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Abstract

Let G be a collineation group of a thick finite generalised hexagon or generalised
octagon Γ. If G acts primitively on the points of Γ, then a recent result of Bamberg
et al. shows that G must be an almost simple group of Lie type. We show that,
furthermore, the minimal normal subgroup S of G cannot be a Suzuki group or a
Ree group of type 2G2, and that if S is a Ree group of type 2F4, then Γ is (up to
point–line duality) the classical Ree–Tits generalised octagon.
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1 Introduction

A generalised d-gon is a point–line incidence geometry Γ whose bipartite incidence graph
has diameter d and girth 2d. If each point of Γ is incident with at least three lines, and each
line is incident with at least three points, then Γ is said to be thick. By the well-known
Feit–Higman Theorem [6], thick finite generalised d-gons exist only for d ∈ {2, 3, 4, 6, 8}.
In the present paper, we are concerned with the cases d = 6 (generalised hexagons), and
d = 8 (generalised octagons).

A collineation (or automorphism) of Γ is a permutation of the point set of Γ, together
with a permutation of the line set, such that the incidence relation is preserved (equiv-
alently, an automorphism of the incidence graph of Γ that preserves the parts). The
only known thick finite generalised hexagons and octagons arise as natural geometries
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for certain exceptional groups of Lie type: G2(q) and 3D4(q) are collineation groups of
generalised hexagons, and 2F4(q) acts on a generalised octagon. In each case, the ac-
tion of the collineation group is primitive on both the points and the lines of Γ, and
transitive on the flags of Γ, namely the incident point–line pairs. Each action is also
point-distance-transitive — that is, transitive on each set of ordered pairs of points at
a given distance from each other in the incidence graph — and line-distance-transitive.
Buekenhout and Van Maldeghem [4] showed that point-distance-transitivity implies point-
primitivity for a thick finite generalised hexagon or octagon, and proved that there exist
no point-distance-transitive examples other than the known classical examples. The ex-
istence of other point-primitive or flag-transitive (thick finite) generalised hexagons or
octagons remains an open question.

Schneider and Van Maldeghem [10] showed that a group G acting point-primitively,
line-primitively, and flag-transitively on a thick finite generalised hexagon or octagon must
be an almost simple group of Lie type. That is, S 6 G 6 Aut(S), with S a finite simple
group of Lie type. Bamberg et al. [1] then showed that point-primitivity alone is sufficient
to imply the same conclusion. We continue this work here, treating the families of Lie
type groups that are of fixed rank and fixed characteristic.

Theorem 1. Let G be a point-primitive collineation group of a thick finite generalised
hexagon or generalised octagon Γ, with S 6 G 6 Aut(S) for some nonabelian finite simple
group S. Then S is not a Suzuki group or a Ree group of type 2G2. Moreover, if S is
a Ree group of type 2F4, then, up to point–line duality, Γ is isomorphic to the classical
Ree–Tits generalised octagon.

The non-simple groups 2B2(2), 2G2 or 2F4(2) are not treated by the above theorem.
We refer the reader to [3], where generalised hexagons and generalised octagons admitting
almost simple groups with socle 2G2(2)′ and 2F4(2)′ were investigated.

Theorem 1 is proved in three sections: the Suzuki groups are considered in Section 3;
the small and large Ree groups are dealt with in Sections 4 and 5, respectively.

2 Preliminaries

Let us first collect some basic facts and definitions. If a finite generalised hexagon or
octagon Γ is thick, then there exist constants s, t > 2 such that each point (line) of Γ is
incident with exactly t + 1 lines (s + 1 points), and (s, t) is called the order of Γ. If P
denotes the point set of Γ, then [11, p. 20]

|P| =

{
(s+ 1)(s2t2 + st+ 1) if Γ is a generalised hexagon,

(s+ 1)(st+ 1)(s2t2 + 1) if Γ is a generalised octagon.
(1)

Moreover, the integers st and 2st are squares in the respective cases where Γ is a gener-
alised hexagon or generalised octagon.

Lemma 2. Let P be the point set of a thick finite generalised hexagon or generalised
octagon Γ.
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(i) If 2a divides |P|, where a > 1, then |P| > 23a.

(ii) If Γ is a generalised hexagon and 3a divides |P|, where a > 1, then |P| > 33a−4.

