has finite order (usually p or 2p), except for the
case when we cut along both diagonals and p is even (we conjecture that the order
is p in this case as well).

An extended (12-page) abstract [GrRo13] of this paper and [GrRo14] has been pub-
lished in the proceedings of the FPSAC 2014 conference. A longer version for readers who
would like fuller details and remarks is available on the arXiv [GrRoArX].
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1.1 Leitfaden

The Hasse diagram at right shows how the sections of this
paper depend upon each other. A section n depends sub-
stantially on a section m if and only if m > n in the poset
whose Hasse diagram is depicted at right. Only substantial
dependencies are shown; dependencies upon definitions do
not count as substantial (e.g., Section 9 depends on Defini-
tion 59, but this does not make it substantially dependent on
Section 8), and dependencies which are only used in proving
inessential claims do not count.
No section of this paper depends on the Introduction.

1

2

3

4 5

8 6

7

9

10

2 Linear extensions of posets

This first section serves to introduce some general notions concerning posets and their
linear extensions. In particular, we highlight that the set of linear extensions of any
finite poset is non-empty and connected by a simple equivalence relation (Proposition
6). This will be used in subsequent sections for defining the basic maps that we consider
throughout the paper.

We start by defining general notation related to posets:

Definition 1. Let P be a poset. Let u ∈ P and v ∈ P . In this definition, we will use 6,
<, > and > to denote the lesser-or-equal relation, the lesser relation, the greater-or-equal
relation and the greater relation, respectively, of the poset P .

(a) The elements u and v of P are said to be incomparable if we have neither u 6 v
nor u > v.

(b) We write u l v if we have u < v and there is no w ∈ P such that u < w < v.
(One often says that “u is covered by v” to signify that ul v.)

(c) We write u m v if we have u > v and there is no w ∈ P such that u > w > v.
(Thus, um v holds if and only if vl u.) (One often says that “u covers v” to signify that
um v.)

(d) An element u of P is called maximal if every v ∈ P satisfying v > u satisfies v = u.
It is easy to see that every nonempty finite poset has at least one maximal element.

(e) An element u of P is called minimal if every v ∈ P satisfying v 6 u satisfies v = u.
It is easy to see that every nonempty finite poset has at least one minimal element.

When any of these notations becomes ambiguous because the elements involved belong
to several different posets simultaneously, we will disambiguate it by adding the words
“in P” (where P is the poset which we want to use).

Definition 2. Let P be a finite poset. A linear extension of P will mean a list (v1, v2, . . . , vm)
of the elements of P such that every element of P occurs exactly once in this list, and
such that any i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . ,m} satisfying vi < vj in P must satisfy
i < j.

the electronic journal of combinatorics 23(1) (2016), #P1.33 5



Theorem 3. Every finite poset P has a linear extension.

Theorem 3 is a well-known fact, and can be proven, e.g., by induction over |P | (with
the induction step consisting of splitting off a maximal element u of P and appending it
to a linear extension of the residual poset P \ {u}).

The following proposition can be easily checked by the reader:

Proposition 4. Let P be a finite poset. Let (v1, v2, . . . , vm) be a linear extension of P .
Let i ∈ {1, 2, . . . ,m− 1} be such that the elements vi and vi+1 of P are incomparable.
Then (v1, v2, . . . , vi−1, vi+1, vi, vi+2, vi+3, . . . , vm) (this is the tuple obtained from the tuple
(v1, v2, . . . , vm) by interchanging the adjacent entries vi and vi+1) is a linear extension of
P as well.

Definition 5. Let P be a finite poset. The set of all linear extensions of P will be called
L (P ). Thus, L (P ) 6= ∅ (by Theorem 3).

In our approach to birational rowmotion, we will use the following fact (which is
folklore and has applications in various contexts, including Young tableau theory):

Proposition 6. Let P be a finite poset. Let ∼ denote the finest equivalence relation on
L (P ) with the following property: For any linear extension (v1, v2, . . . , vm) of P and any
i ∈ {1, 2, . . . ,m− 1} such that the elements vi and vi+1 of P are incomparable, we have
(v1, v2, . . . , vm) ∼ (v1, v2, . . . , vi−1, vi+1, vi, vi+2, vi+3, . . . , vm) (noting that
(v1, v2, . . . , vi−1, vi+1, vi, vi+2, vi+3, . . . , vm) is also a linear extension of P , because of Propo-
sition 4).

This proposition is basic (it generalizes the fact that the symmetric group Sn is gener-
ated by the adjacent-element transpositions) and classical, but a proof is hard to find in
the literature. One proof is in [AKSch12, Proposition 4.1 (for the π′ = πτj case)]; another
is sketched in [Rusk92, p. 79] and presented in more detail in [Etienn84, Lemma 1]. We
give a fully-detailed proof in [GrRoArX].

3 Birational rowmotion

In this section, we introduce the basic objects whose nature we will investigate: labellings
of a finite poset P (by elements of a field) and a birational map between them called
“birational rowmotion”. This map generalizes (in a certain sense) the notion of ordinary
rowmotion on the set J (P ) of order ideals of P to the vastly more general setting of
field-valued labellings. We will discuss the technical concerns raised by the definitions,
and provide an example and an alternative description of birational rowmotion. A deeper
study of birational rowmotion is deferred to the following sections.

The concepts which we are going to define now go back to [EiPr13] and earlier sources,
and are often motivated there. The reader should be warned that the notations used in
[EiPr13] are not identical with those used in the present paper (not to mention that
[EiPr13] is working over R+ rather than over fields as we do).
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Notational conventions used throughout this paper:
Unless otherwise stated, we will consistently use the following notations.
N denotes the set of all nonnegative integers.
P will denote a finite poset (although a few definitions apply equally well to infinite

posets). In Sections 3–9, P will denote an n-graded poset, where n ∈ N is a nonnegative
integer. (The meaning of this will be defined in Section 3.)
K will denote a field, which we tacitly assume is either infinite or at least can be

enlarged when necessity arises. This assumption is needed in order to clarify the notions
of rational maps and generic elements of algebraic varieties over K. We do not require K
to be algebraically closed.

Definition 7. Let P be a poset. Then, P̂ will denote the poset whose ground set is the
disjoint union P ·∪ {0, 1}, with partial order relation

(a 6 b)⇐⇒ (either (a ∈ P and b ∈ P and a 6 b in P ) or a = 0 or b = 1)

(where “either/or” has a non-exclusive meaning). Here and in the following, we regard

the canonical injection of the set P into the disjoint union P̂ as an inclusion; thus, P
becomes a subposet of P̂ . In the terminology of Stanley’s [Stan11, section 3.2], this poset

P̂ is the ordinal sum {0}⊕P ⊕{1}. Since the relation <P is a restriction of <P̂ , we never
need to distinguish these from one another.

Definition 8. A K-labelling of P will mean a map f : P̂ → K. Thus, KP̂ is the set of
all K-labellings of P . If f is a K-labelling of P and v is an element of P̂ , then f (v) will
be called the label of f at v.

Definition 9. We will use the terminology of algebraic varieties and rational maps be-
tween them, although the only algebraic varieties that we will be considering are products
of affine and projective spaces, as well as their open subsets. We use the punctured arrow
99K to signify rational maps. A rational map U 99K V is said to be dominant if its image
is dense in V (with respect to the Zariski topology).

The words generic and almost will always refer to the Zariski topology. For example,
if U is a finite set, then an assertion saying that some statement holds “for almost every
point p ∈ KU” is supposed to mean that there is a Zariski-dense open subset D of KU

such that this statement holds for every point p ∈ D. A “generic” point on an algebraic
variety V (for example, this can be a “generic matrix” when V is a space of matrices, or
a “generic K-labelling of a poset P” when V is the space of all K-labellings of P ) means a
point lying in some fixed Zariski-dense open subset S of V ; the concrete definition of S can
usually be inferred from the context (often, it will be the subset of V on which everything
we want to do with our point is well-defined), but of course should never depend on the
actual point. We will sometimes abuse notation and say that an equality holds “for every
point” instead of “for almost every point” when it is really clear what the S is. (For

example, if we say that “the equality
x3 − y3

x− y
= x2 + xy + y2 holds for every x ∈ K and

y ∈ K”, it is clear that S has to be the set K2 \ {(x, y) ∈ K2 | x = y}, because the left
hand side of the equality makes no sense when (x, y) is outside of this set.)
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Remark 10. Most statements that we make below work not only for fields, but also more
generally for semifields6 such as the semifield Q+ of positive rationals or the tropical
semiring. Some (but not all!) statements actually simplify when the underlying field
is replaced by a semifield in which no two nonzero elements add to zero (because in
such cases, e.g., the denominators in (1) cannot become zero unless some labels of f
are 0). Thus, working with such semifields instead of fields would save us the trouble
of having things defined “almost everywhere”. Moreover, applying our results to the
tropical semifield would yield some of the statements about order polytopes made in
[EiPr13]. Nevertheless, we prefer to work with fields, for the following reasons:

– If we were to work in semifields which do contain two nonzero elements summing
up to zero, then we would still have the issue of zero denominators, but we are not aware
of a theoretical framework in the spirit of Zariski topology for fields to reassure us in this
case that these issues are negligible.

– If an identity between subtraction-free rational expressions (such as
x3 + y3

x+ y
+3xy =

(x+ y)2) holds over every field (as long as the denominators involved are nonzero), then
it must hold over every semifield as well (again as long as the denominators involved are
nonzero), even if a proof of this identity uses subtraction in its intermediate steps (e.g., a

proof of
x3 + y3

x+ y
+3xy = (x+ y)2 over a field can begin by simplifying

x3 + y3

x+ y
to x2−xy+

y2, a technique not available over a semifield). This is simply because every true identity
between subtraction-free rational expressions can be verified by multiplying by a common
denominator and comparing coefficients. Since our main results (such as Proposition 71)
can be construed as identities between subtraction-free rational expressions, this yields
that all these results hold over any semifield (provided the denominators are nonzero) if
they hold over every field. So we are not losing any generality by restricting ourselves to
considering only fields.

Definition 11. Let v ∈ P . We define a rational map Tv : KP̂ 99K KP̂ by

(Tvf) (w) =



f (w) , if w 6= v;

1

f (v)
·

∑
u∈P̂ ;
ulv

f (u)

∑
u∈P̂ ;
umv

1

f (u)

, if w = v for all w ∈ P̂ and f ∈ KP̂ . (1)

Note that this rational map Tv is well-defined, because the right-hand side of (1) is well-

defined on a Zariski-dense open subset of KP̂ . (This follows from the fact that for every

v ∈ P , there is at least one u ∈ P̂ such that um v.) We call Tv the v-toggle.

