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Abstract

For every pattern p over the alphabet {x, xR, y, yR}, we specify the least k such
that p is k-avoidable.

1 Introduction

The study of words avoiding patterns is a major theme in combinatorics on words, explored
by Thue and others [14, 2, 17, 13, 5, 10, 11]. The reversal map is a basic notion in
combinatorics on words, and it is therefore natural that recently work has been done
on patterns with reversals by Shallit and others [7, 8, 15]. (More general ideas, such as
patterns with involutions or other permutations, have also been studied very recently by
the first author and others [12, 4, 6, 3].) Shallit et al. [8] recently asked whether the
number of binary words avoiding xxxR grows polynomially with length, or exponentially.
The surprising answer by Currie and Rampersad [7] is ‘Neither’. As B. Adamczewski
[1] has observed, this implies that the language of binary words avoiding xxxR is not
context-free – a result which has so far resisted proof by standard methods.

Basic questions about patterns with reversal have not yet been addressed. In this
article, we completely characterize the k-avoidability of an arbitrary binary pattern with
reversal. Roth [13] gave an almost complete characterization of the k-avoidability of
binary patterns without reversal, which was finished by Cassaigne [5]. The present work
is a direct (and natural) generalization of the work of Roth and Cassaigne, and involves
a blend of classical results and new constructions.

∗The first author was supported by an NSERC Discovery Grant, and also by Deutsche Forschungsge-
meinschaft, which supported him through its Mercator program.
†The second author was supported through the NSERC USRA program.
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2 Preliminaries

For general concepts and notations involving combinatorics on words, we refer the reader
to the work of Lothaire [10, 11]. Let Σ be the alphabet Σ = {x, xR, y, yR}. We call
a word p ∈ Σ∗ a binary pattern with reversal. For a positive integer k, let Tk be
the alphabet {0, 1, . . . , k − 1}. We refer to words (resp., sequences, morphisms) on T2 as
binary words (resp., binary sequences, binary morphisms). For words of T ∗k , let
R denote the reversal antimorphism on Tk; thus if a1, a2, . . . , an ∈ Tk, then

(a1a2 · · · an)R = anan−1 · · · a1.

(Note the two distinct usages of R: In Σ, the notation distinguishes pairs of alphabet
letters; on T ∗k it stands for reversal.) We say that a morphism f : Σ∗ → T ∗k respects
reversal if f(xR) = f(x)R, f(yR) = f(y)R. Thus any morphism from {x, y}∗ to T ∗k
extends uniquely to a morphism on Σ respecting reversal. Let p be a binary pattern with
reversal. An instance of p is the image of p under some non-erasing morphism which
respects reversal. For example, an instance of p = xyyxR is a word XY Y XR, where X
and Y are non-empty; this is the image of p under the non-erasing morphism respecting
reversal given by f(x) = X, f(y) = Y . If pattern with reversal p does not contain either
of xR and yR, then an instance of p is simply an instance of pattern p in the usual sense.

Let k be a positive integer. Let p be a binary pattern with reversal. A word w avoids
p if no factor of w is an instance of p. Pattern p is k-avoidable if there are arbitrarily long
words of T ∗k which avoid p; equivalently, there is an ω-word w over Tk such that every
finite prefix of w avoids p. If p is not k-avoidable, it is k-unavoidable; note that every
factor of a k-unavoidable word is k-unavoidable. Word p is avoidable if it is k-avoidable
for some k; otherwise, p is unavoidable. If p is avoidable, then the avoidability index
of p is defined to be the least k such that p is k-avoidable. If p is unavoidable, we define
the unavoidability index of p to be ∞.

3 Classification

Consider the morphisms ι1, ι2 on Σ∗ given by:

ι1(x) = xR, ι1(x
R) = x, ι1(y) = y, ι1(y

R) = yR,

ι2(x) = y, ι2(x
R) = yR, ι2(y) = x, ι2(y

R) = xR.

Thus ι1 switches x and xR, while ι2 switches x and y, xR and yR. Thus ι2(ι1(ι2)) switches
y and yR. One checks the following:

Lemma 1. If f : Σ∗ → T ∗k is a morphism respecting reversal, then so is f ◦ ιj for j = 1, 2.