(iii) If Γ is a generalised octagon and 2a3b divides |P|, where a > 0 and b > 1, then
|P| > 2a32b.

Proof. Let (s, t) be the order of Γ.
(i) First suppose that Γ is a generalised hexagon. Since s2t2 + st + 1 is odd, 2a

must divide s + 1. In particular, s + 1 > 2a, and hence s > 2a−1. Therefore, |P| >
(s+1)s2t2 > 2a(2a−1)222 = 23a. Now let Γ be a generalised octagon. Since 2st is a square,
st must be even, so (st+ 1)(s2t2 + 1) is odd, and hence 2a must divide s+ 1. Therefore,
|P| > (s+ 1)s3t3 > 2a(2a−1)323 = 24a > 23a.

(ii) Since s2t2+st+1 is not divisible by 9, s+1 must be divisible by 3a−1. In particular,
s+ 1 > 3a−1, and hence s > 3a−2. Therefore, |P| > (s+ 1)s2t2 > 3a−1(3a−2)222 > 33a−4.

(iii) Since 2st is a square, st is even, so s2t2 + 1 is divisible by neither 2 nor 3. Hence,
2a3b divides (s + 1)(st + 1). In particular, (s + 1)(st + 1) > 2a3b. Let us say that
s + 1 is divisible by 3c, and that st + 1 is divisible by 3d, where c + d = b. If c > 1,
then s > 3c−1/2; and if d > 1, then st > 3d−1/2. Also, t − 1 = (st + 1) − (s + 1)t
is divisible by 3min{c,d}, so t > 3min{c,d}. If c > d, then c > 1 and t > 3d, and hence
|P| > (s + 1)(st + 1)(st)2 > 2a3b(3c−1/23d)2 = 2a3b+2(c+d)−1 = 2a33b−1 > 2a32b. If d > c,
then d > (b+ 1)/2, so |P| > (s+ 1)(st+ 1)(st)2 > 2a3b(3d−1/2)2 > 2a3b(3b/2)2 = 2a32b.

Recall that a permutation group G 6 Sym(Ω) acts primitively on the set Ω if it acts
transitively and preserves no nontrivial partition of Ω, and that this is equivalent to the
stabiliser Gω of a point ω ∈ Ω being a maximal subgroup of G. A maximal subgroup
M of an almost simple group G with minimal normal subgroup S is said to be a novelty
maximal subgroup if S ∩M is not maximal in S. Our notation is mostly standard: we
write Dn for a dihedral group of order n; Cn denotes a cyclic group of order n; [n] denotes
an unspecified group of order n; and, for q a prime power, Eq denotes an elementary
abelian group of order q. For information about the Suzuki and Ree simple groups of Lie
type, we refer the reader to [13], and the other references mentioned below.

3 Proof of Theorem 1: S a Suzuki group

We now adopt the hypothesis of Theorem 1, assuming additionally that S is isomorphic
to Sz(q) = 2B2(q), where q = 2m with m odd and at least 3. (We exclude the case m = 1
because 2B2(2) is soluble.) Then

|S| = q2(q2 + 1)(q − 1) = q2(q +
√

2q + 1)(q −
√

2q + 1)(q − 1).

The outer automorphism group of S is cyclic of order m. If we let σ denote a generator of
this group, then we have G = S : 〈σj〉 for some divisor j of m. Let P be the point set of
Γ, and let x ∈ P . Observe first that the stabiliser Gx cannot contain S: if it did, then Gx

would have the form S : K for some maximal subgroup K of the cyclic group 〈σj〉, and
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hence |G : Gx| = |P| would be a prime, which is seen to be impossible upon inspection of
(1). Now, as explained in [2, Section 7.3], G has no novelty maximal subgroups. Therefore,
Sx = Gx ∩ S is a maximal subgroup of S, so S itself acts primitively on P , and hence
to prove the theorem we may assume that G = S. The maximal subgroups of S are [2,
Table 8.16], up to conjugacy,

(i) Eq.Eq.Cq−1,

(ii) D2(q−1),

(ii) Cq±√2q+1 : C4,

(iv) Sz(q0), where q = qr0 with r prime and q0 > 2.

