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Abstract

Centrosymmetric involutions in the symmetric group S2n are permutations π
such that π = π−1 and π(i) + π(2n + 1 − i) = 2n + 1 for all i, and they are in
bijection with involutions of the hyperoctahedral group. We describe the distribu-
tion of some natural descent statistics on 321-avoiding centrosymmetric involutions,
including the number of descents in the first half of the involution, and the sum of
the positions of these descents. Our results are based on two new bijections, one
between centrosymmetric involutions in S2n and subsets of {1, . . . , n}, and another
one showing that certain statistics on Young diagrams that fit inside a rectangle
are equidistributed. We also use the latter bijection to refine a known result stating
that the distribution of the major index on 321-avoiding involutions is given by the
q-analogue of the central binomial coefficients.

1 Introduction

The hyperoctahedral group Bn is isomorphic to a subgroup of the symmetric group
S2n, namely that of centrosymmetric permutations. We say that a permutation π ∈ Sm
is centrosymmetric if π(i) + π(m + 1 − i) = m + 1 for every i = 1, . . . ,m. There are
several ways to define a bijection between the set Bn and the set of centrosymmetric
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permutations in S2n. Such a bijection appears in [7], and we describe a similar one in
Section 5.

Aside from their connection with Bn, centrosymmetric permutations are interesting
in their own right. For instance, it is well known that a permutation is centrosymmetric
if and only if the two standard Young tableaux corresponding to π via the Robinson-
Schensted algorithm are fixed under the Schützenberger involution (see [13] and [9] for
details). In a different context, the permutation matrices corresponding to centrosymmet-
ric permutations are the extreme points of a convex subset of n2-dimensional Euclidean
space, which is characterized in [6] by a simple set of linear inequalities.

In recent years, the study of forbidden patterns has been extended to the hyperocta-
hedral group Bn, the natural B-analogue of the symmetric group. Elements of Bn are
sometimes called signed permutations. In [17], Stembridge used signed pattern avoidance
to give a characterization of the so-called fully commutative top elements of the hyperoc-
tahedral group, which are elements having an interesting algebraic property. The sets of
signed permutations avoiding signed patterns of length 2 were completely characterized
in [14] and [10], and the cardinalities of these sets were computed.

There is also some work in the literature on the distribution of permutation statistics
both over centrosymmetric permutations and the hyperoctahedral group, as well as over
subsets of these sets. For example, in [2] the authors determine the descent distribution
over the set of centrosymmetric involutions, while the same distribution over centrosym-
metric permutations that avoid a pattern of length 3 is given in [3]. More recently, Biagioli
et al. studied the distribution of the descent number and the major index both over the
hyperoctahedral group [5] and over the set of its fully commutative involutions [4].

Involutions in Sm that avoid the pattern 321 are particularly well behaved, and the
distribution of descents sets over them has interesting connections with the theory of
partitions, as shown in [1].

In this paper we focus on centrosymmetric 321-avoiding involutions, which we denote
by ICm(321), and we study the distribution of some descent statistics over them. Identi-
fying Bn with centrosymmetric permutations in S2n, the property of being an involution
is preserved. The condition of avoiding 321 can also be translated in terms of avoidance
of some signed patterns in Bn.

On one hand, we determine the descent polynomial on IC2n(321), showing that∑
π∈IC2n(321)

qdes(π) = (1 + q)n.

Recall that the major index is defined to be the sum of the descent positions of a per-
mutation. We observe that, if π ∈ ICm(321) has a descent at position i, then it has also a
descent at position m − i. Hence, the classical major index of π is simply a multiple of
its descent number. For this reason, in addition to whole number of descents we consider
two more statistics, which we denote des+ and maj+. They are defined as the number
of descents in positions 1, . . . , bm/2c and the sum of their positions, respectively. When
m is odd, these statistics reduce to known statistics on 321-avoiding involutions studied
in [1], so we will focus on the case that m = 2n.

An important ingredient in our study of these distributions is the surprising fact that
every involution π ∈ IC2n(321) is uniquely determined by its excedances in the first n
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positions, and the descent set of π can be easily read from these excedances. This will
allow us to obtain the following generating polynomials:∑
π∈IC2n(321)

qdes+(π) =
(1 +

√
q)n+1 + (1−√q)n+1

2
,

∑
π∈IC2n(321)

qmaj+(π) =
n∑
h=0

qn−h
(
n

h

)
q

,

where
(
n
h

)
q

is the q-binomial coefficient. We give both recursive and bijective proofs

of these results, exploiting the relationship between centrosymmetric involutions (more
precisely, the sets of their excedances) and Young diagrams that fit inside a rectangular
box.

Our results translate easily to 123-avoiding centrosymmetric involutions, since these
are in bijection with 321-avoiding ones via the complement operation.

One of the tools in our proofs is a bijection showing that certain statistics on Young
diagrams that fit inside a rectangle are equidistributed. In Section 6 we use this bijection
to generalize the main result from [1], which gives a bijection between 321-avoiding in-
volutions and partitions whose Young diagram fits into a square box, with the property
that the descent set of the involution is mapped to the so-called hook decomposition of
the partition. We show that by modifying the bijection and replacing square boxes by
rectangles, one can additionally keep track of the number of fixed points. In particular,
we refine a result from [1] stating that the distribution of the major index over the set of
321-avoiding involutions is given by the q-analogue of the central binomial coefficients.