Let ι3 denote the reversal antimorphism on Σ∗.

Lemma 2. Let p be a binary pattern with reversal. If w is an instance of p, then wR is
an instance of ι3(p).

the electronic journal of combinatorics 23(1) (2016), #P1.36 2



For j = 1, 2, 3, ι2j is the identity morphism on Σ∗. It follows that the relation on Σ∗

given by

p ∼ q ⇐⇒ q is obtained from p by a sequence of applications of ι1, ι2 and ι3

is an equivalence relation. Combining the previous two lemmas gives the following:

Lemma 3. Let k be a positive integer. Let p, q be binary patterns with reversal. Suppose
that q ∼ p. Then p is k-avoidable if and only if q is k-avoidable.

Consider the lexicographic order on Σ∗ generated by x < xR < y < yR. If p ∈ Σ∗,
define C(p) to be the equivalence class of p under ∼, and let `(p) be the lexicographically
least element of C(p). For example, `(xRyy) = xxy.

Let

S2 = {xxx, xxyxyy, xxyxyR, xxyxRy, xxyxRyR, xxyyx, xxR, xyxxy, xyxyx, xyxyxR,
xyxyRx, xyxyRxR, xyxRxRy, xyxRyx, xyxRyRx, xyyxR}

and
S3 = {xx, xyxy, xyxyR, xyxRyR}.

One checks that s = `(s) for all s ∈ S2 ∪ S3. The following theorems are proved in
Sections 5 and 4, respectively.

Theorem 4. The patterns of S2 are 2-avoidable.

Theorem 5. The patterns of S3 are 3-avoidable.

We will prove the following:

Theorem 6 (Main Theorem). Let p be a binary pattern with reversal. The avoidability
index of p is 2, 3 or ∞.

In fact, we characterize exactly which of these patterns are 2-avoidable, 3-avoidable
and unavoidable in the next two theorems.

Theorem 7. Let p be a binary pattern with reversal. If `(p) is a prefix of one of xyx and
xyxR, then p is unavoidable; otherwise p is 3-avoidable.

Proof. To begin with, we note that xyx and xyxR are unavoidable: If positive integer k
is fixed, consider any word w over Tk of length 2k + 1. Some letter a ∈ Tk appears in w
at least 3 times, and w has a factor aba where |b| > 1. Consider the morphism respecting
reversal where f(x) = a, f(y) = b. Then f(xyx) = f(xyxR) = aba, since a = aR. Thus w
contains instances of xyx and xyxR; since w was an arbitrary word over Tk, patterns xyx
and xyxR are not k-avoidable. Since k was arbitrary, they are unavoidable. A fortiori,
their prefixes are unavoidable.

Now suppose that p is 3-unavoidable.Without loss of generality, replace p by `(p). The
first letter of p is thus x. If |p| = 1 we are done. By Theorems 4 and 5, no factor of p is

the electronic journal of combinatorics 23(1) (2016), #P1.36 3



equivalent to xxR or xx; the two-letter prefix of p is thus xy or xyR. Since p = `(p), it
follows that xy is a prefix of p. Therefore, if |p| = 2, we are done. Since yy and yyR are
equivalent to xx and xxR respectively, the third letter of p must be x or xR, and one of
xyx and xyxR is a prefix of p. If |p| 6 3, we are done. If |p| > 4, then the fourth letter of
p must be y or yR; otherwise p ends in a word equivalent to xx or xxR. Now, however, the
length 4 prefix of p is one of xyxy, xyxyR, xyxRy and xyxRyR. However, xyxRy cannot
be a prefix of p, since `(xyxRy) = xyxyR which is 3-avoidable by Theorem 5. The other
possibilities are also 3-avoidable by Theorem 5. We conclude that |p| 6 3, and our proof
is complete.

Theorem 8. Let p be a binary pattern with reversal. Then p is 2-avoidable if and only if
`(u) ∈ S2 for some factor u of p.

Proof. By Theorem 4, if `(u) ∈ S2 for some factor u of p, then `(u), hence u, hence p is
2-avoidable.