3.1 Case (i)

Suppose that Sx ∼= Eq.Eq.Cq−1. Suzuki [12] showed that S is 2-transitive in this action.
Since S preserves the incidence relation on Γ, and therefore distance in the incidence graph
of Γ, we have that the diameter of the incidence graph is at most three, a contradiction.

3.2 Cases (ii)–(iv)

For the remaining cases, we apply Lemma 2(i). If Sx ∼= D2(q−1), then

|P| = |S : Sx| = 1
2
q2(q2 + 1) = 22m−1(22m + 1) < 24m,

contradicting Lemma 2(i) with a = 2m− 1, which says that |P| > 26m−3.
If Sx ∼= Cq±√2q+1 : C4, then

|P| = |S : Sx| = 1
4
q2(q ∓

√
2q + 1)(q − 1) = 22m−2(2m ∓ 2(m+1)/2 + 1)(2m − 1) < 24m−1,

contradicting Lemma 2(i) with a = 2m− 2, which says that |P| > 26m−6.
Finally, suppose that Sx ∼= Sz(q0), where q = qr0 with r prime and q0 > 2. Writing

q0 = 2`, we have

|P| = |S : Sx| = 22`(r−1) (2
2`r + 1)(2`r − 1)

(22` + 1)(2` − 1)
< 25`(r−1)+2,

contradicting Lemma 2(i) with a = 2`(r − 1), which says that |P| > 26`(r−1).

4 Proof of Theorem 1: S a Ree group of type 2G2

We now adopt the hypothesis of Theorem 1 and assume that S ∼= 2G2(q), where q = 3m

with m odd and at least 3. (We exclude the case m = 1 because 2G2(3) is not simple.)
Then

|S| = q3(q3 + 1)(q − 1) = q3(q +
√

3q + 1)(q −
√

3q + 1)(q2 − 1).
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Let P be the point set of Γ, and let x ∈ P . The outer automorphism group of S is
cyclic (of order m), so, as in Section 3, we first deduce that Gx is a maximal subgroup
of G not containing S. The maximal subgroups of G were determined by Kleidman [8,
Theorem C]. In particular, G has no novelty maximal subgroups, so it suffices to prove
the theorem in the case where G = S. The maximal subgroups of S are, up to conjugacy,

(i) Eq.Eq.Eq.Cq−1,

(ii) C2 × PSL2(q),

(iii) (E4 ×D(q+1)/2) : C3,

(iv) Cq±√3q+1 : C6,

(v) 2G2(q0), where q = qr0 with r prime.

4.1 Case (i)

Suppose that Sx ∼= Eq.Eq.Eq.Cq−1. Then S acts 2-transitively on P [5, p. 251]. The same
argument as in Section 3.1 now provides a contradiction.

4.2 Γ a generalised hexagon: cases (ii)–(v)

For cases (ii)–(v) with Γ a generalised hexagon, we use Lemma 2(ii). First suppose that
Sx ∼= C2 × PSL2(q). The order of Sx is q(q2 − 1), so

|P| = |S : Sx| = q2(q2 − q + 1) = 32m(32m − 3m + 1) < 34m,

contradicting Lemma 2(ii) with a = 2m, which says that |P| > 36m−4.
If Sx ∼= (E4 ×D(q+1)/2) : C3, then

|P| = |S : Sx| = 1
6
q3(q − 1)(q2 − q + 1) = 1

2
33m−1(3m − 1)(32m − 3m + 1) < 36m−1,

contradicting Lemma 2(ii) with a = 3m− 1, which says that |P| > 39m−7.
If Sx ∼= Cq±√3q+1 : C6, then

|P| = |S : Sx| = q3(q2 − 1)(q ∓
√

3q + 1) = 33m(32m − 1)(3m ∓ 3(m+1)/2 + 1) < 36m+1,

contradicting Lemma 2(ii) with a = 3m, which says that |P| > 39m−4.
Finally, suppose that Sx ∼= 2G2(q0), where q = qr0 with r prime. Writing q0 = 3`, we

have

|P| = |S : Sx| = 33`(r−1) (3
3`r + 1)(3`r − 1)

(33` + 1)(3` − 1)
< 37`(r−1)+2.