6The word “semifield” here means a commutative semiring in which each element other than 0 has
a multiplicative inverse. (In contrast to other authors’ conventions, our semifields do have zeroes.) A
semiring is defined as a set with two binary operations called “addition” and “multiplication” and two
elements 0 and 1 which satisfies all axioms of a ring except for having additive inverses.
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The map Tv that we have just introduced (but defined over the semifield R+ instead
of our field K) is called a “birational toggle operation” in [EiPr13] (where it is denoted
by φi with i being a number indexing the elements v of P ; however, the same notation is
used for the “tropicalized” version of Tv). As is clear from its definition, it only changes
the label at the element v. Note also the following almost trivial fact:

Proposition 12. For every v ∈ P , the rational map Tv is an involution, i.e., the map T 2
v

is well-defined on a Zariski-dense open subset of KP̂ and satisfies T 2
v = id on this subset.

We are calling this “almost trivial” because one subtlety is easily overlooked: We
have to check that the map T 2

v is well-defined on a Zariski-dense open subset of KP̂ ; this

requires observing that for every v ∈ P , there exists at least one u ∈ P̂ such that ul v.
Proposition 12 yields the following:

Corollary 13. For every v ∈ P , the map Tv is a dominant rational map.

Dominant rational maps (unlike general rational maps) can be composed, and their
compositions are still dominant rational maps. It is very easy to check the following
“locality principle”:

Proposition 14. For all v, w ∈ P , we have Tv ◦ Tw = Tw ◦ Tv, unless either v l w or
w l v.

Proof of Proposition 14. The action of Tv on a labelling of P merely changes the label at
v to a new value which depends on the label at v and on the labels at the elements u ∈ P̂
satisfying ul v or um v. Thus, the actions of Tv and Tw don’t interfere with each other
unless either vlw or wl v or v = w. Hence, Tv ◦ Tw = Tw ◦ Tv unless vlw or wl v or
v = w (in which latter case, the proposition is obvious).

Corollary 15. Let v and w be two incomparable elements of P . Then, Tv ◦Tw = Tw ◦Tv.

Combining Corollary 15 with Proposition 6, we obtain:

Corollary 16. Let (v1, v2, . . . , vm) be a linear extension of P . Then, the dominant rational

map Tv1 ◦ Tv2 ◦ . . . ◦ Tvm : KP̂ 99K KP̂ is well-defined and independent of the choice of the
linear extension (v1, v2, . . . , vm).

Definition 17. Birational rowmotion is defined as the dominant rational map Tv1 ◦ Tv2 ◦
. . .◦Tvm : KP̂ 99K KP̂ , where (v1, v2, . . . , vm) is a linear extension of P . This rational map
is well-defined by Corollary 16 and Theorem 3; it will be denoted by R.

The reason for the names “birational toggle” and “birational rowmotion” is explained
in [EiPr13], in which birational rowmotion (defined over R+ rather than over K) is denoted
(serendipitously from the standpoint of the second author of this paper) by ρB.
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Example 18. Let us demonstrate the effect of birational toggles and birational rowmotion
on a rather simple 4-element poset. Namely, for this example, we let P be the poset
{p, q1, q2, q3} with order relation defined by setting p < qi for each i ∈ {1, 2, 3}. This
poset has Hasse diagram

q1 q2 q3

p

The extended poset P̂ has Hasse diagram

1

q1 q2 q3

p

0

We can visualize a K-labelling f of P by replacing, in the Hasse diagram of P̂ , each
element v ∈ P̂ by the label f (v). Let f be a K-labelling sending 0, p, q1, q2, q3, and 1 to
a, w, x1, x2, x3, and b, respectively (all in K); this f is then visualized as follows:

b

x1 x2 x3

w

a

Since (p, q1, q2, q3) is a linear extension of P , we have R = Tp ◦Tq1 ◦Tq2 ◦Tq3 . Let us track
how this transforms our labelling f . We first apply Tq3 , obtaining

b

Tq3f = x1 x2
bw
x3

w

a

(where we colored the label at q3 red to signify that it is the label at the element which
got toggled). Indeed, only the label at q3 changes under Tq3 becoming

(Tq3f) (q3) =
1

f (q3)
·

∑
u∈P̂ ;
ulq3

f (u)

∑
u∈P̂ ;
umq3

1

f (u)

=
1

f (q3)
· f (p)(

1

f (1)

) =
1

x3
· w(

1

b

) =
bw

x3
.
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Now applying successively Tq2 , Tq1 , and Tp, we obtain

b

Rf = TpTq1Tq2Tq3f = bw
x1

bw
x2

bw
x3

ab
x1+x2+x3

a

since the birational p-toggle Tp has changed the label at p to

(TpTq1Tq2Tq3f) (p) =
1

(Tq1Tq2Tq3f) (p)
·

∑
u∈P̂ ;
ulp

(Tq1Tq2Tq3f) (u)

∑
u∈P̂ ;
ump

1

(Tq1Tq2Tq3f) (u)

=
1

w
· a

1

bw�x1
+

1

bw�x2
+

1

bw�x3

=
ab

x1 + x2 + x3
.

By repeating this procedure (or just substituting the labels of Rf obtained as variables),
we can compute R2f , R3f etc. Specifically, we obtain

b

R2f = abx1
w(x1+x2+x3)

abx2
w(x1+x2+x3)

abx3
w(x1+x2+x3)

ax1x2x3
w(x2x3+x3x1+x1x2)

a

b

R3f = x2x3(x1+x2+x3)
x2x3+x3x1+x1x2

x3x1(x1+x2+x3)
x2x3+x3x1+x1x2

x1x2(x1+x2+x3)
x2x3+x3x1+x1x2

w

a
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b

R4f = bw(x2x3+x3x1+x1x2)
x2x3(x1+x2+x3)

bw(x2x3+x3x1+x1x2)
x3x1(x1+x2+x3)

bw(x2x3+x3x1+x1x2)
x1x2(x1+x2+x3)

ab
x1+x2+x3

a

b

R5f = abx2x3
w(x2x3+x3x1+x1x2)

abx3x1
w(x2x3+x3x1+x1x2)

abx1x2
w(x2x3+x3x1+x1x2)

ax1x2x3
w(x2x3+x3x1+x1x2)

a

R6f = f.

There are several patterns here that catch the eye, some of which are related to the very
simple structure of P and don’t seem to generalize well. However, the most striking
observation here is that Rnf = f for some positive integer n (namely, n = 6). We will
see in Proposition 71 that this generalizes to a rather wide class of posets, which we call
“skeletal posets” (Definition 69), a class of posets which contain (in particular) all graded
forests such as our poset P here. A different example is given in [GrRo14].

Let us state another proposition, which describes birational rowmotion implicitly:

Proposition 19. Let v ∈ P and f ∈ KP̂ . Then,

(Rf) (v) =
1

f (v)
·

∑
u∈P̂ ;
ulv

f (u)

∑
u∈P̂ ;
umv

1

(Rf) (u)

. (2)

Here (and in statements further down this paper), we are taking the liberty to leave
assumptions such as “Assume that Rf is well-defined” unsaid (for instance, such an
assumption is needed in Proposition 19) because these assumptions are satisfied when the
parameters belong to some Zariski-dense open subset of their domains.
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Proof of Proposition 19. Fix a linear extension (v1, v2, . . . , vm) of P . Recall that R has
been defined as the composition Tv1 ◦ Tv2 ◦ . . . ◦ Tvm . Hence, Rf can be obtained from f
by traversing the linear extension (v1, v2, . . . , vm) in the order vm, vm−1, . . . , at every step
toggling the element being traversed. When an element v is being toggled, the elements
u ∈ P̂ satisfying u l v have not yet been toggled, whereas those satisfying u m v have
been toggled already. Denoting the state of the K-labelling before the v-toggle by g, we
see that the state after the v-toggle will be Tvg with

(Tvg) (w) =



g (w) , if w 6= v;

1

g (v)
·

∑
u∈P̂ ;
ulv

g (u)

∑
u∈P̂ ;
umv

1

g (u)

, if w = v for all w ∈ P̂ . (3)

But g (v) = f (v) (since v has not yet been toggled at the time of g) and (Tvg) (v) =
(Rf) (v) (since v has been toggled at the time of Tvg, and is not going to be toggled

again during the process of computing Rf); moreover, all u ∈ P̂ satisfying u l v satisfy

g (u) = f (u) (since these u have not yet been toggled), whereas all u ∈ P̂ satisfying um v
satisfy g (u) = (Rf) (u) (since these u have already been toggled once and for all). Thus,
(3) (applied to w = v) transforms into (2), proving Proposition 19.

Here is a little triviality to complete the picture of Proposition 19:

Proposition 20. Let f ∈ KP̂ . Then, (Rf) (0) = f (0) and (Rf) (1) = f (1).

This is clear since no toggle changes the labels at 0 and 1.

We will often use Proposition 20 tacitly. A trivial corollary of Proposition 20 is:

Corollary 21. Let f ∈ KP̂ . Then for all ` ∈ N, we have
(
R`f

)
(0) = f (0) and(

R`f
)

(1) = f (1).

We will also need a converse of Propositions 19 and 20:

Proposition 22. Let f, g ∈ KP̂ satisfy f (0) = g (0) and f (1) = g (1). Assume that

g (v) =
1

f (v)
·

∑
u∈P̂ ;
ulv

f (u)

∑
u∈P̂ ;
umv

1

g (u)

for every v ∈ P. (4)

(This means, in particular, that we assume that all denominators in (4) are nonzero.)
Then, Rf is well-defined and Rf = g.
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Proof of Proposition 22. It is clearly enough to show that g (v) = (Rf) (v) for every

v ∈ P̂ . Since this is clear for v = 0, we only need to consider the case when v ∈ {1} ∪ P .
In this case, we can prove g (v) = (Rf) (v) by descending induction over v – that is, we
assume as an induction hypothesis that g (u) = (Rf) (u) holds for all elements u ∈ {1}∪P
which are greater than v in P̂ . The induction base (v = 1) is clear, and the induction
step follows by comparing (2) with (4). We leave the details (including a check that Rf is
well-defined, which piggybacks on the induction) to the reader (see also [GrRoArX]).

As an aside, at this point we could give an alternative proof of Corollary 16, foregoing
the use of Proposition 6. Indeed, Propositions 19, 20 and 22 characterize R independent
of the choice of linear extension. Details are left to the reader.

On a related note, Proposition 19, Proposition 20 and Proposition 22 combined can
be used as an alternative definition of birational rowmotion R, which works even when
the poset P fails to be finite, as long as for every v ∈ P , there exist only finitely many
u ∈ P satisfying u > v and there exist only finitely many u ∈ P satisfying ulv (provided
that some technicalities arising from Zariski topology on infinite-dimensional spaces are
dealt with)7. We will not dwell on this.

Another general property of birational rowmotion concerns the question of what hap-
pens if the birational toggles are composed not in the “from top to bottom” order as in
the definition of birational rowmotion, but the other way round. It turns out that the
result is the inverse of birational rowmotion, since we are simply composing involutions
in the opposite order.

Proposition 23. Birational rowmotion R on a finite poset P is invertible (as a rational

map). Its inverse R−1 is Tvm ◦ Tvm−1 ◦ . . . ◦ Tv1 : KP̂ 99K KP̂ , where (v1, v2, . . . , vm) is a
linear extension of P .