In the other direction, suppose that for all factors u of p, `(u) 6∈ S2. We show that p
is 2-unavoidable. For each non-negative integer n, let An be defined by

An = {q : |q| = n, q = `(q), and if u is a factor of q then `(u) /∈ S2}.

If q is in An, n > 0, write q′ for the prefix of q of length n− 1. Then `(q′) ∈ An−1. Thus,
q = ra, where r ∈ C(r̂), some r̂ ∈ An−1, a ∈ Σ. This allows us to compute the An:

A0 = {ε}
A1 = {x}
A2 = {xx, xy}
A3 = {xxy, xyx, xyxR}
A4 = {xxyx, xxyxR, xxyy, xyxy, xyxyR, xyxRyR, xyyx}
A5 = {xxyxx, xxyxy, xxyxRxR}
A6 = ∅.

It follows that An = ∅, n > 6.
We have `(p) ∈ A|p| ⊆

⋃∞
i=0Ai =

⋃5
i=0Ai. A backtracking algorithm shows that

elements of
⋃5

i=0Ai are all 2-unavoidable. It follows that p is 2-unavoidable.

4 Binary patterns with reversal that are 3-avoidable

In this section we will prove Theorem 5. A square is an instance of xx. It was shown
by Thue [14] that squares are 3-avoidable. Any instance of xyxy is necessarily a square.
Therefore, both xx and xyxy are 3-avoidable. To prove Theorem 5, it thus remains to
show that xyxyR and xyxRyR are 3-avoidable.

Fraenkel and Simpson [9] constructed a binary sequence containing no squares other
than 00, 11 and 0101. We will refer to this sequence as f .
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Theorem 9. Patterns xyxyR and xyxRyR are 3-avoidable.

Proof. From f , create a word g by replacing each factor 10 of f by 12220. Word g has the
form g = 0a11a2230a31a423 · · · where for each i, 1 6 ai 6 3, since neither of 04 = (00)2 and
14 = (11)2 can be a factor of f . In particular, g has no length 2 factor cd where c ≡ d+ 1
(mod 3).

Suppose that xyxyR, (resp., xyxRyR) is a factor of g. Then so is xyxy: Any factor z
of g containing distinct letters has a factor dc where d ≡ c + 1 (mod 3); thus zR has a
length 2 factor cd where c ≡ d+1 (mod 3), so that zR cannot be a factor of g. Since both
y and yR (resp., x, xR, y and yR) are factors of g, then y (resp., x, y) must be a power of
a single letter, so that y = yR (resp., x = xR, y = yR).

Thus g has a factor xyxy, which is equivalent to having a factor xx with |x| > 2. We
show that g has no such factor: Suppose g has factor xx with |x| > 2. Word x must
contain 2 distinct letters, otherwise xx consists of a letter repeated four or more times,
contradicting ai 6 3. This implies that all three of 0, 1, 2 appear in xx. Deleting 2’s from
xx leaves a square over {0, 1} containing both 0 and 1. This must be 0101. Then, adding
the 2’s back in, xx is a factor of 201222012; however the only square factor of 201222012
is 22, and |x| > 2. This is a contradiction.

In conclusion, xyxyR, and xyxRyR are avoided by g, and are thus 3-avoidable.

5 Binary patterns with reversal that are 2-avoidable

In this section we will prove Theorem 4 using several new constructions as well as some
known results. We partition S2 into pieces according to the constructions used: S2 =⋃4

i=1 S2,i where

S2,1 = {xxx, xxyxyy, xxyyx, xyxxy, xyxyx}
S2,2 = {xyxyxR}
S2,3 = {xxyxyR, xxyxRy, xxyxRyR, xxR, xyxRxRy, xyyxR}
S2,4 = {xyxyRxR, xyxRyRx, xyxyRx, xyxRyx}.

Theorem 10. The words of S2,1 are 2-avoidable.

Proof. These patterns, which are ordinary binary patterns, i.e., words over {x, y}, were
shown to be 2-avoidable by Thue[14], Roth[13] and Cassaigne [5].

Theorem 11. The sequence f of Fraenkel and Simpson avoids xyxyxR.

Proof. Suppose XYXYXR is an instance of xyxyxR in f , where X, Y ∈ T+
2 . It follows

that XYXY is a square of length at least 4; as there is only one such square in f , this
forces X = 0, Y = 1. However, in this case f contains the factor Y XY XR = 1010, which
is impossible.