If `(r − 1) > 3, then this contradicts Lemma 2(ii) with a = 3`(r − 1), which gives |P| >
39`(r−1)−4. Otherwise, (`, r) = (1, 3), and there is no valid solution (s, t) to equation (1).
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4.3 Γ a generalised octagon: cases (ii)–(iv)

Now suppose that Γ is a generalised octagon. We first use Lemma 2(iii) to rule out
cases (ii)–(iv) for Sx, computing |S : Sx| in each case as in Section 4.2. First suppose that
Sx ∼= C2 × PSL2(q). Then

|P| = |S : Sx| = 32m(32m − 3m + 1) < 34m,

contradicting Lemma 2(iii) with a = 0 and b = 2m, which says that |P| > 34m.
Next, suppose that Sx ∼= (E4 ×D(q+1)/2) : C3. Observe that 33m + 1 is divisible by 4,

because 3m is odd. Therefore,

|P| = |S : Sx| = 2 · 33m−133m + 1

4
< 2 · 36m−2,

while Lemma 2(iii) with a = 1 and b = 3m− 1 gives |P| > 2 · 36m−2, a contradiction.
Finally, suppose that Sx ∼= Cq±√3q+1 : C6. Observe that 32m − 1 is divisible by 23

because m is odd, and that 3m ∓ 3(m+1)/2 + 1 is even. Therefore,

|P| = |S : Sx| = 2433m (32m − 1)(3m ∓ 3(m+1)/2 + 1)

24

6 2433m (32m − 1)(3m + 3(m+1)/2 + 1)

24
< 2436m−2,

while Lemma 2(iii) with a = 4 and b = 3m gives |P| > 2436m, a contradiction.

4.4 Γ a generalised octagon: case (v)

Finally, we consider case (v) with Γ a generalised octagon. The approach is similar to
that used for cases (ii)–(iv), but requires a little more care.

Suppose that Sx ∼= 2G2(q0), where q = qr0 with r prime. Writing q0 = 3`, we have

|P| = 33`(r−1) (3
3`r + 1)(3`r − 1)

(33` + 1)(3` − 1)
< 37`(r−1)+ε, where ε :=

log
(

34

(33−1)(3−1)

)
log(3)

≈ 0.336. (2)

To verify the inequality in (2), one checks that (33` + 1)(3` − 1) > 34`−ε, because ` > 1,
and that (33`r + 1)(3`r − 1) < 34`r. Let us re-write this inequality as

|P| < 37b/3+ε, where b := 3`(r − 1).

Note also that b > 6, because r > 3. For a contradiction, we now show that |P| > 37b/3+ε.
By (2), 3b is the highest power of 3 dividing |P|. Since 2st is a square, st is even, so
s2t2 + 1 is not divisible by 3. Hence, by (1), 3b divides (s+ 1)(st+ 1). As in the proof of
Lemma 2(iii), let us say that s+1 is divisible by 3c, and that st+1 is divisible by 3d, where
c+ d = b. Recall also (from that proof) that t > 3min{c,d}. To show that |P| > 37b/3+ε, we
consider four cases.
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First suppose that c > d. Then t > 3d, and c > 1 so s > 3c − 1 > 3c−1/2. Hence,
|P| > (s + 1)(st + 1)(st)2 > 3b(3c−1/23d)2 = 3b+2(c+d)−1 = 33b−1 > 37b/3+1, with the final
inequality holding because b > 6 > 3. Next, suppose that d/2 + 1/2 6 c < d. Then
6 6 b = c+d 6 3c− 1. In particular, c > (b+ 1)/3; and c > 3 so s > 3c− 1 > 3c−δ, where
δ := 3 − log(33 − 1)/ log(3). Moreover, t > 3c, and hence |P| > 3b(st)2 > 3b(3c−δ3c)2 =
3b+4c−2δ > 37b/3+(4/3−2δ). It follows that |P| > 37b/3+ε, because 1.26 ≈ 4/3−2δ > ε ≈ 0.336.
Now suppose that c 6 d/2 − 1/2. Then 6 6 b = c + d 6 3d/2 − 1/2. In particular,
d > (2b + 1)/3; and d > 5 so st > 3d − 1 > 3d−δ

′
, where δ′ := 5 − log(35 − 1)/ log(3).