4 Graded posets

In this section, we restrict our attention to what we call graded posets (a notion that
encompasses most of the posets we are interested in; see Definition 24), and define (for
this kind of posets) a family of “refined rowmotion” operators Ri which toggle only the
labels of the i-th degree of the poset. These each turn out to be involutions, and their
composition from top to bottom degree is R on the entire poset. We will later on use
these Ri to get a better understanding of R on graded posets.

Let us first introduce our notion of a graded poset:

Definition 24. Let P be a finite poset. Let n be a nonnegative integer. We say that the
poset P is n-graded if there exists a surjective map deg : P → {1, 2, . . . , n} such that the
following three assertions hold:

Assertion 1: Any two elements u and v of P such that um v satisfy deg u = deg v+ 1.

7The asymmetry between the > and l signs in this requirement is intentional. For instance, birational
rowmotion can be defined (but will not be invertible) for the poset {0,−1,−2,−3, . . .} (with the usual
order relation), but not for the poset {0, 1, 2, 3, . . .} (again with the usual order relation).

the electronic journal of combinatorics 23(1) (2016), #P1.33 14



Assertion 2: We have deg u = 1 for every minimal element u of P .
Assertion 3: We have deg v = n for every maximal element v of P .

Example 25. The poset P studied in Example 18 is 2-graded. The empty poset is
0-graded, but not n-graded for any positive n. A chain with k elements is k-graded.

Definition 26. Let P be a finite poset. We say that the poset P is graded if there exists
an n ∈ N such that P is n-graded.

Definition 27. Let n ∈ N. Let P be an n-graded poset. Then, there exists a surjective
map deg : P → {1, 2, . . . , n} that satisfies the Assertions 1, 2 and 3 of Definition 24. A
moment of thought reveals that such a map deg is also uniquely determined by P 8.
Thus, we will call deg the degree map of P .

Moreover, we extend this map deg to a map P̂ → {0, 1, . . . , n+ 1} by letting it map 0
to 0 and 1 to n+ 1. This extended map will also be denoted by deg and called the degree
map. Notice that this extended map deg still satisfies Assertion 1 of Definition 24 if P is
replaced by P̂ in that assertion.

For every i ∈ {0, 1, . . . , n+ 1}, we will denote by P̂i the subset deg−1 ({i}) of P̂ . For

every v ∈ P̂ , the number deg v is called the degree of v.

The notion of an “n-graded poset” we just defined is identical with the notion of a
“graded finite poset of rank n− 1” as defined in [Stan11, §3.1]; in particular, all maximal
chains have the same length. (There are several other definitions of “graded” lurking
in different corners of combinatorics.) The degree of an element v of P as defined in
Definition 27 is off by 1 from the rank of v in P in the sense of [Stan11, §3.1], but the

degree deg v of an element v of P̂ equals its rank in P̂ in the sense of [Stan11, §3.1].
From this point until §10, P will always denote an n-graded poset for

some (fixed) n ∈ N.

The way we extended the map deg : P → {1, 2, . . . , n} to a map deg : P̂ →
{0, 1, . . . , n+ 1} in Definition 27, of course, was not arbitrary. In fact, it was tailored
to make the following (easily proved) statements true:

Proposition 28. Let u, v ∈ P̂ . Consider the map deg : P̂ → {0, 1, . . . , n+ 1} defined in
Definition 27.

(a) If ul v in P̂ , then deg u = deg v − 1.

(b) If u < v in P̂ , then deg u < deg v.

(c) If u < v in P̂ and deg u = deg v − 1, then ul v in P̂ .

(d) If u 6= v and deg u = deg v, then u and v are incomparable in P̂ .

Corollary 29. Fix i ∈ {1, 2, . . . , n}, and let (u1, u2, . . . , uk) be any list of the elements

of P̂i with every element of P̂i appearing exactly once in the list. Then, the dominant
rational map Tu1 ◦Tu2 ◦ . . .◦Tuk : KP̂ 99K KP̂ is well-defined and independent of the choice
of the list (u1, u2, . . . , uk).

8In fact, if v ∈ P , then it is easy to see that deg v equals the number of elements of any maximal chain
in P with highest element v. This clearly determines deg v uniquely.

the electronic journal of combinatorics 23(1) (2016), #P1.33 15



Proof of Corollary 29. This is analogous to, but simpler than the proof of Corollary 16,
because any two distinct elements of P̂i are incomparable.

Definition 30. Let n, K and P be as in Corollary 29. Then, we define Ri to be the
dominant rational map Tu1 ◦ Tu2 ◦ . . . ◦ Tuk : KP̂ 99K KP̂ described in Corollary 29.

The following two propositions show that for n-graded posets P, the Ri’s give a way
of writing R as a product of fewer (but more complicated than toggles) involutions. The
proofs involve simply writing everything as products of toggle maps and noting that each
Ri is a product of commuting involutions.

Proposition 31. The rowmotion operator on any n-graded poset P can be factored as

R = R1 ◦R2 ◦ . . . ◦Rn. (5)

Proposition 32. For i ∈ {1, 2, . . . , n}, the birational map Ri is an involution (that is,
R2
i = id on the set where Ri is defined).

Similarly to Proposition 19 one can then prove:

Proposition 33. Let n ∈ N. Let P be an n-graded poset. Let i ∈ {1, 2, . . . , n}. Let K be

a field. Let v ∈ P̂ . Let f ∈ KP̂ .
(a) If deg v 6= i, then (Rif) (v) = f (v).
(b) If deg v = i, then

(Rif) (v) =
1

f (v)
·

∑
u∈P̂ ;
ulv

f (u)

∑
u∈P̂ ;
umv

1

f (u)

. (6)

Notice that using the proof of Proposition 33, it is easy to give an alternative proof of
Corollary 29 (in the same way as we saw that an alternative proof of Corollary 16 could
be given using the proofs of Propositions 19, 20 and 22).

5 w-tuples

This section continues the study of birational rowmotion on graded posets by introducing
a “fingerprint” or “checksum” of a K-labelling called the w-tuple, defined by summing
ratios of elements between successive degrees (i.e., rows in the Hasse diagram). This w-
tuple serves to extract some information from a K-labelling; we will later see how to make
the “rest” of the labelling more manageable.

Definition 34. For f ∈ KP̂ and i ∈ {0, 1, . . . , n}, define wi (f) ∈ K by

wi (f) =
∑

x∈P̂i; y∈P̂i+1;
ymx

f (x)

f (y)
.

(This element is not always defined, but is defined in the “generic” case when 0 /∈ f
(
P̂
)

.)
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Intuitively, one could think of wi (f) as a kind of “checksum” for the labelling f , dis-
playing how much its labels at degree i + 1 differ from those at degree i. Of course, in
general, the knowledge of wi (f) for all i ∈ {0, 1, . . . , n} is far from sufficient to recon-
struct the whole labelling f ; however, in Definition 45, we will introduce the so-called
homogenization of f , which will provide “complementary data” to these wi (f). For now
we show that the wi (f) behave in a rather simple way under the maps R and Rj.

Definition 35. For f ∈ KP̂ , we call the (n+ 1)-tuple (w0 (f) ,w1 (f) , . . . ,wn (f)) the
w-tuple of the K-labelling f .

Proposition 36. For every i ∈ {1, 2, . . . , n} and every f ∈ KP̂ we have

(w0 (Rif) ,w1 (Rif) , . . . ,wn (Rif))

= (w0 (f) ,w1 (f) , . . . ,wi−2 (f) ,wi (f) ,wi−1 (f) ,wi+1 (f) ,wi+2 (f) , . . . ,wn (f)) .

In other words, the map Ri changes the w-tuple of a K-labelling by interchanging its
(i− 1)-st entry with its i-th entry (where the entries are labelled starting at 0).

The proof of this is a straightforward computation, taking cases j = i, j = i− 1, and
j 6∈ {i− 1, i}. Details are left to the reader, or may be found in [GrRoArX].

From Proposition 36, and (5), we conclude:

Proposition 37. The map R changes the w-tuple of any f ∈ KP̂ by shifting it cyclically:
For every f ∈ KP̂ , we have

(w0 (Rf) ,w1 (Rf) , . . . ,wn (Rf)) = (wn (f) ,w0 (f) ,w1 (f) , . . . ,wn−1 (f)) .

As a consequence of Proposition 37, the map Rn+1 (for an n-graded poset P ) leaves
the w-tuple of a K-labelling fixed.

6 Graded rescaling of labellings

In general, birational rowmotion R has something that one might call an “avalanche
effect”: If f and g are two K-labellings of a poset P which differ from each other only in
their labels at one single element v, then the labellings Rf and Rg (in general) differ at
all elements covering v and all elements beneath v, and further applications of R make
the labellings even more different. Thus a change of just one label in a labelling will often
“spread” through a large part of the poset when R is repeatedly applied; the effect of
such a change is hard to track in general. Thus, knowing the behavior of one particular
K-labelling f under R does not help us at understanding the behaviors of K-labellings
obtained from f by changing labels at particular elements. However, if P is a graded
poset and we simultaneously multiply the labels at all elements of a given degree in
a given labelling of P with a given scalar, then the changes this causes to the behavior of
the labelling under R are rather predictable. We are going to formalize this observation
in this section, proving some explicit formulas for how birational rowmotion R and its
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iterates react to such rescalings. These explicit formulas will be subsumed into slick
conclusions in Section 7, where we will introducing a notion of homogeneous equivalence
which formalizes the idea of a “labelling modulo scalar factors at each degree”.

The following definition formalizes the idea of multiplying the labels at all elements
of a certain degree with one and the same scalar factor:

Definition 38. Let P be an n-graded poset. Let f ∈ KP̂ , and let9 (a0, a1, . . . , an+1) ∈
(K×)

n+2
be an (n+ 2)-tuple of nonzero elements of K. We define a K-labelling

(a0, a1, . . . , an+1) [f ∈ KP̂ by

((a0, a1, . . . , an+1) [f) (v) = adeg v · f (v) for every v ∈ P̂ .

We preserve the notations and the setting of this definition for the rest of this sec-
tion. Assuming that all applications of R and Ri are well-defined, we have the following
straightforward consequences for Ri, R, and R`.

Proposition 39. For every i ∈ {1, 2, . . . , n}, we have

Ri ((a0, a1, . . . , an+1) [f) =

(
a0, a1, . . . , ai−1,

ai+1ai−1
ai

, ai+1, ai+2, . . . , an+1

)
[ (Rif)

Proposition 40. Let r =
an+1

an
. Then,

R ((a0, a1, . . . , an+1) [f) = (a0, ra0, ra1, . . . , ran−1, an+1) [ (Rf) ,

Proof of Proposition 40. We claim that every j ∈ {1, 2, . . . , n+ 1} satisfies

(Rj ◦Rj+1 ◦ . . . ◦Rn) ((a0, a1, . . . , an+1) [f)

= (a0, a1, a2, . . . , aj−1, raj−1, raj, . . . , ran−1, an+1) [ ((Rj ◦Rj+1 ◦ . . . ◦Rn) f) . (7)

Indeed, (7) is easily verified by reverse induction over j (that is, induction over n+ 1− j),
using Proposition 39 in the step. Now, applying (7) to j = 1 and recalling that R =
R1 ◦R2 ◦ . . . ◦Rn, we obtain Proposition 40.