2 Preliminaries

A permutation π ∈ Sm is called centrosymmetric if

π(i) + π(m+ 1− i) = m+ 1

for every 1 6 i 6 m. Equivalently, π is centrosymmetric if πr = πc, where r and c are
the usual reverse and complement operations, respectively. We denote by SCm the set of
centrosymmetric permutations in Sm, and by ICm the set of involutions in SCm.

We say that π ∈ Sm has a descent at position i, where 1 6 i < m, if π(i) > π(i+ 1).
The set of descent positions of π is denoted by Des(π).
Moreover, we denote by des(π) the cardinality of Des(π). The sum of the entries in
Des(π) is called the major index of π:

maj(π) =
∑

i∈Des(π)

i.

For centrosymmetric permutations, the major index can be easily expressed in terms of
the number of descents. Observe that for π ∈ SCm, we have that i ∈ Des(π) if and only if
m−i ∈ Des(π). This implies that maj(π) = m des(π)/2. Hence, studying the usual major
index statistic on centrosymmetric permutations is equivalent to studying the number of
descents.

Because of the above symmetry, it makes sense to restrict to the set of descents in
positions 1, . . . ,

⌊
m
2

⌋
which allow us to recover the whole set Des(π). Setting n =

⌊
m
2

⌋
,

we are interested in the statistics

Des+(π) = Des(π) ∩ [n], des+(π) = |Des+(π)|,
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where we use the notation [n] = {1, 2, . . . , n}. We then have

Des(π) = Des+(π) ∪ {m− i : i ∈ Des+(π)}. (1)

Note that this union is disjoint unless m is even and m/2 ∈ Des+(π). It is now natural
to define

maj+(π) =
∑

i∈Des+(π)

i.

We say that a permutation π ∈ Sm avoids the pattern τ ∈ Sk if π does not con-
tain a subsequence π(i1)π(i2) . . . π(ik) whose entries are in the same relative order as
τ(1)τ(2) . . . τ(k). Denote by ICm(321) the set of 321-avoiding centrosymmetric involutions
in Sm. The cardinality of this set was found by Egge [7], who showed that

|IC2n+1(321)| =
(
n

bn
2
c

)
(2)

and
|IC2n(321)| = 2n. (3)

The first main result of this paper gives the distribution of the statistics des+ and
maj+ on ICm(321). When m is odd, we will see that the distribution of these statistics on
321-avoiding centrosymmetric involutions can be easily obtained from the results in [1]
about descents on 321-avoiding involutions. For this reason, in this paper we will focus
on the case when m is even.

We point out that, in the even case, the proof given in [7] of Equation (3) is not
bijective. In Theorem 5 we will provide a bijective proof of this simple formula. This
bijection will be a key ingredient in the proofs of the formulas giving the distribution of
des+ and maj+ on IC2n(321), which appear in Theorems 1 and 2.

Another definition that will be useful is the notion of excedance of a permutation π,
which is a position i such that π(i) > i. We denote by Exc(π) the set of excedances of π.
We use the notation {a1, a2, . . . , ar}< to indicate that a1 < a2 < · · · < ar.

3 The statistics des+ and maj+ on IC
m(321)

In this section we give formulas for the generating polynomials for the statistics des+,
maj+ and des on ICm(321). The next three theorems summarize the results in the case
that m is even.

Theorem 1. ∑
π∈IC2n(321)

qdes+(π) =
∑
k>0

(
n+ 1

2k

)
qk =

(1 +
√
q)n+1 + (1−√q)n+1

2
.

Theorem 2.∑
π∈IC2n(321)

qmaj+(π) =
n∑
h=0

(
n

h

)
q

+ (qn − 1)
n−1∑
h=0

(
n− 1

h

)
q

=
n∑
h=0

qn−h
(
n

h

)
q

,

where
(
n
h

)
q

is the q-binomial coefficient.
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Theorem 3. ∑
π∈IC2n(321)

qdes(π) = (1 + q)n.

We will give two different proofs of Theorems 1 and 2: recursive ones in Section 3.2
and bijective ones in Section 4. An important ingredient in all of them is the bijection
that we describe in Section 3.1 between IC2n(321) and the family of all subsets of [n], which
we denote by 2[n]. The same bijection will be used in Section 3.3 to prove Theorem 3.

When m is odd, it is easy to check that every permutation π ∈ IC2n+1(321) can be
decomposed uniquely as π = αn+1α′, where α is an arbitrary element of In(321) and α′

is the sequence 2n+ 2− α(n), 2n+ 2− α(n− 1), . . . , 2n+ 2− α(1). Thus, IC2n+1(321) is
in bijection with In(321), and Equation (2) follows from [15]. Additionally, since

des+(π) = des(α), maj+(π) = maj(α), and des(π) = 2 des(α),

the formulas for the generating polynomials for des+, maj+ and des on IC2n+1(321) follow
from the results in [1] about descents on 321-avoiding involutions:

Proposition 4.

∑
π∈IC2n+1(321)

qdes+(π) =

bn2 c∑
k=0

(⌈
n
2

⌉
k

)(⌊
n
2

⌋
k

)
qk,

∑
π∈IC2n+1(321)

qmaj+(π) =

(
n⌊
n
2

⌋)
q

,

∑
π∈IC2n+1(321)

qdes(π) =

bn2 c∑
k=0

(⌈
n
2

⌉
k

)(⌊
n
2

⌋
k

)
q2k.