To prove Theorem 4, it remains to show that the patterns of S2,3 and S2,4 are 2-
avoidable. We do this in Sections 5.1 and 5.2, respectively.

the electronic journal of combinatorics 23(1) (2016), #P1.36 5



Figure 1: The graph G(p), where p = xRxyxRxRy.

x

xR

y

yR

5.1 Patterns in S2,3 are 2-avoidable.

We use here elementary notions of graph theory; in particular, a graph has a 2-colouring
if and only if it has no odd cycles. A standard reference is by Wilson [16]. Let p be a
binary pattern with reversal. We use the notation

aR =

{
x if a = xR

y if a = yR
.

Define G(p) to be the graph with vertex set Σ, and an edge between aR and b whenever
ab is a length two factor of p.

Example: If p = xRxyxRxRy, then the length two factors are xRx, xy, yxR, xRxR and
xRy, giving rise to edges xx, xRy, yRxR, xxR and xy. The graph G(p) is shown in Figure 1.
This graph contains odd cycles, for example, x–x, of length 1, and x–xR–y–x, of length
3.

Theorem 12. Let p ∈ Σ∗. An instance of p appears in (01)ω if and only if G(p) is
bipartite.

Proof. Let u and v be factors of (01)ω. Then uv is a factor of (01)ω exactly when uR and
v begin with different letters. Suppose G(p) is bipartite, and let c : G(p) → {0, 1} be a
legal colouring. Now let X be the shortest string beginning with c(x) and ending with
c(xR); thus X is a factor of (01)ω with 1 6 |X| 6 2. Similarly, let Y be the shortest string
beginning with c(y) and ending with c(yR).
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Define the morphism h : {x, y} → {0, 1}∗ by h(x) = X, h(y) = Y . If a ∈ {x, xR, y, yR},
then h(a) begins with c(a) and ends in c(aR). Suppose ab is a length two factor of p. Then
aRb is an edge of G(p), and c(aR) 6= c(b) so that (h(a))R and h(b) begin with different
letters. It follows that h(ab) is a factor of (01)ω. By induction, we see that h(p) is a factor
of (01)ω.

In the other direction, suppose that h : {x, y} → {0, 1}∗ is a morphism such that
h(p) is a factor of (01)ω. For a ∈ {x, xR, y, yR}, define the 2-colouring c by choosing
c(a) to be the first letter of h(a). If this is not a legal colouring, then for some letters
a, b ∈ {x, xR, y, yR}, there is an edge ab in G(p) with c(a) = c(b). This implies that aRb
is a factor of p, but h(a) and h(b) start with the same letter. Then h(aR) ends with the
same letter that begins h(b), forcing 00 or 11 to be a factor of h(p), which is in turn a
factor of (01)ω. This is impossible.

Corollary 13. Every pattern in S2,3 is avoided by (01)ω.

Proof. Graph G(xxR) contains the loop xR–xR, i.e., a 1-cycle. For each of the other
patterns p ∈ S2,2, G(p) contains a triangle.

5.2 The patterns of S2,4 are 2-avoidable.

The Thue-Morse word is the fixed point t = hω(0), of the binary morphism h given by
h(0) = 01, h(1) = 10. Thue [14] showed that t avoids overlaps, i.e., instances of xxx or
xyxyx.

Suppose f is any non-erasing binary morphism such that f(0) = 0. Let w = f(t).

Lemma 14. Let u be a factor of w. Then u is a factor of f(v), for some factor v of t
with

|v| 6 2

|f(1)|+ 1
(|u|+ 3|f(1)| − 3).

Proof. For some words p and s such that |p|, |s| 6 |f(1)| − 1, we have sup = f(v), where
v is some factor of t. We can write v = s1h(v1)p1, where |p1|, |s1| 6 1 and v1 is a factor
of t. Since |h(v1)|1 = |h(v1)|/2, it follows that

|v|1 >
|v| − 2

2
.