Proposition 41. For every k, ` ∈ {0, 1, . . . , n+ 1}, define an element â
(`)
k ∈ K× by

â
(`)
k =


an+1ak−`
an+1−`

, if k > `;

an+1+k−`a0
an+1−`

, if k < `
.

Then every ` ∈ {0, 1, . . . , n+ 1} satisfies

R` ((a0, a1, . . . , an+1) [f) =
(
â
(`)
0 , â

(`)
1 , . . . , â

(`)
n+1

)
[
(
R`f

)
9Here and in the following, K× denotes the multiplicative group of nonzero elements of K.
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Proof of Proposition 41. This proof is a completely straightforward induction over `, with
the base case being trivial and the induction step relying on Proposition 40. To simplify

the computations, notice that â
(`)
k =

an+1+k−`a0
an+1−`

if k 6 `.

As a corollary, rescaling labellings commutes with Rn+1 for an n-graded poset P :

Corollary 42. We have Rn+1 ((a0, a1, . . . , an+1) [f) = (a0, a1, . . . , an+1) [ (Rn+1f).

Finally, straightforward computations from the definitions show how rescaling a label-
ing by degree affects w-tuples:

Proposition 43. The w-tuple of the K-labelling (a0, a1, . . . , an+1) [f is(
a0
a1

w0 (f) ,
a1
a2

w1 (f) , . . . ,
an
an+1

wn (f)

)
.

7 Homogeneous labellings

In the previous section, we have quantified how the rescaling of all labels at a given degree
affects a labelling (of a graded poset) under birational rowmotion. In this section, we will
introduce a notion of “homogeneous labellings” which (roughly speaking) are “labellings
up to rescaling at a given degree” in the same way as a point in a projective space can be
regarded as “a point in the affine space up to rescaling the coordinates”. To be precise, we
will need to restrict ourselves to considering only “zero-free” labellings (a Zariski-dense
open subset of all labellings) for the same reason as we need to exclude 0 when defining
a projective space. Once done with the definitions, we will see that birational rowmotion
(and the maps Ri) can be defined on homogeneous labellings (making use of the results
of the previous section).

Definition 44. (a) For every K-vector space V , let P (V ) denote the projective space of
V (that is, the set V \ {0} modulo proportionality).

(b) For every n ∈ N, we let Pn (K) denote the projective space P (Kn+1).

Definition 45. (a) Denote by KP̂ the product
n∏
i=1

P
(
KP̂i

)
of projective spaces. Notice

that the product is just a Cartesian product of algebraic varieties, and a reader unfamiliar
with algebraic geometry can just regard it as a Cartesian product of sets.10

We have KP̂ =
n∏
i=1

P
(
KP̂i

)
∼=

n∏
i=1

P|P̂i|−1 (K) (since every i ∈ {1, 2, . . . , n} satisfies

P
(
KP̂i

)
∼= P|P̂i|−1 (K)). We denote the elements of KP̂ as homogeneous labellings.

Notice that KP̂ =
n∏
i=1

P
(
KP̂i

)
∼=

n+1∏
i=0

P
(
KP̂i

)
(as algebraic varieties). This is because

KP̂0 and KP̂n+1 are 1-dimensional vector spaces (since
∣∣∣P̂0

∣∣∣ = 1 and
∣∣∣P̂n+1

∣∣∣ = 1), and thus

the projective spaces P
(
KP̂0

)
and P

(
KP̂n+1

)
each consist of a single point.
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(b) A K-labelling f ∈ KP̂ is said to be zero-free if for every i ∈ {0, 1, . . . , n+ 1}, there

exists some v ∈ P̂i satisfying f (v) 6= 0 (i.e., there exists no i ∈ {0, 1, . . . , n+ 1} such that

f is identically 0 on all elements of P̂ having degree i.) Let KP̂
6=0 be the set of all zero-free

K-labellings. Clearly, this set KP̂
6=0 is a Zariski-dense open subset of KP̂ .

(c) Identify the set KP̂ with
n+1∏
i=0

KP̂i in the obvious way (since, as a set, P̂ =
⊔n+1
i=0 P̂i).

Using the identificationsKP̂ ∼=
n+1∏
i=0

KP̂i andKP̂ ∼=
n+1∏
i=0

P
(
KP̂i

)
, we now define a rational

map π : KP̂ 99K KP̂ as the product of the canonical projections KP̂i 99K P
(
KP̂i

)
(which

are defined everywhere outside of the {0} subsets) over all i ∈ {0, 1, . . . , n+ 1}. Notice

that the domain of definition of this rational map π is precisely KP̂
6=0. For every f ∈ KP̂ ,

we denote π (f) as the homogenization of the K-labelling f .

(d) Two zero-free K-labellings f ∈ KP̂ and g ∈ KP̂ are said to be homogeneously
equivalent if and only if they satisfy one of the following equivalent conditions:

Condition 1: For every i ∈ {0, 1, . . . , n+ 1} and any two elements x and y of P̂i, we

have
f (x)

f (y)
=
g (x)

g (y)
.

Condition 2: There exists an (n+ 2)-tuple (a0, a1, . . . , an+1) ∈ (K×)
n+2

such that

g = (a0, a1, . . . , an+1) [f (that is, such that every x ∈ P̂ satisfies g (x) = adeg x · f (x)).
Condition 3: We have π (f) = π (g).
(The equivalence between these three conditions is very easy to check. We will never

actually use Condition 1.)

Remark 46. Clearly, homogeneous equivalence is an equivalence relation on the set KP̂
6=0

of all zero-free K-labellings. We can identify KP̂ with the quotient of the set KP̂
6=0 modulo

this relation. Then, π becomes the canonical projection map KP̂ 99K KP̂ .

Being zero-free is a very weak condition on a K-labelling (indeed the zero-free K-
labellings form a Zariski-dense open subset of the space of all K-labellings), and the K-
labellings which don’t satisfy this condition are rather useless for us (if f is a K-labelling
which is not zero-free, then R2f is not well-defined, and usually not even Rf is well-
defined). We are almost never giving up any generality if we require a labelling to be
zero-free.

Remark 47. Let f ∈ KP̂
6=0 and (a0, a1, . . . , an+1) ∈ (K×)

n+2
. Then (a0, a1, . . . , an+1) [f is

also zero-free. (This follows immediately from the definitions.)

10The structure of an algebraic variety will only be needed to define the Zariski topology on KP̂ , which
is more or less obvious already (e.g., when we say that something holds “for almost every element x of
n∏

i=1

P
(
KP̂i

)
”, we could equivalently say that it holds “for x = proj (X) for almost every element X of

n∏
i=1

(
KP̂i \ {0}

)
”, where proj is the canonical map

n∏
i=1

(
KP̂i \ {0}

)
→

n∏
i=1

P
(
KP̂i

)
defined as the product

of the projections KP̂i \ {0} → P
(
KP̂i

)
).
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Definition 48. For every zero-free f ∈ KP̂ and every i ∈ {1, 2, . . . , n}, the image of the

restriction of f : P̂ → K to P̂i under the canonical projection KP̂i 99K P
(
KP̂i

)
will be

denoted by πi (f). This image πi (f) encodes the values of f at the elements of P̂ of degree
i up to multiplying all these values by a common nonzero scalar. Notice that

π (f) = (π1 (f) , π2 (f) , . . . , πn (f)) . (8)

We next note that birational rowmotion preserves homogeneous equivalence.

Corollary 49. If f, g ∈ KP̂ are two homogeneously equivalent zero-free K-labellings, then
Rif is homogeneously equivalent to Rig (as long as Rif and Rig are zero-free).

Corollary 50. If f, g ∈ KP̂ are two homogeneously equivalent zero-free K-labellings, then
Rf is homogeneously equivalent to Rg (as long as Rf and Rg are zero-free).

Notice that Corollary 49 would not be valid if we were to replace Ri by a single
toggle Tv! So the operators Ri in some sense combine the nice properties of Tv (like
being an involution, cf. Proposition 32) with the nice properties of R (like having an
easily describable action on w-tuples, cf. Proposition 36, and respecting homogeneous
equivalence, cf. Corollary 49).

Proof of Corollary 49. By Condition 2 in Definition 45 (d), there exists an (n+ 2)-tuple
(a0, a1, . . . , an+1) ∈ (K×)

n+2
such that g = (a0, a1, . . . , an+1) [f . Thus,

Rig = Ri ((a0, a1, . . . , an+1) [f) =

(
a0, a1, . . . , ai−1,

ai+1ai−1
ai

, ai+1, ai+2, . . . , an+1

)
[ (Rif)

(by Proposition 39). Thus, Rif and Rig are homogenously equivalent.

Proof of Corollary 50. Corollary 49 shows that the map Ri (for every 1 6 i 6 n) preserves
homogeneous equivalence of K-labellings. Hence, so does the composition R1◦R2◦ . . .◦Rn

of these maps, which is R (by Proposition 31).

Let us introduce a general piece of notation:

Definition 51. Let S and T be two sets, equipped with respective equivalence relations
∼S and ∼T . Let S = S/ ∼S and T = T/ ∼T be the respective quotients, and πS : S → S
and πT : T → T the canonical projections. Let f : S → T be a map. If f : S → T is a
map for which the diagram

S
f
//

πS
��

T

πT
��

S
f

// T

is commutative, then we say that “the map f descends to the map f”. It is easy to see
that there exists at most one map f : S → T such that the map f descends to the map
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f (for given S, T , ∼S, ∼T and f). Moreover, the existence of a map f : S → T such that
the map f descends to the map f is equivalent to the statement that every two elements
x and y of S satisfying x ∼S y satisfy f (x) ∼T f (y).

The above statements are not literally true if we replace the map f : S → T by a
partial map f : S 99K T . However, when S and T are two algebraic varieties and ∼S and
∼T are algebraic equivalences (i.e., equivalence relations defined by polynomial relations
between coordinates of points) and f : S 99K T is a rational map, then the above
statements still are true (of course, with f being a partial map).

Definition 52. Let i ∈ {1, 2, . . . , n}. Because of Corollary 49, the rational map Ri :

KP̂ 99K KP̂ descends (through the projection π : KP̂ 99K KP̂ ) to a partial mapKP̂ 99K KP̂ ,
which we denote by Ri. Thus, the diagram

KP̂ Ri //

π
��

KP̂

π
��

KP̂

Ri

// KP̂

(9)

is commutative.

Definition 53. Define the partial map R : KP̂ 99K KP̂ byR = R1 ◦ R2 ◦ . . . ◦ Rn. Then,
the diagram

KP̂ R //

π
��

KP̂

π
��

KP̂

R

// KP̂

(10)

is commutative11. In other words, R is the partial map KP̂ 99K KP̂ to which the partial

map R : KP̂ 99K KP̂ descends (through the projection π : KP̂ 99K KP̂ ).