3.1 A bijection IC
2n(321) → 2[n]

Elements of IC2n can be interpreted as symmetric matchings on 2n points. We draw
matchings by placing 2n points on a horizontal line, labeled from 1 to 2n from left to right,
where some pairs of points are matched with an arc. Given π ∈ IC2n, the corresponding
matching has an arc between i and j whenever π(i) = j (equivalently, π(j) = i, since π is
an involution) and i 6= j. The centrosymmetric condition is equivalent to the matching
being symmetric, that is, invariant under relabeling the points from right to left instead.

Under this interpretation, an involution avoids 321 if and only if the corresponding
matching is non-nesting, meaning that it does not contain two arcs (i, l) and (j, k) with
i < j < k < l, or an arc (i, k) and a singleton (i.e., a fixed point of the permutation) j
with i < j < k. Thus, elements of IC2n(321) are in bijection with symmetric non-nesting
matchings of 2n points.

For π ∈ IC2n(321), define
Eπ = Exc(π) ∩ [n], (4)

that is, the set of excedances in the first n positions. If M is the matching corresponding
to π, let EM denote the set of values in [n] that are matched with a larger value. Clearly,
Eπ = EM .
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Theorem 5. The map
IC2n(321) → 2[n]

π 7→ Eπ

is a bijection. In particular, elements of IC2n(321) are uniquely determined by their ex-
cedances in [n].

Proof. By the above interpretation of IC2n(321) as symmetric non-nesting matchings of
2n points, it will be enough to show that the map M 7→ EM is a bijection between such
matchings and 2[n]. We do so by describing its inverse.

Given E ⊆ [n], construct a matching ME as follows. Read the elements of E in
increasing order, and for each i ∈ E that has not been matched, draw an arc from i to
the smallest j /∈ E such that j > i and j has not been matched yet, and symmetrically
draw an arc (2n+ 1− j, 2n+ 1− i), unless this is the same arc (i, j) that was just added.

For example for n = 11 and E = {1, 4, 5, 7, 8, 10} ⊆ [11], we get the matching

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Next we show that, for any E ⊆ [n], ME is a well-defined symmetric non-nesting
matching.

The symmetry is clear because, at any stage of the process, when adding the arcs
(i, j) and (2n+ 1− j, 2n+ 1− i) (if different), the matching drawn so far is symmetric.

To see that it is well defined, we have to check that for every i ∈ E that has not
been matched, there is always an available vertex j that it can be matched with. This is
because since i has not been matched, by symmetry neither has 2n+ 1− i, and this value
is not in E because it is greater than n, so there is always at least one available vertex.
This also proves that the arcs (i, j) and (2n+ 1− j, 2n+ 1− i) added at each step satisfy
i+ j 6 2n+ 1, and thus (2n+ 1− j) + (2n+ 1− i) > 2n+ 1.

To show that ME is non-nesting, suppose first for contradiction that there is a triple
i < j < k where (i, k) is an arc and j is a singleton. By symmetry, we can assume without
loss of generality that i+ k 6 2n+ 1, so the arc (i, k) was added as the first of a pair of
symmetric arcs. But then, our construction would have matched i with j, since j /∈ E
(because it is a singleton) and i < j < k.

Similarly, suppose for contradiction that there are two nested arcs (i, l) and (j, k)
with i < j < k < l. Again, by symmetry, we can assume without loss of generality
that i + l 6 2n + 1, by flipping both arcs if necessary. In fact, we can also assume that
j + k 6 2n + 1, because otherwise, flipping the arc (j, k) we would still get two nested
arcs. But then, our construction would have matched i with k, since k /∈ E (because it
is matched with a smaller element) and the arc (j, k) had not been added at that point
of the process.

Finally, we show that the map M 7→ EM is a bijection between the set of symmetric
non-nesting matchings of 2n points and 2[n], whose inverse is the map E 7→ ME. To see
that it is surjective, we show that for every E ⊆ [n] we have EME

= E. In other words,
we show that in ME, the points in [n] matched with larger points are precisely those in E.
Clearly, the points in E are always matched with larger points, since in our construction
neither of the points j and 2n+1− i in the pair of arcs (i, j) and (2n+1− j, 2n+1− i) is
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in E. So it remains to show that if 2n+ 1− j 6 n, then 2n+ 1− j ∈ E. This is because
if 2n + 1 − j /∈ E, then, since i < 2n + 1 − j < j, the point i would have been matched
with 2n+ 1− j rather than with j.