Thus

|u| > |f(v)| − 2(|f(1)| − 1)

= |f(1)||v|1 + |v|0 − 2|f(1)|+ 2

= |f(1)||v|1 + (|v| − |v|1)− 2|f(1)|+ 2

= (|f(1)| − 1)|v|1 + |v| − 2|f(1)|+ 2

> (|f(1)| − 1)

(
|v|
2
− 1

)
+ |v| − 2|f(1)|+ 2

= (|f(1)|+ 1)
|v|
2
− 3|f(1)|+ 3.

the electronic journal of combinatorics 23(1) (2016), #P1.36 7



Thus

|v| 6 2

|f(1)|+ 1
(|u|+ 3|f(1)| − 3).

Lemma 15. Let v be a factor of t of odd length. Then v is a factor of h(v′) for some
factor v′ of t of length (|v|+ 1)/2.

Proof. Omitted.

Corollary 16. Every factor of t of length 2n + 1 is a factor of the prefix of t of length
7(2n).

Proof. All length two binary words are factors of 0110100, the length 7 prefix of t. The
result follows by applying the previous lemma n times.

5.2.1 Patterns xyxyRxR and xyxRyRx are 2-avoidable.

Let f1 be the binary morphism given by f1(0) = 0, f1(1) = 00101101111, and let w1 =
f1(t).

Theorem 17. The sequence w1 avoids xyxyRxR.

Proof. Let z be a factor of w1 such that zR is also a factor of w1. We claim that |z| 6 6.

Otherwise, replacing z by its length 7 prefix, w1 has a length 7 factor z such that zR is
also a factor of w1. we note that |f1(1)| = 11, so that by Lemma 14, z is a factor of f1(v),
some factor v of t where

|v| 6 2

11 + 1
(7 + 3(11)− 3) < 7.

Certainly then an extension of v is a factor of t of length 9 = 23+1, so that by Corollary 16,
v is a factor of the prefix of t of length 56. This implies that z and zR are factors of f1(τ),
where τ is the prefix of t of length 56. A search shows that f1(τ) has no length 7 factor
z such that zR is also a factor of f1(τ).

Suppose that XYXY RXR is a factor of w1 with X, Y 6= ε. Since both X and XR, and
both Y and Y R are factors of w1, it follows that |X|, |Y | 6 6, and |XYXY RXR| 6 30.
By Lemma 14, XYXY RXR is a factor of f1(v

′), some factor v′ of t where

|v′| 6 2

11 + 1
(30 + 3(11)− 3) = 10 < 24 + 1.

By Corollary 16, v′ is a factor of the prefix of t of length 112, so that XYXY RXR is a
factor of f1(τ

′), where τ ′ is the prefix of t of length 112. However, a search shows that
f1(τ

′) has no factor XYXY RXR with |X|, |Y | 6 6.
We conclude that w1 avoids xyxyRxR.

Next, we give an infinite binary word that avoids the pattern xyxRyRx. Let f2 be the
binary morphism with f2(0) = 0, and f2(1) = 00101111. Let w2 = f2(t).
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Theorem 18. The sequence w2 avoids xyxRyRx.

Proof. Suppose XYXRY RX is a factor of w2, X, Y 6= ε. As in the proof of the previous
lemma, we find that |X|, |Y | 6 6, so that XYXRY RX is a factor of f2(τ

′), where τ ′ is
the prefix of t of length 112. However, a search shows that f2(τ

′) has no such factor.

5.2.2 Avoiding xyxyRx

Let f3 be the binary morphism given by f3(0) = 0, f3(1) = 001011. Let w3 = f3(t).
Define

Υ = {1, 0, 11, 10, 00, 01, 010, 011, 001, 000, 110, 100, 101, 0110,

0000, 0001, 1001, 1000, 00001, 10000, 10001, 100001}.

Lemma 19. If both Y and Y R are factors of w3, then Y ∈ Υ.

Proof. This is established by finite search, using Lemma 14 and Corollary 16.

Lemma 20. Suppose that X and Y are words such that XY , XY R, Y X and Y XR are
all factors of w3, and |X| > 3. Then Y ∈ {0, 1, 00}.

Proof. By the previous lemma, Y ∈ Υ. Define

X1(Y ) = {χ : |χ| = 3 and χY, χY R are both factors of w3},

X2(Y ) = {χ : |χ| = 3 and Y χ, Y Rχ are both factors of w3}.