The next result says roughly that a zero-free K-labelling f ∈ KP̂ is almost always
uniquely determined by three specifications: its w-tuple (w0 (f) ,w1 (f) , . . . ,wn (f)), its
homogenization π (f) and the value f (0). More precisely:

Proposition 54. Let f, g ∈ KP̂
6=0 satisfy

• π (f) = π (g);

• f (0) = g (0); and

• (w0 (f) ,w1 (f) , . . . ,wn (f)) = (w0 (g) ,w1 (g) , . . . ,wn (g)) ∈ (K×)
n+1

.

11Proof. We have R = R1 ◦R2 ◦ . . . ◦Rn and R = R1 ◦R2 ◦ . . . ◦Rn. Hence, the diagram (10) can be
obtained by stringing together the diagrams (9) for all i ∈ {1, 2, . . . , n} and then removing the “interior
edges”.
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Then, f = g.

Proposition 54 is easily proven by reconstructing f and g “bottom-up” along P̂ . Al-
ternatively, we can use Proposition 43, as follows:

Proof of Proposition 54. Since π (f) = π (g), we know that f and g are homogeneously
equivalent. By Condition 2 in Definition 45 (d), this means that there exists an (n+ 2)-
tuple (a0, a1, . . . , an+1) ∈ (K×)

n+2
such that g = (a0, a1, . . . , an+1) [f ; hence,

(the w-tuple of g) =

(
a0
a1

w0 (f) ,
a1
a2

w1 (f) , . . . ,
an
an+1

wn (f)

)
(by Proposition 43). Compared with

(the w-tuple of g) = (w0 (g) ,w1 (g) , . . . ,wn (g)) = (w0 (f) ,w1 (f) , . . . ,wn (f)) ,

this yields(
a0
a1

w0 (f) ,
a1
a2

w1 (f) , . . . ,
an
an+1

wn (f)

)
= (w0 (f) ,w1 (f) , . . . ,wn (f)) .

Hence,
ai
ai+1

= 1 for every i ∈ {0, 1, . . . , n}. (Here we use the assumption that

(w0 (f) ,w1 (f) , . . . ,wn (f)) ∈ (K×)
n+1

.) This forces a0 = a1 = . . . = an+1, so the labels
of g are obtained from those of f by multiplying by one single constant. The assumption
f(0) = g(0) shows that this constant is 1, and thus f = g.

Definition 55. In the following, if S is a finite set, and q is an element of a projective
space P

(
KS
)

of the free vector space with basis S, and k is an integer, then qk will denote
the element of P

(
KS
)

obtained by replacing every homogeneous coordinate of q by its
k-th power. This is well-defined (and will mostly be used for k = −1). In particular, this
definition applies to S = {1, 2, . . . , n} (in which case KS = Kn).

We can explicitly describe the action of the Ri when the “structure of the poset P
between degrees i− 1, i and i+ 1” is particularly simple:

Proposition 56. Fix i ∈ {1, 2, . . . , n}, and assume that every u ∈ P̂i and every v ∈ P̂i+1

satisfy ul v. Assume further that every u ∈ P̂i−1 and every v ∈ P̂i satisfy ul v. Then,

(π1 (Rif) , π2 (Rif) , . . . , πn (Rif))

=
(
π1 (f) , π2 (f) , . . . , πi−1 (f) , (πi (f))−1 , πi+1 (f) , πi+2 (f) , . . . , πn (f)

)
.

From this proposition, we obtain two corollaries:

Corollary 57. Fix i ∈ {1, 2, . . . , n}. Assume that every u ∈ P̂i and every v ∈ P̂i+1

satisfy u l v. Assume further that every u ∈ P̂i−1 and every v ∈ P̂i satisfy u l v. Let

f̃ =
(
f̃1, f̃2, . . . , f̃n

)
∈ KP̂ . Then,

Ri

(
f̃
)

=
(
f̃1, f̃2, . . . , f̃i−1, f̃

−1
i , f̃i+1, f̃i+2, . . . , f̃n

)
.
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Corollary 58. Assume that, for every i ∈ {1, 2, . . . , n− 1}, every u ∈ P̂i and every

v ∈ P̂i+1 satisfy ul v. Let f ∈ KP̂ be zero-free. Then,

(π1 (Rf) , π2 (Rf) , . . . , πn (Rf)) =
(
(π1 (f))−1 , (π2 (f))−1 , . . . , (πn (f))−1

)
.

8 Order

In this short section, we will relate the orders of the maps R and R for a graded poset P .
The relation will later be used to better understand both of these orders. We begin by
defining the order of a partial map.

Definition 59. Let S be a set.
(a) If α and β are two partial maps from the set S, then we write “α = β” if and

only if every s ∈ S for which both α (s) and β (s) are well-defined satisfies α (s) = β (s).
This is not a well-behaved notation per se, e.g., it is possible that three partial maps α,
β and γ satisfy α = β and β = γ but not α = γ. However, we will only use this notation
for rational maps and their quotients (and, of course, total maps); in all of these cases,
the notation is well-behaved (e.g., if α, β and γ are three rational maps satisfying α = β
and β = γ, then α = γ, because the intersection of two Zariski-dense open subsets is
Zariski-dense and open).

(b) The order of a partial map ϕ : S 99K S is defined to be the smallest positive
integer k satisfying ϕk = idS, if such a positive integer k exists, and ∞ otherwise. Here,
we are disregarding the fact that ϕ is only a partial map; we will be working only with
dominant rational maps and their quotients (and total maps), so nothing will go wrong.

We denote the order of a partial map ϕ : S 99K S as ordϕ.

Convention 60. In the following, we are going to occasionally make arithmetical state-
ments involving the symbol ∞. We declare that 0 and ∞ are divisible by ∞, but no
positive integer is divisible by ∞. We further declare that every positive integer (but
not 0) divides ∞. We set lcm (a,∞) and lcm (∞, a) to mean ∞ whenever a is a positive
integer.

As a consequence of Proposition 54, we have:

Proposition 61. Let n ∈ N. Let K be a field. Let P be an n-graded poset. Then,
ordR = lcm

(
n+ 1, ordR

)
. (Recall that lcm (n+ 1,∞) is to be understood as ∞.)

Proof of Proposition 61. The proof of this boils down to considering the effect of R on the
w-tuple (w0 (f) ,w1 (f) , . . . ,wn (f)) and on the homogenization π (f) of a K-labelling f .
The former is a cyclic shift (by Proposition 37), with order n+ 1, and the latter is R. It
is now easy to see (invoking Proposition 54) that the order of R is the lcm of the orders
of these two actions. We outline the steps here; full details may be found in [GrRoArX].

1st step: Use commutativity of the diagram (10) to show R
` ◦π = π ◦R` for all ` ∈ N.

Thus, R
`

= id whenever R` = id, so ordR | ordR.
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2nd step: Assume ordR = m 6= ∞ (otherwise the statement is easy), and let ` =
lcm(n + 1,m). To show that R` = id, it suffices to show that R`f = f for almost every

(Zariski) f ∈ KP̂
6=0. A simple argument shows that almost every f ∈ KP̂ is zero-free and

has (well-defined) nonzero wi(f) for each i. By Proposition 37, the labellings R`f and f
have the same w-tuple (since n+ 1 | `), and from ordR = m | ` we obtain π(R`f) = π(f).
So using Corollary 21 and applying Proposition 54 to g = R`f , we get R`f = f . Thus,
R` = id, so ordR | `.

3rd step: To show the inverse divisibility (` | ordR), first assume ordR = q 6=∞ (else
the claim is obvious). It is easy to see that for almost every zero-free K-labelling f of P ,
the entries of the w-tuple (w0 (f) ,w1 (f) , . . . ,wn (f)) of f are pairwise distinct. So there

exists f ∈ KP̂
6=0 with this property such that Rkf is well-defined for all k ∈ {0, 1, . . . , q}.

Then Rqf = f , so they have the same w-tuple. But by pairwise-distinctness, this can
only happen if n+ 1 | q. Combined with the first step, this gives ` | ordR.

9 The opposite poset

Before we move on to the first interesting class of posets for which we can compute the
order of birational rowmotion, let us prove an easy “symmetry property” of birational
rowmotion. For this section, we only assume that P is a finite poset (not necessarily
graded).

Definition 62. Let P be a poset. Then, P op will denote the poset defined on the same
ground set as P but with the order relation defined by

((a <P op b if and only if b <P a) for all a ∈ P and b ∈ P )

The poset P op is called the opposite poset (or dual poset [Stan11]) of P .

Definition 63. We denote the maps R and R by RP and RP , respectively, so as to make
their dependence on P explicit.

We can now state a symmetry property of ordR (as defined in Definition 59):

Proposition 64. We have ord (RP op) = ord (RP ) and ord
(
RP op

)
= ord

(
RP

)
.

Proof of Proposition 64. Define a rational map κ : KP̂ 99K KP̂ op
by

(κf) (w) =



1

f (w)
, if w ∈ P ;

1

f (1)
, if w = 0;

1

f (0)
, if w = 1

for every w ∈ P̂ op for every f ∈ KP̂ .

This map κ is a birational map. (Its inverse map is defined in the same way.)
We claim that κ ◦RP = R−1P op ◦ κ.
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Indeed, it is easy to see (by computation) that every element v ∈ P satisfies

κ ◦ Tv = Tv ◦ κ, (11)

where the Tv on the left hand side is defined with respect to the poset P , and the Tv
on the right hand side is defined with respect to the poset P op. Now, let (v1, v2, . . . , vm)
be a linear extension of P . Then, (vm, vm−1, . . . , v1) is a linear extension of P op, so that
Proposition 23 (applied to P op and (vm, vm−1, . . . , v1) instead of P and (v1, v2, . . . , vm))

yields that R−1P op = Tv1 ◦ Tv2 ◦ . . . ◦ Tvm : KP̂ op
99K KP̂ op

. On the other hand, the definition

of RP yields RP = Tv1 ◦Tv2 ◦ . . . ◦Tvm : KP̂ 99K KP̂ . Now, using (11), it is easy to see that

κ ◦ (Tv1 ◦ Tv2 ◦ . . . ◦ Tvm) = (Tv1 ◦ Tv2 ◦ . . . ◦ Tvm) ◦ κ.

Since the Tv1◦Tv2◦. . .◦Tvm on the left hand side equals RP , and the Tv1◦Tv2◦. . .◦Tvm on the
right hand side equals R−1P op , this rewrites as κ◦RP = R−1P op ◦κ. Since κ is a birational map,
this shows that RP and R−1P op are birationally equivalent, so that ord (RP ) = ord

(
R−1P op

)
=

ord (RP op). Since κ commutes with homogenization, we also obtain the birational equiv-

alence of the maps RP and R
−1
P op , whence ord

(
RP

)
= ord

(
R
−1
P op

)
= ord

(
RP op

)
.