Therefore, |P| > 3b(st)2 > 3b+2d−2δ′ = 37b/3+2/3−2δ′ , and it follows that |P| > 37b/3+ε,
because 0.659 ≈ 2/3− 2δ′ > ε ≈ 0.336.

Finally, suppose that d/2 − 1/2 < c < d/2 + 1/2. Since c and d are integers, this
is equivalent to saying that c = d/2. Now, suppose first, towards a contradiction, that
(s+ 1)(st+ 1) is actually equal to 3b. Then s+ 1 = 3c, st+ 1 = 32c, and (2) implies that

(s2t2 + 1)(33` + 1)(3` − 1) = (33`r + 1)(3`r − 1). (3)

However, this is impossible, because the left- and right-hand sides of (3) are not congruent
modulo 3. Indeed, st = 32c− 1 ≡ 2 (mod 3), so s2t2 + 1 ≡ 4 + 1 ≡ 2 (mod 3); 33` + 1 ≡ 1
(mod 3); and 3` − 1 ≡ 2 (mod 3); and hence the left-hand side of (3) is congruent to
1 modulo 3. On the other hand, the right-hand side of (3) is congruent to 2 modulo 3.
Therefore, (s + 1)(st + 1) is strictly larger than 3b. Indeed, it is larger by a factor of
at least 5, because by (2) we see that |P|/3b is divisible by neither 2 nor 3. (To verify
that |P|/3b is odd, apply [7, Lemma 2.5].) Therefore, |P| > 5 · 3b(st)2 > 3b+1(st)2. Since
6 6 b = 3d/2, we have d > 4, and so st > 3d−1 > 3d−δ

′′
, where δ′′ := 4−log(34−1)/ log(3).

Hence, |P| > 3b+1+2d−2δ′′ = 37b/3+1−2δ′′ , and it follows that |P| > 37b/3+ε, because 0.977 ≈
1− 2δ′′ > ε ≈ 0.336.

5 Proof of Theorem 1: S a Ree group of type 2F4

In this final section, we adopt the hypothesis of Theorem 1 while assuming that S ∼=
2F4(q), where q = 2m with m odd and at least 3. (We exclude the case m = 1 because
2F4(2) is not simple.) Then

|S| = q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1).

Let P be the point set of Γ, and let x ∈ P . The outer automorphism group of S is cyclic,
so we again observe that Gx is a maximal subgroup of G not containing S. A result of
Malle [9] tells us that G has no novelty maximal subgroups, so it again suffices to prove
the theorem in the case where G = S. The maximal subgroups of S (listed also in [13,
Section 4.9.3]) are, up to conjugacy,

(i) P1 := [q10] : (Sz(q)× Cq−1),

(ii) P2 := [q11] : GL2(q),
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(iii) SU3(q) : C2,

(iv) PGU3(q) : C2,

(v) Sz(q) o C2,

(vi) Sp4(q) : C2,

(vii) 2F4(q0), where q = qr0 with r prime,

(viii) (Cq+1 × Cq+1) : GL2(3),

(ix) C(q±
√
2q+1)2 : [96],

(x) Cq2+q+1±
√
2q(q+1) : C12.

The groups P1 and P2 are maximal parabolic subgroups of S. The group P1 is a point
stabiliser in the action of S on the classical generalised octagon, whilst P2 is a point
stabiliser in the action of S on the dual [13, Section 4.9.4]. We must show that Sx cannot
be isomorphic to any of the groups in cases (iii)–(x), and, further, that if Sx is isomorphic
to either P1 or P2, then Γ is the classical generalised octagon or its dual.

5.1 Cases (i)–(ii) with Γ a generalised octagon

Suppose that Γ is a generalised octagon and that Sx is isomorphic to either P1 or P2. In
either action, the group S has rank five. That is, the point stabiliser Sx has five orbits
on the set P [13, Section 4.9.4]. For i ∈ {0, 2, 4, 6, 8}, denote by Γi(x) the set of points
at distance i from x in the incidence graph of Γ. Since each of these sets is nontrivial
and Sx-invariant, the pigeonhole principle shows that each is an orbit of Sx. Since S acts
transitively on P , we find that S acts distance-transitively on P . Now the main result of
[4] shows that Γ is isomorphic to the classical generalised octagon associated with S, or
its dual.