The length 3 suffix of X must be in X1, and the length 3 prefix of X must be in X2. We
can compute X1(Y ) and X2(Y ) by a finite search, using Lemma 14 and Corollary 16. For
Y ∈ Υ− {0, 1, 00}, we find that X1(Y ) = ∅ or X2(Y ) = ∅. The result follows.

Let u be a factor of w3. Define a left completion of u to be a word v = f3(t), such
that u is a suffix of f3(t), but u is a not a suffix of any proper suffix of v of the form
f3(t

′). Thus, for example, 001011 is a left completion of 11 and of 011, but 01 has no left
completion.

Lemma 21. Let u be a factor of w3 which ends in 11. Then u has a unique left comple-
tion.

Proof. Induction.

We remark that if p is a prefix of w3 and 11 is a suffix of p, then p = f3(t) for some
prefix t of t.

Theorem 22. Word w3 avoids xyxyRx.
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Proof. A finite search shows that w3 contains no factor XYXY RX with 1 6 |X| 6 8
and 1 6 |Y | 6 2. Suppose that, nevertheless, w3 contains some factor XYXY RX,
|X|, |Y | 6= 0. By Lemma 20, Y ∈ {0, 00, 1}, so that |X| > 9. This means that Y = Y R,
so it will be notationally simpler to write XYXYX for XYXY RX. It is easy to show
that (or alternatively, by a finite search, invoking Lemma 14 and Corollary 16) any factor
χ of w3 with |χ| = 9 contains the factor 11. Therefore, write X = X ′X ′′, where 11 is a
suffix of X ′, and |X ′′|11 = 0.

Let pXY XY X = pX ′X ′′Y X ′X ′′Y X ′X ′′ be a prefix of w3 for some p. Let v be the
left completion of X ′. Then pX ′X ′′Y X ′ = f3(t1) and pX ′X ′′Y X ′X ′′Y X ′ = f3(t2) for
some prefixes t1 and t2 of t. It follows that X ′′Y X ′ = f3(t3) for the factor t3 = t1t

−1
2

of t. Therefore, some suffix of X ′′Y X ′ is a left completion of X ′; by uniqueness of left
completions, v is a suffix of X ′′Y X ′. Write v = f3(t4) for some factor t4 of t. Then
X ′′Y X ′ = f3(t5t4), where t5 = t3t

−1
4 . Since X ′ has a unique left completion, v is a suffix

of pX ′. Write pX ′ = p′v, and pXY XY X ′ = p′vX ′′Y X ′X ′′Y X ′ = p′f3(t4t5t4t5t4). Since
f3 is injective, the factor f3(t4t5t4t5t4) of w3 implies the existence of the overlap t4t5t4t5t4
in t, contradicting the overlap-freeness of t.

5.2.3 Pattern xyxRyx is 2-avoidable.

Let f4 be the binary morphism given by f4(0) = 0, f4(1) = 1000010011. Let w4 = f4(t).
We observe that 011 only occurs in w4 as a suffix of f4(1). More formally:

Lemma 23. If p011 is a prefix of w4, then p011 = f4(t1) for some prefix t1 of t.

Corollary 24. Let py be a prefix of w4. Suppose that y = f4(t̂) for some factor t̂ of t
where |t̂|1 > 0. Then p = f4(τ) for some prefix τ of t.

Proof. Let t′ be the shortest prefix of t̂ that contains a 1. Thus t′ = 0n1, some n ∈ {0, 1, 2},
and pf4(t

′) = p0nf4(1) is a prefix of w4. By the previous lemma, p0nf4(1) = f4(t1) for
some prefix t1 of t. Then 0n is a suffix of t, and the result follows letting τ = t0−n.

Corollary 25. Let py be a prefix of w4. Suppose that y = f4(t̂) for some factor t̂ of t,
and |y| > 6. Then p = f4(τ) for some prefix τ of t.

Proof. The only factors of t not containing a 1 are ε, 0 and 00. Since |y| > 6 > |f4(00)| = 2,
we conclude that |t̂|1 > 0.

Recall that a factor y of w4 is bispecial if 0y, 1y, y0, y1 are all factors of w4.