10 Skeletal posets

We will now introduce a class of posets which we call “skeletal posets”. Roughly speaking,
these are graded posets built up inductively from the empty poset by the operations of
(1) disjoint union of two n-graded posets (with the same n) and (2) “grafting” on an
antichain (generalizing the idea of grafting a tree on a new root). In particular, this class
includes all graded forests (oriented either away from the roots or towards the roots) as
well as various other posets.

Definition 65. Let P and Q be two n-graded posets. We denote by PQ the disjoint
union of the posets P and Q (denoted by P + Q in [Stan11, §3.2]). Its poset structure
is defined in such a way that any element of P and any element of Q are incomparable,
while P and Q are subposets of PQ. Clearly, PQ is also an n-graded poset.

Definition 66. Let P be an n-graded poset. Let k be a positive integer. We denote by
BkP the result of adding k new elements to the poset P , and declaring these k elements
to be smaller than each of the elements of P (but incomparable with each other). Clearly,
BkP is an (n+ 1)-graded poset.

Definition 67. Let n ∈ N. Let P be an n-graded poset. Let k be a positive integer. We
denote by B′kP the result of adding k new elements to the poset P , and declaring these k
elements to be larger than each of the elements of P (but incomparable with each other).
Clearly, B′kP is an (n+ 1)-graded poset.

In the notation of Stanley ([Stan11, §3.2]), BkP = Ak ⊕ P and B′kP = P ⊕Ak, where
Ak denotes the k-element antichain. It is easy to see that BkP and B′kP are “symmetric”
notions with respect to taking the opposite poset (Def. 62):
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Proposition 68. Let P be an n-graded poset. Then, B′kP = (Bk (P op))op.

Definition 69. We define the class of skeletal posets inductively by means of the following
axioms:

– The empty poset is skeletal.
– If P is an n-graded skeletal poset and k is a positive integer, then the posets BkP

and B′kP are skeletal.
– If n is a nonnegative integer and P and Q are two n-graded skeletal posets, then the

poset PQ is skeletal.
Notice that every skeletal poset is graded, and that every graded rooted forest (made

into a poset by having every node smaller than its children) is a skeletal poset. (Recall
that our sense of “graded” means all maximal chains have the same length, so not all trees
are graded.) Indeed, every graded rooted forest can be constructed from ∅ using merely
the operations P 7→ B1P and (P,Q) 7→ PQ. Also, every graded rooted arborescence (i.e.,
the opposite poset of a graded rooted tree) is a skeletal poset (for a similar reason).

Example 70. The rooted forest • • • •

• • •

• •

is skeletal, and in fact can be

written as (B1 ((B1 (B2∅)) (B1 (B1∅)))) (B1 (B1 (B1∅))). (This form of writing is not
unique, since B2∅ = (B1∅) (B1∅).)

The tree •

• •

•

can be written as B1 ((B1∅) (B1 (B1∅))), but is not skeletal

because B1∅ and B1 (B1∅) are not n-graded with one and the same n.
The poset • • •

• • • •

•

is neither a tree nor an arborescence, but it has the

form B1 ((B2 (B2∅)) (B′1 (B2∅))) and is skeletal.

Our main result on skeletal posets is the following:

Proposition 71. If P is a skeletal poset, then ord (RP ) and ord
(
RP

)
are finite.

We first build up some machinery for determining ord (RP ) and ord
(
RP

)
given such

orders in smaller posets. Here is a very basic fact to get started:

Proposition 72. Fix n ∈ N, and let P and Q be two n-graded posets. Then, we have
ord (RPQ) = lcm (ord (RP ) , ord (RQ)).

Proof of Proposition 72. The proof of this is as easy as it looks: a K-labelling of the
disjoint union PQ can be regarded as a pair of a K-labelling of P and a K-labelling of
Q (with identical labels at 0 and 1), and the map R (as well as all Ri) acts on these
labellings independently.
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The analogue of Proposition 72 with all R’s replaced by R’s is false. Instead, ord
(
RPQ

)
can be computed as follows:

Proposition 73. Fix n ∈ N, and let P and Q be two n-graded posets. Let K be a field.
Then, ord

(
RPQ

)
= lcm (ord (RP ) , ord (RQ)). (As we know, this is equal to ord (RPQ).)

The most useful point here is the statement that ord
(
RPQ

)
| lcm (ord (RP ) , ord (RQ)).

This follows immediately from Propositions 61 and 73. The reverse divisibility is mainly
a technical result which can be proved by splitting a labelling of PQ into a labelling of P
and one of Q and comparing how R affects these labellings. We refer to [GrRoArX, §9]
for details.

Now, let us track the effect of Bk on the order of R:

Proposition 74. Let P be an n-graded poset.
(a) We have ord

(
RB1P

)
= ord

(
RP

)
.

(b) For every integer k > 1, we have ord
(
RBkP

)
= lcm

(
2, ord

(
RP

))
.

Proof of Proposition 74. We only need to prove that

ord
(
RBkP

)
=

{
lcm

(
2, ord

(
RP

))
, if k > 1;

ord
(
RP

)
, if k = 1

. (12)

Let us make some conventions:

• For any n-tuple (α1, α2, . . . , αn) and any object β, let βiα denote the (n+ 1)-tuple
(β, α1, α2, . . . , αn).

• We are going to identify P with a subposet of BkP in the obvious way. However,
the degree maps of these posets differ and have to be distinguished. We also embed
P̂ into B̂kP by identifying the respective 0s and the respective 1s.

• The rational maps π : KP̂ 99K KP̂ and π : KB̂kP 99K KB̂kP are denoted by the same
letter and can be distinguished by their different domains. We will also use the letter
π to denote the rational map Kk 99K P

(
Kk
)

obtained from the canonical projection
Kk \ {0} → P

(
Kk
)

of the nonzero vectors in Kk onto the projective space.

Now the operation Bk clearly raises the degree of every element of P by 1, while the
k newly added elements all obtain degree 1 in BkP . Formally speaking, this means that
B̂kP i = P̂i−1 for every i ∈ {2, 3, . . . , n+ 1}, while B̂kP 1 is a k-element set. Moreover, for

any i ∈ {2, 3, . . . , n+ 1}, any u ∈ B̂kP i = P̂i−1 and any v ∈ B̂kP i+1 = P̂i, we have

ul v in B̂kP if and only if ul v in P̂ .
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We have KB̂kP i = KP̂i−1 for every i ∈ {2, 3, . . . , n+ 1}, whereas KB̂kP 1 ∼= Kk. We will

actually identify KB̂kP 1 with Kk. Now,

KB̂kP =
n+1∏
i=1

P
(
KB̂kP i

)
= P

KB̂kP 1︸ ︷︷ ︸
=Kk

× n+1∏
i=2

P

KB̂kP i︸ ︷︷ ︸
=KP̂i−1


= P

(
Kk
)
×

n+1∏
i=2

P
(
KP̂i−1

)
= P

(
Kk
)
×

n∏
i=1

P
(
KP̂i

)
︸ ︷︷ ︸

=KP̂

= P
(
Kk
)
×KP̂ . (13)

Thus, the elements of KB̂kP have the form p̃i g̃, where p̃ ∈ P
(
Kk
)

and g̃ ∈ KP̂ .

On the other hand, P̂ is the subposet B̂kP \ B̂kP 1 of B̂kP . Thus, we can define a map

Φ : Kk ×KP̂ → KB̂kP by setting

(Φ (p, g)) (v) =

{
p (v) , if v ∈ B̂kP 1;

g (v) , if v /∈ B̂kP 1

for every v ∈ B̂kP

for every (p, g) ∈ Kk×KP̂ . Here, the term p (v) is to be understood by means of regarding

p as an element of KB̂kP 1 (since p ∈ Kk = KB̂kP 1). Clearly, Φ is a bijection. Moreover, it
is easy to see that

π (Φ (p, g)) = π (p) i π (g) for all p ∈ Kk and g ∈ KP̂ (14)

(where the π on the left hand side is the map π : KB̂kP 99K KB̂kP , whereas the π in “π (p)”

is the map π : Kk 99K P
(
Kk
)
, and the π in “π (g)” is the map π : KP̂ 99K KP̂ ).

Now, we claim that every p̃ ∈ P
(
Kk
)

and g̃ ∈ KP̂ satisfy(
Ri

)
BkP

(p̃i g̃) = p̃i
(
Ri−1

)
P

(g̃) for all i ∈ {2, 3, . . . , n+ 1} (15)

and (
R1

)
BkP

(p̃i g̃) = p̃−1 i g̃. (16)

Proof of (15) and (16): In order to prove (15), it is clearly enough to show that every

p ∈ Kk and g ∈ KP̂ satisfy

(Ri)BkP
(pi g) ∼ pi (Ri−1)P (g) for all i ∈ {2, 3, . . . , n+ 1} , (17)

where the sign ∼ stands for homogeneous equivalence.
It is easy to prove the relation (17) for i > 2 (because if i > 2, then the elements of

B̂kP having degrees i− 1, i and i+ 1 are precisely the elements of P̂ having degrees i− 2,
i − 1 and i, and therefore toggling the elements of B̂kP i in p i g has precisely the same
effect as toggling the elements of P̂i−1 in g while leaving p fixed, so that we even get the
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stronger assertion that (Ri)BkP
(pi g) = pi (Ri−1)P (g)). It is not much harder to check

that it also holds for i = 2 (indeed, for i = 2, the only difference between toggling the

elements of B̂kP i in p i g and toggling the elements of P̂i−1 in g while leaving p fixed
is a scalar factor which is identical across all elements being toggled in either poset 12;
therefore, the results are the same up to homogeneous equivalence).

Finally, (16) is trivial to check (e.g., using Corollary 57).
But recall that R = R1 ◦ R2 ◦ . . . ◦ Rn for any n-graded poset. Hence, RBkP =(

R1

)
BkP
◦
(
R2

)
BkP
◦
(
R3

)
BkP
◦ . . . ◦

(
Rn+1

)
BkP

(because BkP is an (n+ 1)-graded poset)

and RP =
(
R1

)
P
◦
(
R2

)
P
◦ . . .◦

(
Rn

)
P

(because P is an n-graded poset). Because of these

equalities, and by (15) and (16), it is now easy to see that every p̃ ∈ P
(
Kk
)

and g̃ ∈ KP̂

satisfy
RBkP (p̃i g̃) = p̃−1 iRP (g̃) . (18)

Furthermore, every p̃ ∈ P
(
Kk
)

and g̃ ∈ KP̂ satisfy

R
`

BkP
(p̃i g̃) = p̃(−1)

`

iR
`

P (g̃) for all ` ∈ N. (19)

(This is proven by induction over `, using (18).)

We know that the elements of KB̂kP have the form p̃ig̃, where p̃ ∈ P
(
Kk
)

and g̃ ∈ KP̂ .