5.2 Case (i) with Γ a generalised hexagon

Suppose that Γ is a generalised hexagon, with Sx ∼= [q10] : (Sz(q)×Cq−1). Since |Sz(q)| =
q2(q2 + 1)(q − 1),

|P| = |S : Sx| = (q4 − q2 + 1)(q3 + 1)(q2 + 1)(q + 1).

Equivalently (subtracting 1 from both sides),

s3t2 + s2(t+ 1) + s(t+ 1) = q10 + q9 + q7 + q6 + q4 + q3 + q. (4)

Now, S acts primitively and distance-transitively on the points of a generalised octagon
of order (q, q2), with point stabiliser [q10] : (Sz(q) × Cq−1) and nontrivial subdegrees [13,
Section 4.9.4]

n1 := q(q2 + 1), n2 := q4(q2 + 1), n3 := q7(q2 + 1), n4 := q10. (5)
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Recall the notation Γi(x) from Section 5.1. Then we have [11, p. 19]

|Γ2(x)| = s(t+ 1), |Γ4(x)| = s2t(t+ 1), |Γ6(x)| = s3t2, (6)

and Sx preserves the sets Γi(x). Hence, each Γi(x) is a union of Sx-orbits, and so for
i ∈ {2, 4, 6}, we have |Γi(x)| =

∑4
k=1 δi,knk, for some δi,k ∈ {0, 1} (with δi,kδj,k = 0 for

i 6= j). We show that this leads to a contradiction.
Claim 1: |Γ2(x)| = n1. The proof of the claim is by contradiction. If not, then

|Γ2(x)| > n2 = q4(q2 + 1). Since s, t > 2, and so in particular t > 2
3
(t+ 1), it follows that

|Γ4(x)| > 2
3
s2(t+ 1)2 = 2

3
|Γ2(x)|2 > 2

3
q8(q2 + 1)2,

|Γ6(x)| > 2s2t2 > 4
3
|Γ4(x)| > 8

9
q8(q2 + 1)2.

Since the left-hand side of (4) is |Γ2(x)|+ |Γ4(x)|+ |Γ6(x)|, this implies that

14
9
q8(q2 + 1)2 + q4(q2 + 1) 6 q10 + q9 + q7 + q6 + q4 + q3 + q,

which is certainly false for q > 8.
Claim 2: |Γ4(x)| = n2. The proof is again by contradiction. If not, then |Γ4(x)| >

n3 = q7(q2 + 1), because |Γ2(x)| = n1 = q(q2 + 1) by Claim 1. This implies the following
inequality, which is certainly false for q > 8:

q6 =
q7(q2 + 1)

q(q2 + 1)
6
|Γ4(x)|
|Γ2(x)|

=
s2t(t+ 1)

s(t+ 1)
= st < s(t+ 1) = q(q2 + 1).

By Claims 1 and 2, we must have |Γ6(x)| = n3 + n4 = q7(q3 + q2 + 1) > q8(q2 + 1),
and hence

s >
s3t2

s2t(t+ 1)
=
|Γ6(x)|
|Γ4(x)|

>
q8(q2 + 1)

q4(q2 + 1)
= q4.

This is impossible, because s(t + 1) = q(q2 + 1) by Claim 1 (and hence certainly s <
q(q2 + 1) < q4).

5.3 Case (ii) with Γ a generalised hexagon

Suppose that Γ is a generalised hexagon, with Sx ∼= [q11] : GL2(q). Since |GL2(q)| =
q(q2 − 1)(q − 1),

|P| = |S : Sx| = (q4 − q2 + 1)(q2 + 1)2(q3 + 1).

Equivalently (subtracting 1 from both sides),

s3t2 + s2(t+ 1) + s(t+ 1) = q11 + q9 + q8 + q6 + q5 + q3 + q2. (7)

Now, S acts primitively and distance-transitively with stabiliser [q11] : GL2(q) on the
points of a generalised octagon of order (q2, q), namely the point–line dual of the gener-
alised octagon from case (i). The nontrivial subdegrees are [13, Section 4.9.4]

n1 := q2(q + 1), n2 := q5(q + 1), n3 := q8(q + 1), n4 := q11. (8)
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For x ∈ P , we again have (6), and Sx must preserve the sets Γi(x), i ∈ {2, 4, 6}, so each
|Γi(x)| is equal to a sum of the subdegrees n1, . . . , n4, as in Section 5.2. We show that
this leads to a contradiction.