Lemma 26. Let y be a bispecial factor of w4 with |y| > 6. Then y = f4(t) for some
factor t of t.

Proof. Either y is an internal factor of f4(1), or y can be written as y = sf4(t)p where t
is a factor of t, s is a suffix of f4(1), p is a prefix of f4(1), and |s|, |p| < |f4(1)|. Now the
internal factors of f4(1) of length at least 6 are 000010, 000100, 001001, 0000100, 0001001
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and 00001001. Each of these only occurs in w4 inside a copy of f4(1); therefore, none of
these are bispecial (or even right special or left special).

Therefore write y = sf4(t)p where s is a suffix of f4(1) and p is a prefix of f4(1), and
|s|, |p| < |f4(1)|.

Suppose s = 1. Word t begins with 00, 01 or 1, or else t = ε. Thus one of 1|0|0|100,
1|0|1000 or 1|10000 is a prefix of y; here the vertical bars mark the divisions in w4 between
f4-images of letters. In each case, we see that y must be preceded by 1 in w4, contradicting
the assumption that y is bispecial. If s = 11, then one of 11|0|0|10, 11|0|100 or 11|1000 is
a prefix of y. In each case y is always preceded by 0, again contradicting the assumption
that y is bispecial. If |s| > 3, then s ends in 011; however, 011 only arises in w4 as a
suffix of f4(1), so that the letter preceding s (and thus y) in w4 must always be the letter
preceding s in f4(1). The cases where |s| > 0 therefore all lead to a contradiction. We
conclude that s = ε.

If p = 1, then one of 011|0|0|1, 0011|0|1 and 10011|1 is a suffix of y. This implies that
y is always followed in w4 by 0, a contradiction, since y is bispecial. If p = 10, then one
of 11|0|0|10, 011|0|10 and 0011|10 is a suffix of y, and y is always followed by 0 in w4. If
p = 100, then y has a suffix 1|0|0|100, 11|0|100 or 011|100, and y is always followed by a
0. If |p| > 4, then p begins 1000, which only arises in w4 as a prefix of f4(1), so that the
letter following p (and thus y) in w4 must always be the letter following p in f4(1). We
conclude that p = ε.

Since p = s = ε, y = f4(t) for some factor t of t, as claimed.

Corollary 27. Let y be a bispecial factor of w4 with |y| > 6. Let py be a prefix of w4.
Then p = f4(τ) for some prefix τ of t and y = f4(t) for some factor t of t.

Theorem 28. The word w4 avoids xyxRyx.

Proof. Suppose not. Let u be a factor of w4 of the form u = XYXRY X, with X, Y 6= ε,
and such that u is as short as possible.

Both X and XR are factors of w4. By Lemma 14, each length 21 factor of w4 will
be a factor of f4(v), for some appropriate length 8 factor v of t. By Corollary 16, every
length 8 factor of t appears in the length 56 prefix of t. We can therefore effectively list
all length 21 factors of w4. One verifies that if z is a length 21 factor of w4, then zR is
not a factor. Thus, since both X and XR are factors of w4, |X| 6 20.

Subcase 1: |Y | 6 5. In this case, |XYXRY X| 6 70, and by Lemma 14, XYXRY X is
a factor of f4(v), for some factor v of t of length 17. The length 17 factors of t all lie in
the length 112 suffix h4(0110100) of t, and a finite search shows that no factor XYXRY X
occurs in f4(h

4(0110100)). This case therefore cannot occur.

Subcase 2: |Y | > 6.
Subcase 2a: The first and last letters of X are different. In this case, write
X = aX ′b where a, b ∈ {0, 1}, a 6= b. Then XYXRY X = aX ′bY b(X ′)RaY aX ′b, and we
see that Y is bispecial. Let πXY XRY X be a prefix of w4. Applying Corollary 27 several
times, we see that πX = f4(t0), πXY = f4(t1), πXY X

R = f4(t2) and πXY XRY = f4(t3)
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for some prefixes t0, t1, t2 and t3 of t. It follows that XR = f4(t), where t is the factor
(t1)

−1t2 of t. If the last letter of X is a 1, then πX = f4(t0) must have suffix 11; this
implies that 11 is a prefix of XR = f4(t), which is impossible. However, if the last letter
of X is a 0, then the first letter of X is a 1. Thus the last letter of XR is a 1, and 11 is a
suffix of XR = f4(t). Then 11 is a prefix of X, and hence of (πXY XRY )−1w4 = f4(t

−1
3 t),

which is also impossible.