Conversely, every element p̃ i g̃ with p̃ ∈ P
(
Kk
)

and g̃ ∈ KP̂ lies in KB̂kP . Hence, for
every ` ∈ N, we have the following equivalence of assertions:(

R
`

BkP
= id

)
⇐⇒

(
every p̃ ∈ P

(
Kk
)

and g̃ ∈ KP̂ satisfy R
`

BkP
(p̃i g̃) = p̃i g̃

)
⇐⇒

(
every p̃ ∈ P

(
Kk
)

and g̃ ∈ KP̂ satisfy p̃(−1)
`

iR
`

P (g̃) = p̃i g̃
)

(by (19))

⇐⇒
(

every p̃ ∈ P
(
Kk
)

and g̃ ∈ KP̂ satisfy p̃(−1)
`

= p̃ and R
`

P (g̃) = g̃
)

⇐⇒

every p̃ ∈ P
(
Kk
)

satisfies p̃(−1)
`

= p̃︸ ︷︷ ︸
this is equivalent to (2|` if k>1)

, and every g̃ ∈ KP̂ satisfies R
`

P (g̃) = g̃︸ ︷︷ ︸
this is equivalent to ord(RP )|`


⇐⇒

({
lcm

(
2, ord

(
RP

))
, if k > 1;

ord
(
RP

)
, if k = 1

| `
)
.

Hence, for every ` ∈ N, we have the following equivalence of assertions:

(
ord
(
RBkP

)
| `
)
⇐⇒

(
R
`

BkP
= id

)
⇐⇒

({
lcm

(
2, ord

(
RP

))
, if k > 1;

ord
(
RP

)
, if k = 1

| `
)
.

Consequently, ord
(
RBkP

)
=

{
lcm

(
2, ord

(
RP

))
, if k > 1;

ord
(
RP

)
, if k = 1

.

12because every u ∈ B̂kP 1 and every v ∈ B̂kP 2 satisfy ul v
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Here is an analogue of Proposition 74:

Proposition 75. Let P be an n-graded poset.
(a) We have ord

(
RB′1P

)
= ord

(
RP

)
.

(b) For every integer k > 1, we have ord
(
RB′kP

)
= lcm

(
2, ord

(
RP

))
.

The proof of this is very similar (though not exactly identical) to that of Proposition 74.
Alternatively, it is easy to deduce Proposition 75 from Proposition 74 using Proposition
64 and Proposition 68.

Proof of Proposition 71. For any skeletal poset T , we can compute ord (RT ) and ord
(
RT

)
inductively using Propositions 72–75 (and the fact that ord (R∅) = 1 and ord

(
R∅
)

= 1).
More precisely:

• If T is the empty poset ∅, then ord (RT ) = ord (R∅) = 1 = ord
(
RT

)
= ord

(
R∅
)
.

• If T has the form BkP for some n-graded skeletal poset P and some positive integer
k, then Proposition 74 yields

ord
(
RT

)
= ord

(
RBkP

)
=

{
lcm

(
2, ord

(
RP

))
, if k > 1;

ord
(
RP

)
, if k = 1

,

and Proposition 61 yields ord (RT ) = lcm
(
n+ 1, ord

(
RT

))
.

• Analogously one can compute ord (RT ) and ord
(
RT

)
if T has the form B′kP .

• If T has the form PQ for two WLOG nonempty n-graded skeletal posets P and Q,
then Proposition 72 yields ord (RPQ) = lcm (ord (RP ) , ord (RQ)), and Proposition
73 yields ord

(
RPQ

)
= lcm (ord (RP ) , ord (RQ)).

This gives an algorithm for inductively computing ord (RT ) and ord
(
RT

)
for a skeletal

poset T . It is clear that these orders as computed by this algorithms will be finite.

As the proof of Proposition 71 shows, we can recursively compute (rather than just
bound from the above) the orders of RP and RP for any skeletal poset P without doing
any computations in K. (This also shows that the orders of RP and RP don’t depend on
the base field K as long as K is infinite and P is skeletal.)

In the case of forests and trees we obtain a concrete bound:

Corollary 76. Let P be an n-graded poset which is also a rooted forest (made into a poset
by having every node smaller than its children).

(a) Then, ord (RP ) | lcm (1, 2, . . . , n+ 1).
(b) Moreover, if P is a tree, then ord

(
RP

)
| lcm (1, 2, . . . , n).

Corollary 76 is also valid if we replace “every node smaller than its children” by “every
node larger than its children”, and the proof is exactly analogous.

Proof of Corollary 76. Use strong induction on |P |, applying Propositions 74 (a) and 61
when P is a tree, and Proposition 72 when P is a forest. (See [GrRoArX] for details.)

the electronic journal of combinatorics 23(1) (2016), #P1.33 31



11 Postscript: Classical rowmotion on skeletal posets

The above results concerning birational rowmotion on skeletal posets suggest the question
of what can be said about classical rowmotion (on the set of order ideals) on this class
of posets. Indeed, while the classical rowmotion map (as opposed to the birational one)
has been the object of several studies (e.g., [StWi11] and [CaFl95]), it seems that this
rather simple case has never been explicitly covered. Let us bridge this gap and derive
the counterparts of Propositions 74 and 71 and Corollary 76 for classical rowmotion.

To start we define (classical) toggles on order ideals (an analogue of Definition 11).
Recall that an order ideal of P means a subset S of P such that every s ∈ S and p ∈ P
with p 6 s satisfy p ∈ S. We denote the set of all order ideals of P by J(P ).

Definition 77. Let P be a finite poset. Let v ∈ P . Define a map tv : J (P )→ J (P ) by

tv (S) =


S ∪ {v} , if v /∈ S and S ∪ {v} ∈ J (P ) ;
S \ {v} , if v ∈ S and S \ {v} ∈ J (P ) ;
S, otherwise

for every S ∈ J (P ) .

(This is clearly well-defined.) This map tv will be called the classical v-toggle.

We can rewrite this definition in more “local” terms, by replacing the conditions
“S ∪{v} ∈ J (P )” and “S \ {v} ∈ J (P )” by the respectively equivalent conditions “every
element u ∈ P satisfying u l v lies in S” and “no element u ∈ P satisfying u m v lies
in S” (in fact, the equivalence of these conditions is easily seen). Hence, we obtain the
following analogue to our definition of Tv:

Proposition 78. Let P be a finite poset. Let v ∈ P . For every S ∈ J (P ), we have:
(a) If w is an element of P such that w 6= v, then we have w ∈ tv (S) if and only if

w ∈ S.
(b) We have v ∈ tv (S) if and only if

(v ∈ S and not (no element u ∈ P satisfying um v lies in S))

or (v /∈ S and (every element u ∈ P satisfying ul v lies in S)) .

While the complicated logical statement in Proposition 78 (b) can be simplified, the
form we have stated it in exhibits its similarity to our definition of Tv particularly well.
This, in fact, is more than a similarity: If we allow K to be a semifield rather than a
field, we can regard the classical v-toggle tv as a restriction of the birational toggle Tv
(when K is chosen appropriately)13. Hence, some theorems about birational toggles can

13Here are the details: Let TropZ be the tropical semiring over Z, that is, the semiring obtained by
endowing the set Z ∪ {−∞} with the binary operation (a, b) 7→ max {a, b} as “addition” and the binary
operation (a, b) 7→ a+ b as “multiplication” (where the usual rules for sums involving −∞ apply). Then,
TropZ is a semifield, with (a, b) 7→ a− b serving as “subtraction”, with −∞ serving as “zero” and with
the integer 0 serving as “one”. Now, to every order ideal S ∈ J (P ), we can assign a (TropZ)-labelling
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be used to derive analogous theorems about classical toggles14. We will not use this tactic
in the following, because often it will be easier to study the classical v-toggles on their
own. However, many of the properties of classical toggles (and classical rowmotion) that
we are going to discuss will have proofs that are parallel to the proofs of the analogous
results about birational toggles. We will omit these proofs when the analogy is glaring
enough.

We have the following easily-verified analogues of Proposition 12, Proposition 14 and
Corollary 16:

Proposition 79. Let P be a finite poset. Let v ∈ P . Then, the map tv is an involution
on J (P ) (that is, we have t2v = id).

Proposition 80. Let P be a finite poset. Let v ∈ P and w ∈ P . Then, tv ◦ tw = tw ◦ tv,
unless we have either v l w or w l v.

Corollary 81. Let P be a finite poset. Let (v1, v2, . . . , vm) be a linear extension of P .
Then, the map tv1 ◦ tv2 ◦ . . . ◦ tvm : J (P )→ J (P ) is well-defined and independent of the
choice of the linear extension (v1, v2, . . . , vm).

The three results above are observations made on [CaFl95, page 546] (in somewhat
different notation).

Two convenient advantages of the classical setup are that we don’t have to worry about
denominators becoming zero, so our maps are actual maps rather than partial maps, and
that we don’t have to pass to the poset P̂ . We can now define rowmotion in analogy to
Definition 17:

Definition 82. Let P be a finite poset. Classical rowmotion (simply called “rowmotion”
in existing literature) is defined as the map r := tv1 ◦ tv2 ◦ . . .◦ tvm : J (P )→ J (P ), where
(v1, v2, . . . , vm) is a linear extension of P . This map is well-defined by Corollary 81.

To highlight the similarities between the classical and birational cases, let us state the
analogue of Proposition 19:

Proposition 83. Let P be a finite poset. Let v ∈ P . Let S ∈ J (P ). Then, v ∈ r (S)
holds if and only if the following two conditions hold:

Condition 1: Every u ∈ P satisfying ul v belongs to S.
Condition 2: Either v /∈ S, or there exists an u ∈ r (S) satisfying u m v. (The

“either/or” is meant non-exclusively.)

tlabS ∈ (TropZ)
P̂

, defined by

(tlabS) (v) =

{
1, if v /∈ S ∪ {0} ;
0, if v ∈ S ∪ {0} .

This yields a map tlab : J (P )→ (TropZ)
P̂

, obviously injective. This map tlab satisfies Tv◦tlab = tlab ◦tv
for every v ∈ P . This allows us to regard the classical toggles tv as restrictions of the birational toggles
Tv, if we consider this map tlab as an inclusion. This reasoning goes back to Einstein and Propp [EiPr13].

14For example, we could derive Proposition 80 from Proposition 14 using this tactic. However, we
could not derive (say) Proposition 101 from Proposition 71 this way, because the order of a restriction of
a permutation could be a proper divisor of the order of the permutation.
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This proposition is easily seen to be equivalent to the following well-known equivalent
description of rowmotion ([CaFl95, Lemma 1], translated into our notation):

Proposition 84. Let P be a finite poset. Let S ∈ J (P ). Then, the maximal elements of
r (S) are precisely the minimal elements of P \ S.

We record the analogue of Proposition 22:

Proposition 85. Let P be a finite poset. Let S and T be two order ideals of P . Assume
that for every v ∈ P , the relation v ∈ T holds if and only if Conditions 1 and 2 of
Proposition 83 hold with r (S) replaced by T . Then, T = r (S).