Claim 1: |Γ2(x)| = n1. The proof of the claim is by contradiction. If not, then
|Γ2(x)| > n2 = q5(q + 1). Since s, t > 2, and so in particular t > 2

3
(t+ 1), it follows that

|Γ4(x)| > 2
3
s2(t+ 1)2 = 2

3
|Γ2(x)|2 > 2

3
q10(q + 1)2,

|Γ6(x)| > 2s2t2 > 4
3
|Γ4(x)| > 8

9
q10(q + 1)2.

Since the left-hand side of (7) is |Γ2(x)| + |Γ4(x)| + |Γ6(x)|, this implies the following
inequality, which is false for q > 8:

14
9
q10(q + 1)2 + q5(q + 1) 6 q11 + q9 + q8 + q6 + q5 + q3 + q2.

Claim 2: |Γ4(x)| = n2. The proof is again by contradiction. If not, then |Γ4(x)| >
n3 = q8(q + 1), because |Γ2(x)| = n1 = q2(q + 1) by Claim 1. This implies the following
inequality, which is false for q > 8:

q6 =
q8(q + 1)

q2(q + 1)
6
|Γ4(x)|
|Γ2(x)|

=
s2t(t+ 1)

s(t+ 1)
= st < s(t+ 1) = q2(q + 1).

By Claims 1 and 2, we must have |Γ6(x)| = n3 + n4 = q8(q3 + q+ 1) > q9(q2 + 1), and
hence

s >
s3t2

s2t(t+ 1)
=
|Γ6(x)|
|Γ4(x)|

>
q9(q2 + 1)

q5(q + 1)
=
q4(q2 + 1)

q + 1
.

This, however, contradicts s(t+ 1) = q2(q2 + 1) (namely Claim 1).

5.4 Cases (iii)–(ix)

We now deal with cases (iii)–(ix), for which we use Lemma 2(i) to contradict the equality
|P| = |S : Sx|. First suppose that Sx is isomorphic to either SU3(q) : C2 or PGU3(q) : C2.
In either case, we have |Sx| = 2q3(q3 + 1)(q2 − 1), and hence

|P| = 1
2
q9(q6 + 1)(q2 + 1)(q − 1) = 29m−1(26m + 1)(22m + 1)(2m − 1) < 218m+1.

However, Lemma 2(i) with a = 9m− 1 gives |P| > 227m−3, which is a contradiction.
If Sx ∼= Sz(q) o C2, then |Sx| = 2q4(q2 + 1)2(q − 1)2, so

|P| = 1
2
q8(q4 − q2 + 1)(q3 + 1)(q + 1) = 28m−1(24m − 22m + 1)(23m + 1)(2m + 1) < 216m+1,

contradicting Lemma 2(i) with a = 8m− 1, which gives |P| > 224m−3.
If Sx ∼= Sp4(q) : C2, then |Sx| = 2q4(q4 − 1)(q2 − 1), so

|P| = 1
2
q8(q6 + 1)(q2 − q + 1) = 28m−1(26m + 1)(22m − 2m + 1) < 216m,

contradicting Lemma 2(i) with a = 8m− 1, which gives |P| > 224m−3.
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Now suppose that Sx ∼= 2F4(q0), where q = qr0 with r prime. Writing q0 = 2`, we have

|P| = 212`(r−1) (2
6r` + 1)(24r` − 1)(23r` + 1)(2r` − 1)

(26` + 1)(24` − 1)(23` + 1)(2` − 1)
< 226`(r−1)+4.

However, Lemma 2(i) with a = 12`(r − 1) gives |P| > 236`(r−1), a contradiction (because
` > 1).

Finally, suppose that Sx is as in one of the cases (viii)–(x). Then the highest power
of 2 dividing |Sx| is 25 (arising in case (ix)), so |P| = |S : Sx| is divisible by 212m−5,
and Lemma 2(i) therefore gives |P| > 236m−15. On the other hand, we certainly have
|P| < |S| < 230m, which is a contradiction (because 36m − 15 6 30m if and only if
m 6 5/2, but we have m > 3).
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