To see that the map M 7→ EM is injective, we will show that for every E ⊆ [n], the
only symmetric non-nesting matching M satisfying EM = E is the matching M = ME.
We will argue that at each step of the above construction that scans E in increasing
order, the only way to match i ∈ E and preserve the non-nesting property is by matching
it with the smallest j /∈ E such that j > i and j has not yet been matched. Suppose that
this is not true, and consider the first time that we have some other choice for matching
i ∈ E. It is clear that i has to be matched with a vertex j′ /∈ E such that j′ > i
and j′ has not yet been matched, so suppose we match i with a vertex j′ satisfying this
property but not being the smallest. Then, we claim that the arc (i, j′) would be creating
a nesting, which is a contradiction. Indeed, if j does not become matched later on, then
the singleton j with the arc (i, j′) would form a nesting. If j becomes matched with a
point r, we know that r > i, since all the points in E to the left of i have been matched
before i. If i < r < j′, then the arcs (i, j′) and (r, j) (or (j, r)) would form a nesting. If
r > j′, then the conditions j /∈ E and EM = E imply that j > n, and so the arcs (i, j′)
and (2n+ 1− r, 2n+ 1− j) (which is forced by symmetry) would form an nesting, since
i < 2n+ 1− r < 2n+ 1− j < n < j′, with the first inequality implied again by the fact
that the points in E to the left of i have been matched before i. Clearly, once we add
the arc (i, j), the arc (2n+ 1− j, 2n+ 1− i) is forced by symmetry, so all the arcs in the
construction of ME are forced.

3.2 Recursive proofs of Theorems 1 and 2

The set Des+(π) can be easily recovered from Eπ as follows.

Lemma 6. For π ∈ IC2n(321),

Des+(π) = {i ∈ [n]|i ∈ Eπ ∧ i+ 1 /∈ Eπ}.

Proof. Let i ∈ [n− 1], and consider four possible cases:

• If i ∈ Eπ and i+ 1 /∈ Eπ, then π(i) > i and π(i+ 1) 6 i+ 1, so i ∈ Des+(π).

• If i /∈ Eπ and i+ 1 ∈ Eπ, then π(i) 6 i and π(i+ 1) > i+ 1, so i /∈ Des+(π).

• If {i, i + 1} ⊆ Eπ, then π(i) > i and π(i + 1) > i + 1. If π(i) > π(i + 1), then π
would have the 321 pattern π(i) π(i+1) i+1. Hence, i /∈ Des+(π).

• If neither i nor i + 1 are excedance positions, then π(i) 6 i and π(i + 1) 6 i + 1.
If π(i) > π(i + 1), then π would have the 321 pattern i+1 π(i) π(i+1). Hence,
i /∈ Des+(π).

Consider now the case i = n, and note that n+ 1 /∈ Eπ. Since π is centrosymmetric,
π(n) + π(n+ 1) = 2n+ 1. Thus, the condition for n ∈ Des+(π), that is, π(n) > π(n+ 1),
is equivalent to π(n) > n, which is the condition for n ∈ Eπ.
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Lemma 6 suggests the following extension of the notion of descent set, descent number,
and major index to subsets of [n]:

Des(E) = {i|i ∈ E ∧ i+ 1 /∈ E},
des(E) = |Des(E)|,

maj(E) =
∑

i∈Des(E)

i.

With this notation, Des+(π) = Des(Eπ), and so des+(π) = des(Eπ) and maj+(π) =
maj(Eπ) for all π ∈ IC2n(321).

Define the the polynomials

dn(q) =
∑

π∈IC2n(321)

qdes+(π), pn(q) =
∑

π∈IC2n(321)

qmaj+(π).

To prove Theorems 1 and 2, we will show that dn(q) and pn(q) satisfy the same recurrences
as the respective expressions given in these two theorems.

Lemma 7. For n > 2, the polynomials dn(q) and pn(q) satisfy the following recurrences:

dn(q) = 2dn−1(q) + (q − 1)dn−2(q),

pn(q) = (1 + q)pn−1(q) + (qn − q)pn−2(q).

Proof. Theorem 5 and Lemma 6 allow us to rewrite the two polynomials dn(q) and pn(q)
as follows:

dn(q) =
∑
E⊆[n]

qdes(E), pn(q) =
∑
E⊆[n]

qmaj(E).

Consider now a subset E ⊆ [n]. There are three possible cases:

• If n /∈ E, then E is a subset of [n− 1] with the same descent set and major index.

• If n ∈ E and n− 1 /∈ E, then removing n from E yields a subset E ′ of [n− 2] with
Des(E ′) = Des(E) \ {n} and maj(E ′) = maj(E)− n.

• If n, n−1 ∈ E, then removing n from E yields a subset E ′ ⊆ [n−1] with Des(E ′) =
Des(E) \ {n} ∪ {n − 1} and maj(E ′) = maj(E) − 1. Since E ′ contains n − 1, the
subsets E ′ obtained in this way are those subsets of [n− 1] which are not a subsets
of [n− 2].

These considerations give

dn(q) = dn−1(q) + qdn−2(q) + (dn−1(q)− dn−2(q)),

pn(q) = pn−1(q) + qnpn−2(q) + q(pn−1(q)− pn−2(q)),

which are equivalent to the above recurrences.
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Theorem 1 follows now from Lemma 7. Indeed, a routine computation shows that the
polynomial ∑

k>0

(
n+ 1

2k

)
qk

satisfies the same recurrence as dn(q) with the same initial conditions.
In order to prove Theorem 2, we need a few more definitions. Let Ra,b denote an a× b

rectangle, and let Ya,b denote the set of Young diagrams that fit inside of Ra,b (where the
convention is that diagrams are placed touching the upper and left sides of the rectangle).
By considering the southeast boundary of the Young diagram, we identify Ya,b with the
set of paths with steps N and E from (0, 0) to (b, a). It is well known that |Ya,b| =

(
a+b
a

)
.