In analogy to Proposition 23, we have:

Proposition 86. Let P be a finite poset. Then, classical rowmotion r is invertible. Its
inverse r−1 is tvm ◦ tvm−1 ◦ . . . ◦ tv1 : J (P ) → J (P ), where (v1, v2, . . . , vm) is a linear
extension of P .

We can study graded posets again. In analogy to Corollary 29, Definition 30, Propo-
sition 31 and Proposition 32, we have:

Corollary 87. Let P be an n-graded poset. Fix i ∈ {1, 2, . . . , n}. Let (u1, u2, . . . , uk) be

any list of the elements of P̂i with every element of P̂i appearing exactly once in the list.
15 Then, the map ri := tu1 ◦ tu2 ◦ . . . ◦ tuk : J (P )→ J (P ) is well-defined and independent
of the choice of the list (u1, u2, . . . , uk).

Proposition 88. Let P be an n-graded poset. Then, r = r1 ◦ r2 ◦ . . . ◦ rn.

Proposition 89. Let P be an n-graded poset. Let i ∈ {1, 2, . . . , n}. Then, ri is an
involution on J (P ) (that is, r2i = id).

A parody of w-tuples can also be defined. The following is analogous to Definition 34:

Definition 90. For S ∈ J (P ) and i ∈ {1, 2, . . . , n}, set

wi (S) =

{
1, if Pi ⊆ S and Pi+1 ∩ S = ∅
0, otherwise

.

Here, Pj denotes the subset deg−1 ({j}) of P , with P0 = Pn+1 = ∅.

Analogues of Proposition 36 and Proposition 37 are easily found:

Proposition 91. For any S ∈ J (P ) and i ∈ {1, 2, . . . , n}, we have

(w0 (ri (S)) ,w1 (ri (S)) , . . . ,wn (ri (S)))

= (w0 (S) ,w1 (S) , . . . ,wi−2 (S) ,wi (S) ,wi−1 (S) ,wi+1 (S) ,wi+2 (S) , . . . ,wn (S)) .

15Note that P̂i is simply {v ∈ P | deg v = i}, because i equals neither 0 nor n+ 1. We are using the

notation P̂i despite not working with P̂ merely to stress some analogies.
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Proposition 92. For any S ∈ J (P ), we have

(w0 (r (S)) ,w1 (r (S)) , . . . ,wn (r (S))) = (wn (S) ,w0 (S) ,w1 (S) , . . . ,wn−1 (S)) .

However, the (n+ 1)-tuple (w0 (S) ,w1 (S) , . . . ,wn (S)) obtained from an order ideal
S is not particularly informative. In fact, it is (0, 0, . . . , 0) for “most” order ideals; here
is what this means precisely:

Definition 93. An order ideal of P is said to be level if and only if it has the form
P1 ∪ P2 ∪ . . . ∪ Pi for some i ∈ {0, 1, . . . , n}.

Easy properties of level order ideals are:

Proposition 94. Let P be an n-graded poset.
(a) There exist precisely n+ 1 level order ideals of P , and those form an orbit under

classical rowmotion r. Namely, one has

r (P1 ∪ P2 ∪ . . . ∪ Pi) =

{
P1 ∪ P2 ∪ . . . ∪ Pi+1, if i < n;
∅, if i = n

.

(b) If S ∈ J (P ), then (w0 (S) ,w1 (S) , . . . ,wn (S)) = (0, 0, . . . , 0) unless S is level.

Now, we can define a (toylike, but rather useful) notion of homogeneous equivalence,
in somewhat questionable analogy with Definition 45.

Definition 95. Two order ideals S and T of P are said to be homogeneously equivalent if
and only if either both S and T are level or we have S = T . Clearly, being homogeneously
equivalent is an equivalence relation. Let J (P ) denote the set of equivalence classes of
elements of J (P ) modulo this relation. Let π denote the canonical projection J (P ) →
J (P ). (We distinguish this map π from the map π defined in Definition 45 by the fact
that they act on different objects.)

The following analogue of Corollary 50 is almost trivial:

Corollary 96. If S and T are two homogeneously equivalent order ideals of P , then r (S)
is homogeneously equivalent to r (T ).

(An analogue of Corollary 49 exists as well.) We also have the following analogue of
Proposition 54:

Proposition 97. Let S and T be two order ideals of P such that π (S) = π (T ) and
(w0 (S) ,w1 (S) , . . . ,wn (S)) = (w0 (T ) ,w1 (T ) , . . . ,wn (T )). Then, S = T .

We can furthermore state analogues of Definitions 52 and 53:
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Definition 98. Fix i ∈ {1, 2, . . . , n}. The map ri : J (P ) → J (P ) descends (through
the projection π : J (P ) → J (P )) to a map J (P ) → J (P ). We denote this map
J (P )→ J (P ) by ri. Thus, the diagram

J (P )
ri //

π
��

J (P )

π
��

J (P )
ri

// J (P )

is commutative.

Definition 99. Define the map r : J (P )→ J (P ) by

r = r1 ◦ r2 ◦ . . . ◦ rn.

Then, the following diagram commutes:

J (P ) r //

π
��

J (P )

π
��

J (P )
r

// J (P ).

(20)

It might seem that the map r is not worth considering, since its cycle structure differs
from the cycle structure of r only in the collapsing of an (n+ 1)-cycle (the one formed by
all level order ideals) to a point. However, triviality in combinatorics does not preclude
usefulness, and we will employ the “projective” version r of classical rowmotion as a
stirrup in determining the order of classical rowmotion r on skeletal posets.

We have the following simple relation between the orders of r and r:

Proposition 100. Let P be an n-graded poset. Then, ord r = lcm (n+ 1, ord r).

Proof of Proposition 100. We know that r is an invertible map J (P ) → J (P ), thus a
permutation of the finite set J (P ). Hence, ord r is the lcm of the lengths of the cycles
of this permutation r. Similarly, ord r is the lcm of the lengths of the cycles of the
permutation r of the finite set J (P ). Therefore, in order to prove Proposition 100, it is
enough to show that there exists a 1-to-1 correspondence between the cycles of r and the
cycles of r which preserves the length of a cycle except for one particular length-(n+ 1)-
cycle of r which it maps to a 1-cycle of r.

Such a correspondence is easy to find: The set J (P ) is the quotient of J (P ) modulo
homogeneous equivalence. But homogeneous equivalence merely identifies the n+ 1 level
order ideals (which form a cycle under r), while all other elements of J (P ) are pairwise
non-equivalent. Thus, the cycles of r are in 1-to-1 correspondence with the cycles of r,
and corresponding cycles have equal lengths except for the length-(n+ 1) cycle formed by
the n + 1 level order ideals in J (P ) and its corresponding length-1 cycle in J (P ). This
is the correspondence we were looking for.
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Our goal is to make a statement about the order of classical rowmotion on skeletal
posets. Of course, the finiteness of these orders is obvious in this case, because J (P ) is a
finite set. However, we can make stronger claims:

Proposition 101. For any skeletal poset P , we have ord (RP ) = ord (rP ) and ord
(
RP

)
=

ord (rP ).

Proposition 101 yields (in particular) that the order of classical rowmotion coincides
with the order of birational rowmotion (whatever the base field) for skeletal posets. This
was conjectured by James Propp (private communication) for the case of P a tree. We are
going to prove Proposition 101 by exhibiting further analogies between classical and bira-
tional rowmotion. First of all, the following proposition is just as trivial as its birational
counterpart (Proposition 72):

Proposition 102. Fix n ∈ N, and let P and Q be two n-graded posets. Then, ord (rPQ) =
lcm (ord (rP ) , ord (rQ)).

We can show a simple counterpart of this proposition for ord (rPQ) (but still with
ord (rP ) and ord (rQ) on the right hand side!):

Proposition 103. Fix n ∈ N, and let P and Q be two n-graded posets. Then, ord (rPQ) =
lcm (ord (rP ) , ord (rQ)).

Again, the divisibility of the right hand side by the left one is the most useful statement,
and it follows trivially from the results before. The opposite divisibility can be obtained
by studying the orbit of the order ideal P of PQ (which is not level and thus does not
collapse under π). See [GrRoArX, §10] for details.

More interesting is the analogue of Proposition 74, whose proof is also analogous,
though easier (full details in [GrRoArX]).

Proposition 104. Let n ∈ N. Let P be an n-graded poset.
(a) We have ord (rB1P ) = ord (rP ).
(b) For every integer k > 1, we have ord (rBkP ) = lcm (2, ord (rP )).

We can also formulate an analogue of Proposition 75:

Proposition 105. Let P be an n-graded poset.
(a) We have ord

(
rB′1P

)
= ord (rP ).

(b) For every integer k > 1, we have ord
(
rB′kP

)
= lcm (2, ord (rP )).

The proof of this is fairly similar to that of Proposition 104.

We can now prove Proposition 101:

Proof of Proposition 101. In our proof of Proposition 71, we gave an algorithm for induc-
tively computing ord (RT ) and ord

(
RT

)
for a skeletal poset T . Using Propositions 102–

105 instead of Propositions 72–75, we obtain the same algorithm for inductively com-
puting ord (rT ) and ord (rT ) for a skeletal poset T . Therefore, ord (RP ) = ord (rP ) and
ord
(
RP

)
= ord (rP ).
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Proposition 101 does not generalize to arbitrary graded posets. Counterexamples to
such a generalization can be found in [GrRo14, §12].

Finally, in analogy to Corollary 76, we can now show:

Corollary 106. Let P be an n-graded poset that is also a rooted forest (made into a poset
by having every node smaller than its children).

(a) Then, ord (rP ) | lcm (1, 2, . . . , n+ 1).
(b) Moreover, if P is a tree, then ord (rP ) | lcm (1, 2, . . . , n).

Corollary 106 is also valid if we replace “every node smaller than its children” by
“every node larger than its children”, and the proof is exactly analogous.

Let us notice that the algorithm described in the proof of Proposition 101 can be
turned into an explicit formula (not just an upper bound as in Corollary 106), whose
inductive proof we leave to the reader:

Proposition 107. Let P be an n-graded poset that is also a rooted forest (made into a

poset by having every node smaller than its children). Notice that
∣∣∣P̂i∣∣∣ 6 ∣∣∣P̂i+1

∣∣∣ for every

i ∈ {0, 1, . . . , n− 1}. Then,

ord (rP ) = lcm
{
n− i | i ∈ {0, 1, . . . , n− 1} ;

∣∣∣P̂i∣∣∣ < ∣∣∣P̂i+1

∣∣∣} .
Of course, ord (rP ) can now be computed by ord (rP ) = lcm (n+ 1, ord (rP )).

The same property therefore holds for birational rowmotion RP and its homogeneous
version RP .
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Corrigendum – Added Apr 2, 2023

Bruce Sagan has kindly informed us of an error in Proposition 107: The n− i on the right
hand side has to be replaced by n + 1 − i. A proof of the corrected proposition can be
found in the updated arXiv postprint version (https://arxiv.org/abs/1402.6178v7).
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