Subcase 2b: The first and last letters of X are the same. Write X = aχa where
a ∈ {0, 1}. Then u = aχaY aχRaY aχa has the proper factor χΥχRΥχ, where Υ = aY a.
If χ 6= ε, we have a contradiction, since u was to be as short as possible. We conclude
that χ = ε, and X ∈ {0, 00, 1, 11}, whence X = XR.

Since the finite search of Subcase 1 shows that we must have |XYXRY X| > 70, we
may assume that |Y | > (70 − 3|X|)/2 > 32. Therefore, write Y = sf4(t)p where t is a
factor of t, s is a suffix of f4(1), p is a prefix of f4(1), and |s|, |p| < |f4(1)|. It follows that
|f4(t)| > 32− 18 = 14. We conclude that |t|1 > 0.

We now have XYXRY X = Xsf4(t)pXsf4(t)pX, where 1 6 |X| 6 2. Write

w4 = πXsf4(t)pXsf4(t)pXσ.

By Corollary 24,

πXs = f4(t0), πXsf4(t) = f4(t1), πXsf4(t)pXs = f4(t2), πXsf4(t)pXsf4(t) = f4(t3),

for some prefixes t0, t1, t2, t3 of t. Therefore, pXs = f4((t1)
−1t2).

Subcase 2bi: The first and last letters of pXs are both 0. Since p and s are,
respectively, a prefix and suffix of f4(1), which begins and ends with 1, this forces p =
s = ε, X = 0n, n ∈ {1, 2}. Thus

w4 = π0nf4(t)0
nf4(t)0

nσ.

By Corollary 24, π0nf4(t)0
nf4(t)0

n = f4(τ), some prefix τ of t, so that t contains the
overlap 0nt0nt0n. This is impossible.

Subcase 2bii: The first letter of pXs is a 0, and the last letter is a 1. This
forces p = ε, since otherwise p, and hence pXs, starts with a 1. Then X starts with a
0, so X = 0n, n ∈ {1, 2}. Since pXs = f4((t1)

−1t2) ends in a 1, this forces s = f4(1),
contradicting |s| < |f4(1)|.

Subcase 2biii: The first letter of pXs is a 1, and the last letter is a 0. This
forces s = ε, since otherwise s, and hence pXs, ends with a 1. Then X ends with a 0,
so X = 0n, n ∈ {1, 2}. Since pXs = f4((t1)

−1t2) starts with a 1, this forces p = f4(1),
contradicting |p| < |f4(1)|.

Subcase 2biv: The first and last letters of pXs are both 1. It follows that
pXs = f4((t1)

−1t2) has f4(1) as a prefix and as a suffix. Now |pXs| 6 9 + 2 + 9 = 20,
forcing pXs ∈ {f4(1), f4(11)}. If pXs = f4(1), then pX begins with a 1, and Xs ends
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in a 1. It follows that πXs = f4(t0) ends in a 1, so that 1 is the last letter of t0, while
pXσ = f4(t

−1
3 t), so that t−13 t begins with 1. Thus t contains the overlap 1t1t1, which is

impossible.
On the other hand, if pXs = f4(11), then we must have p = 100001001, X = 11,

s = 000010011. Again, πXs = f4(t0) ends 1f4(1), so that 11 is a suffix of t0; also
pXσ = f4(t

−1
3 t), has prefix f4(1)1, so that (t3)

−1t has prefix 11. Thus t contains the
overlap 11t11t11, which is impossible.

6 Conclusion/Further Discussion

We note that in 1992, Roth [13] proved that every length six binary pattern is 2-avoidable.
Our Theorem 4 shows that this is also true for binary patterns with reversal.

It would be nice now to perhaps see if our results could be generalized to ternary
patterns or beyond. Another natural desideratum would be an effective characterization
of which patterns with reversal are avoidable.
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