For every positive integer n, we can represent the subsets of [n] as lattice paths with
unit steps N and E starting at the origin, where the ith step is N if and only if i belongs
to the subset. Let An denote the set of all lattice paths with n steps N and E starting
at the origin. Note that |An| = 2n and

An =
⋃

a+b=n

Ya,b.

Consider now the set YEa,b of paths with steps N and E from (0, 0) to (b+1, a) starting
with an E step. The set YEa,b is obviously in bijection with Ya,b. Define

AEn =
⋃

a+b=n

YEa,b

and
rn(q) =

∑
P∈AE

n

qarea(P ), (5)

where area(P ) is the area of the Young diagram corresponding to P . Then,

rn(q) =
n∑
a=0

∑
P∈YE

a,n−a

qarea(P ) =
n∑
a=0

qn−a
∑

P̄∈Ya,n−a

qarea(P̄ ),

where P̄ is the path obtained from P by deleting the first step. This last espression equals

n∑
a=0

qn−a
(
n

a

)
q

,

using the well-known fact [16] that the coefficient of qr in the q-binomial coefficient
(
n
a

)
q

equals the number of partitions of r whose Young diagram is in Ya,n−a.
To prove Theorem 2, it is now enough to show is that the polynomials rn(q) satisfy

the same recurrence as the one given in Lemma 7 for pn(q). It is clear that their initial
values coincide.

Proposition 8. For n > 2, the polynomials rn(q) defined in Equation (5) satisfy the
recurrence

rn(q) = (1 + q)rn−1(q) + (qn − q)rn−2(q).
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Proof. Consider a path P ∈ AEn . Once again, there are three possible cases, as illustrated
in Figure 1:

• If P ends with an E step, remove it, getting an element of AEn−1 with the same
area.

• If P ends with an N step and begins with EE, remove the first and last step from
P , getting an element of AEn−2 whose area has decreased by n.

• If P ends with an N step and begins with EN , remove the second step in P , getting
an element of AEn−1 whose area has decreased by 1. The resulting path is not an
arbitrary element of AEn−1, but one ending with an N step. Such paths contribute
rn−1(q)− rn−2(q) to the generating polynomial, since paths in AEn−1 ending with an
E step are equivalent to paths in AEn−2.

These considerations give

rn(q) = rn−1(q) + qnrn−2(q) + q(rn−1(q)− rn−2(q)),

which is equivalent to the stated recurrence.

Figure 1: The three cases in the proof of Proposition 8.

3.3 Proof of Theorem 3

To obtain the generating polynomial for the statistic des on IC2n(321), we will combine
Lemma 6 with the following simple fact.
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Lemma 9. Let π ∈ IC2n(321) and recall the definition of Eπ from Equation (4). Then,

des(π) =

{
2 des+(π)− 1 = 2 des(Eπ)− 1 if n ∈ Eπ,

2 des+(π) = 2 des(Eπ) otherwise.

.

Proof. By Equation (1), Des(π) = Des+(π) ∪ {2n − i : i ∈ Des+(π)} and this union is
disjoint unless n ∈ Des+(π), or equivalently n ∈ Eπ. The equality des+(π) = des(Eπ)
follows from Lemma 6.

Proof of Theorem 3. By Theorem 5, involutions in IC2n(321) are in bijection with subsets
of [n]. Let π ∈ IC2n−2(321) and let E = Eπ ⊆ [n − 1] be the corresponding subset. We
build two involutions in IC2n(321) as follows: let π̃ be the involution corresponding to E,
seen as a subset of [n]; and let π̂ be the involution corresponding to the set E ∪ {n}.
Setting t = des(E) and applying Lemma 9, we have

• If n− 1 ∈ E, then

des(π) = 2t− 1, des(π̃) = 2t, des(π̂) = 2t− 1.

• If n− 1 /∈ E, then

des(π) = 2t, des(π̃) = 2t, des(π̂) = 2t+ 1.

This implies that ∑
π∈IC2n(321)

qdes(π) = (1 + q)
∑

π∈IC2n−2(321)

qdes(π).

Since
∑

π∈IC2 (321) q
des(π) = 1 + q, we get formula by induction.

4 Bijective proofs of Theorems 1 and 2

In this section we show that Theorems 1 and 2 can be also proved bijectively. These
bijective proofs are based upon a more careful analysis of the connections between lattice
paths and integer partitions.

Define a peak of a path in An to be an occurrence of NE, or equivalently the vertex
in the middle of such an occurrence. If we label the vertices of a path P ∈ An from 0 to
n starting at the origin, the peak set of P , denoted Peak(P ), is the set of labels of the
vertices that are peaks in P . Let Peak∗(P ) = Peak(PE), where PE is the path obtained
from P by appending a step E at the end. Note that

Peak∗(P ) =

{
Peak(P ) ∪ {n} if P ends with an N step,

Peak(P ) otherwise.

Given a P ∈ An, and thinking of it as a the south east edge of a Young diagram
λ, we define its hook decomposition HD(P ) = {i1, i2, . . . , ik} as follows. The number of
entries k is the length of the side of the Durfee square of λ, that is, the largest value such
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that λk > k. The largest entry ik is the number of boxes in the largest hook of λ, which
consists of the first column and first row of its Young diagram. Now remove the largest
hook of λ and define ik−1 to be the number of boxes in the largest hook of the remaining
Young diagram. Similarly, the remaining entries ij are defined recursively by peeling off
hooks in the Young diagram.

Define

HD∗(P ) =

{
HD(P ) ∪ {n} if P begins with an N step,

HD(P ) otherwise.

Lemma 10. There is a bijection g : Ya,b → Ya,b such that

Peak(P ) = HD(g(P )) and Peak∗(P ) = HD∗(g(P )).

Proof. The map g that we describe here is a generalization of the bijection ψ−1 from [1,
Lemma 3.5] to arbitrary rectangles. Given P ∈ Ya,b, let (xj, yj), 1 6 j 6 k the coordinates
of its k peaks, where 0 6 x1 < · · · < xk 6 b− 1 and 1 6 y1 < · · · < yk 6 a. Then

g(P ) = RaRa−1 . . . R1S1S2 . . . Sb,

where Ryj = E for 1 6 j 6 k and Ri = N otherwise, and Sxj+1 = N for 1 6 j 6 k and
Si = E otherwise.

Clearly, g(P ) ∈ Ya,b because it has a− k+ k N steps and b− k+ k E steps. It is easy
to check from the construction that

HD(g(P )) = {x1 + y1, x2 + y2, . . . , xk + yk} = Peak(P ).

Also, the last step of P is an N if and only if the first step of g(P ) is an N , and so
HD∗(g(P )) = Peak∗(P ) as well.

To see that the map g is a bijection, note that for any pathQ = RaRa−1 . . . R1S1S2 . . . Sb ∈
Ya,b, the positions of the N and E steps can be used to determine the coordinates (xj, yj)
of the peaks of the path g−1(Q).

With some abuse of notation, we also denote by g the bijection from An =
⋃
a+b=n Ya,b

to itself.
By Theorem 5, IC2n(321) is in bijection with the family of all subsets of [n]. Let f be

the bijection between IC2n(321) and An given at the beginning of Section 3 together with
the interpretation of subsets of [n] as lattice paths described above. For π ∈ IC2n(321),
we have

Des+(π) = Peak∗(f(π)). (6)

In particular, des+(π) = |Peak∗(f(π))|, and maj+(π) =
∑

i∈Peak∗(f(π)) i.

Bijective proof of Theorem 1. By Equation (6),∑
π∈IC2n(321)

qdes+(π) =
∑
P∈An

q|Peak∗(P )|.

To find the coefficient of qk, it is enough to count the number of paths P ∈ An with
|Peak∗(P )| = k. These are precisely paths of the form

P = Ei1N j1NEEi2N j2NE . . .NEEikN jkNEik+1 ,

where i`, j` > 0 for all `, and
∑

` i` +
∑

` j` = n− 2k+ 1. Thus, the number of such paths
is the number of ways to put n− 2k + 1 balls into 2k + 1 bins, which is

(
n+1
2k

)
.
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Bijective proof of Theorem 2. Consider the composition

IC2n(321)
f−→ An

g−→ An.

For π ∈ IC2n(321), Equation (6) and Lemma 10 imply that

Des+(π) = Peak∗(f(π)) = HD∗(g(f(π)).

Note that for P ∈ An, we have
∑

i∈HD(P ) i = area(P ), the area of the Young diagram of
which P is the south east border. Thus, by the definition of HD∗,

∑
i∈HD∗(P )

i =

{
area(P ) + n if P begins with an N step,

area(P ) otherwise.
(7)

It follows that∑
π∈IC2n(321)

qmaj+(π) =
∑
P∈An

q
∑

i∈HD∗(P ) i =
∑
P∈An

qarea(P ) + (qn − 1)
∑

Q∈An−1

qarea(Q),

by separating paths that begin with an N step and writing them as P = NQ, with
Q ∈ An−1 and area(P ) = area(Q). By definition of the q-binomial coefficients, we get

∑
π∈IC2n(321)

qmaj+(π) =
n∑
h=0

(
n

h

)
q

+ (qn − 1)
n−1∑
h=0

(
n− 1

h

)
q

.

To obtain the equivalent expression
∑n

h=0 q
n−h(n

h

)
q
, we need one more bijection. For

any P ∈ Yn−h,h, let P ′ ∈ Yn−h,h be the path obtained from P by moving the first step of
P to the end. Then

area(P ′) =

{
area(P ) + h if P begins with an N step,

area(P )− (n− h) otherwise.

Combining this with equation (7), we see that
∑

i∈HD∗(P ) i = area(P ′) + n− h. Thus,

∑
π∈IC2n(321)

qmaj+(π) =
n∑
h=0

∑
P∈Yn−h,h

q
∑

i∈HD∗(P ) i =
n∑
h=0

∑
P ′∈Yn−h,h

qarea(P ′)+n−h =
n∑
h=0

qn−h
(
n

h

)
q

.

5 Connections with the hyperoctahedral group

Recall that the hyperoctahedral group Bn is the set of bijections π from the set
{−n, . . . ,−2,−1, 1, 2, . . . , n} to itself such that π(−i) = −π(i) for 1 6 i 6 n. In par-
ticular, π is described by the sequence π = π(1) . . . π(n), sometimes called a signed
permutation. We denote its absolute value by |π| = |π(1)| . . . |π(n)| ∈ Sn. It will be
convenient to denote negative entries −a by ā.
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The group of centrosymmetric permutations SC2n corresponds bijectively to the hype-
roctahedral group Bn via the map Θ : SC2n → Bn that associates a permutation π ∈ SC2n
to the signed permutation π̃ = Θ(π) ∈ Bn defined by

π̃(i) =

{
π(n+ i)− n if π(n+ i) > n

π(n+ i)− n− 1 otherwise,

for 1 6 i 6 n (a similar bijection appears in [7]).
For example, if π = 24863157 ∈ SC2n, then Θ(π) = 2̄4̄13 ∈ Bn. Drawing a permutation

π ∈ Sn as an n×n array with a marker in column i and row π(i) for each i, where rows and
columns are labeled by 1, 2, . . . , n starting from the bottom left, the operation Θ amounts
to relabeling the rows and columns by −n, . . . ,−1, 1, . . . , n, as shown in Figure 2. From
this description, it is immediate that π is an involution if and only if so is π̃ (meaning
that π̃(π̃(i)) = i for every i), since involutions correspond to arrays that are symmetric
with respect to the diagonal.

π π̃
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8

4
3
2
1
-1
-2
-3
-4

-4 -3 -2 -1 1 2 3 4

Figure 2: An involution π = 53281764 ∈ SC8 and the corresponding signed involution
π̃ = 4̄321̄ ∈ B4.

The study of pattern avoidance on the hyperoctahedral group has been carried out
by many authors in terms of signed patterns. If π ∈ Bn and τ ∈ Bk, k 6 n, we say that
π contains the pattern τ if there exists a sequence of indices 1 6 i1 < i2 < · · · < ik 6 n
such that two conditions hold:

• |π(i1)| . . . |π(ik)| is order-isomorphic to |τ |,

• π(ij) has the same sign as τj for 1 6 j 6 k.

We say that π avoids τ if π does not contain τ . For example, the signed permutation
π = 61̄53̄2̄4 avoids the pattern τ = 2̄1 while it contains the pattern τ ′ = 21̄.

Signed pattern avoidance has received a lot of attention in recent years (see [10], [14],
and [17]). In [17, Corollary 5.6], Stembridge characterized the set Tn of so-called fully
commutative top elements in Bn as the subset of elements in Bn that avoid the six signed
patterns

321, 3̄21, 321̄, 3̄21̄, 12̄, 1̄2̄. (8)

Stembridge does not consider the subset of involutory elements in Tn. In the next propo-
sition, we show that the image of SC2n(321) under Θ is precisely the set Tn. This result
appears in [7] in a slightly different form.
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Proposition 11. Θ(SC2n(321)) = Tn.

Proof. Consider a permutation π ∈ SC2n(321). Straightforward considerations imply that
Θ(π) must avoid the six signed patterns in (8), since every occurrence of one of them in
Θ(π) yields an occurrence of 321 in π.

Conversely, suppose that the permutation π contains an occurrence cba of 321. We
want to show that Θ(π) contains at least one of the six patterns above. Denote by j, k,
and l the positions in π of c, b, and a, respectively. Note that c > b > a and j < k < l.
Without loss of generality (due to the fact that π is centrosymmetric), we can assume
that either

i) j, k, l > n, or

ii) j 6 n < k, l.

In both cases, if b, a 6 n, then Θ(π) contains 1̄2̄, so we will assume that b > n.
Consider first case i). If c, b, a > n, then Θ(π) contains 321. Suppose that c, b > n > a.
If b < 2n+ 1− a, then Θ(π) contains 12̄, while if b > 2n+ 1− a, then Θ(π) contains 321̄
(note that b 6= 2n+ 1−a since the centrosymmetric condition forces 2n+ 1−a to appear
in a position less than n).

Consider now case ii). Set d = 2n+ 1− c, and note that position of d in π is greater
than n. If c, b, a > n, then Θ(π) contains either 3̄21 (if d precedes b in π) or 12̄ (otherwise).
If c, b > n > a, then Θ(π) contains either 3̄21̄ (if d precedes b in π) or 12̄ (otherwise).
This completes the proof.

Many definitions of the descent set and of the major index of a signed permutation can
be found in the literature (see e.g. [4], [5], and [11]). The notions of Des+ and maj+ are
related with the analogous statistics DesB and maj introduced in [5] as follows: if π ∈ SC2n,
then DesB(Θ(π)) = {n− x|x ∈ Des+(π)} and maj(Θ(π)) = n · des+(π)−maj+(π).

6 Descents and fixed points in 321-avoiding involutions

The distribution of the major index over the set of 321-avoiding involutions was stud-
ied in [1], where it is shown to be given by the q-analogue of the central binomial coef-
ficients. This is proved by constructing a bijection, as stated in the following theorem,
which is the main result from [1].

Theorem 12 ([1, Theorem 3.4]). There is a bijection between In(321) and Ybn
2
c,dn

2
e that

maps Des to HD.

Let fp(π) be the number of fixed points of π, that is, elements i such that π(i) = i.
Using the bijection from Lemma 10, we can generalize Theorem 12 as follows.

Theorem 13. Let b > a > 0. There is a bijection

θ : {π ∈ Ia+b(321) : fp(π) > b− a} −→ Ya,b

such that if θ(π) = λ, then Des(π) = HD(λ).
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For b = a and b = a+ 1 we recover Theorem 12.

Proof. Following the same idea from the proof of Theorem 12 given in [1], the first step
of the construction is the Robinson–Schensted correspondence, which gives a bijection
between Ia+b(321) and standard Young tableaux with a+ b boxes and at most two rows.
We claim that the number of fixed points of π ∈ Ia+b(321) equals the difference in size
of the two rows of the corresponding standard Young tableau. To see this, first note
that since π is an involution, its excedances and antiexcedances (i.e., positions i such
that π(i) < i) are naturally paired up by symmetry. It follows that the excedance
values and fixed points of π form a longest increasing subsequence (such a sequence is
increasing because π avoids 321, and it is longest because at most one element of each
pair excedance-antiexcedance can be in it). By Schensted’s theorem [12], the length of a
longest increasing sequence is the size of the first row of the tableau. Thus, the size of the
second row has to be equal to the number of antiexcedances, which equals the number of
excedances. It follows that the difference between the sizes of the rows of the tableau is
fp(π), as claimed. Alternatively, this fact be easily derived from [8].

From the standard Young tableau, we construct a path in Aa+b whose i-th step is an
N if i is in the top row of the tableau, and an E otherwise. By construction, this path
does not go below the diagonal y = x, and its number of N steps minus its number of E
steps equals fp(π), and so it has (a+ b+ fp(π))/2 N steps and (a+ b− fp(π))/2 E steps.
Additionally, Des(π) becomes the peak set of this path, since i is a descent of π if and
only if i is in the top row of the corresponding tableau and i+ 1 is in the bottom row.

The next step in the construction consists in matching Ns and Es that face each other
in the path, in the sense that the line segment from the midpoint of N to the midpoint
of E has slope 1 and stays below the path. Thinking of the Ns as opening parentheses
and the Es as closing parentheses, the matched parentheses properly close each other.
Note that every E step gets matched with an N step, but there are fp(π) unmatched N
steps. Construct a new path P by changing the leftmost (fp(π) + b− a)/2 unmatched N
steps into E steps. The resulting path has a N steps and b E steps, so P ∈ Ya,b. This
step is a bijection between paths in Aa+b not going below y = x and having fp(π) > b−a
unmatched steps, and Ya,b. It has the property that it preserves the positions of the
peaks, and so Des(π) = Peak(P ). The inverse of this step is obtained by matching Ns
and Es that face each other in the path in Ya,b, and then changing all the unmatched Es
(which necessarily come before the unmatched Ns, and of which there is at least b− a of
them) into Ns.

Finally, the last step is the bijection g from Lemma 10 applied to P . The composition
of these bijections produces a path λ := g(P ) ∈ Ya,b with Des(π) = HD(λ).

Theorem 12 is used in [1] to prove that
∑

π∈In(321) q
maj(π) =

(
n
bn
2
c

)
q
. We now get a

refinement of this result with respect to the number of fixed points.

Corollary 14. For b > a > 0, ∑
π∈Ia+b(321)
fp(π)>b−a

qmaj(π) =

(
a+ b

a

)
q

.
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Consequently, if ` ≡ n mod 2, then∑
π∈In(321)

fp(π)=`

qmaj(π) =

(
n
n−`

2

)
q

−
(

n
n−`

2
− 1

)
q

.

Proof. Applying the bijection from Theorem 13 and using that maj(π) =
∑

i∈Des(π) i and

|λ| =
∑

i∈HD(λ) i, we have

∑
π∈Ia+b(321)
fp(π)>b−a

qmaj(π) =
∑
λ∈Ya,b

q|λ| =

(
a+ b

a

)
q

.

For the second formula, note that by the symmetry between excedances and anitiex-
cedances, the number of fixed points of π ∈ In(321) has the same parity as n. Now
take a + b = n and subtract the case b − a = ` + 2 from the case b − a = ` in the first
formula.

It is shown in [1] that ∑
π∈In(321)
des(π)=k

qmaj(π) = qk
2

(
dn

2
e
k

)
q

(
bn

2
c
k

)
q

.

The refinement that keeps track of the number of fixed points is the following.

Corollary 15. For b > a > 0,∑
π∈Ia+b(321)
fp(π)>b−a
des(π)=k

qmaj(π) = qk
2

(
a

k

)
q

(
b

k

)
q

.

Consequently, if ` ≡ n mod 2, then

∑
π∈In(321)

fp(π)=`
des(π)=k

qmaj(π) = qk
2

[(
n−`

2

k

)
q

(
n+`

2

k

)
q

−
(
n−`

2
− 1

k

)
q

(
n+`

2
+ 1

k

)
q

]
.

Proof. By the bijection in Theorem 13, the left hand side of the first formula is the
generating polynomial with respect to area for Young diagrams in Ya,b whose hook de-
composition has k hooks. The right hand side is obtained by decomposing such diagrams
in three pieces: the top-left k × k square, which contributes qk

2
; a partition in Yk,a−k,

which contributes
(
a
k

)
q
, and a partition in Yb−k,k, which contributes

(
b
k

)
q
.

The second formula follows immediately substituting a + b = n and subtracting the
case b− a = `+ 2 from the case b− a = `.
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