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Abstract

In this paper results are proved with applications to the orbits of (n − 1)-
dimensional subspaces disjoint from a regulusR of (n−1)-subspaces in PG(2n−1, q),
with respect to the subgroup of PGL(2n, q) fixingR. Such results have consequences
on several aspects of finite geometry. First of all, a necessary condition for an (n−1)-
subspace U and a regulus R of (n−1)-subspaces to be extendable to a Desarguesian
spread is given. The description also allows to improve results in [2] on the André-
Bruck-Bose representation of a q-subline in PG(2, qn). Furthermore, the results in
this paper are applied to the classification of linear sets, in particular clubs.

Keywords: club; linear set; subplane; André-Bruck-Bose representation; Segre
variety

1 Introduction

The (n−1)-dimensional projective projective space over the field F is denoted by PG(n−
1, F ) or PG(n− 1, q) if F is the finite field of order q (denoted by Fq). The set of nonzero
elements of a field F will be denoted by F ∗, and similarly, the set of nonzero vectors of a
vector space V by V ∗. If L is an extension field Fq, then the projective space defined by
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Vlaanderen) and by a Progetto di Ateneo from Università di Padova (CPDA113797/11).
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the Fq-vector space induced by Ld is also denoted by PGq(L
d). For a (sets of) subspace(s)

R of a vector space or a projective space, the notation 〈R〉 is used to denote the subspace
generated by (the elements of) R. In case there is any ambiguity about the coefficient
field, then the notation 〈R〉q will be used, to denote that the considered subspace is the
one generated over Fq. In this case the terminology of Fq-span will sometimes be used.
For example, if S is a set of two points on the projective line PG(1, q2), then 〈S〉q denotes
the Fq-subline defined by S, while 〈S〉q2 coincides with the whole projective line PG(1, q2).

For further notation and general definitions employed in this paper the reader is re-
ferred to [9, 11, 13].

For more information on Desarguesian spreads see [1].
This paper is structured as follows. In Section 2 subspaces which intersect each element

of a regulus in one point are studied and a result from [4] is generalised. Section 3 contains
one of the main results of this paper, determining the order of the normal rational curves
obtained from n-dimensional subspaces on an external (n− 1)-dimensional subspace with
respect to a regulus in PG(2n−1, q), obtained from a point and a subline after applying the
field reduction map to PG(1, qn). This leads to a necessary condition on the existence of a
Desarguesian spread containing a subspace and regulus (Corollary 7). The André-Bruck-
Bose representation of sublines and subplanes of a finite projective plane is studied1 in
Section 4 and improvements are obtained with respect to the known results [3, 14, 16, 2].
The results from the first sections of this paper are then applied to the classification
problem for clubs of rank three in PG(1, qn) in Section 5. A study of the incidence
structure of the clubs in PG(1, qn) after field reduction yields to a partial classification,
concluding that the orbits of clubs under PGL(2, qn) are at least k − 1, where k stands
for the number of divisors of n. The paper concludes with an appendix discussing a
result motivated by Burau [4] for the complex numbers: the result is extended to general
algebraically closed fields; a new proof is provided; and counterexamples are given to some
of the arguments used in the original proof.

2 Subspaces intersecting each element of a regulus in one point

Let R be a regulus of subspaces in a projective space and let S be any subspace of 〈R〉.
Questions about the properties of the set of intersection points, which for reasons of
simplicity of notation we will denote by S ∩R, often turn up while investigating objects
in finite geometry. If S intersects each element of the regulus R in a point, then the
intersection S∩R is a normal rational curve, see Lemma 1. This was already pointed out
in [4, p.173] with a proof originally intended for complex projective spaces, but actually
holding in a more general setting. The notation of [4] will be partly adopted.

The Segre variety representing the Cartesian product PG(n, F )×PG(m,F ) in PG((n+
1)(m+ 1)− 1, F ) is denoted by Sn,m,F . It is well known that Sn,m,F contains two families
SIn,m,F and SIIn,m,F of maximal subspaces of dimensions n and m, respectively. When

1A different study of Fqk -sublines and Fqk -subplanes of PG(2, qn) in this representation can be found
in [15].
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convenient, the notation SI or SII will be used for a subspace belonging to the first or
second family. The points of Sn,m,F may be represented as one-dimensional subspaces
spanned by rank one (m+1)× (n+1) matrices. This is the standard example of a regular
embedding of product spaces, see [17]. Note that in the finite case it is possible to embed
product spaces in projective spaces of smaller dimension (see e.g. [7]). A regulus R of
(n− 1)-dimensional subspaces can also be defined as SIn−1,1,F .

Lemma 1. Let n > 1 be an integer, and F a field. Let St be a t-subspace of PG(2n−1, F )
intersecting each SI ∈ SIn−1,1,F in precisely one point. Define Φ = St∩Sn−1,1,F , and assume
〈Φ〉 = St. Then |F | > t and the following properties hold.

(i) The set Φ is a normal rational curve of order t.

(ii) Let ΞI ∈ SIn−1,1,F . Then the set S(Φ,ΞI) of the intersections of ΞI with all transver-
sal lines lII such that lII ∩ Φ 6= ∅ is a normal rational curve of order t or t − 1 if
|F | = t, and of order t− 1 if |F | > t.

(iii) If Φ is contained in a subvariety St−1,1,F of Sn−1,1,F , then homogeneous coordinates
can be chosen such that Φ is represented parametrically by〈(

yt0 yt−10 y1 . . . y0y
t−1
1

yt−10 y1 yt−20 y21 . . . yt1

)〉
, (y0, y1) ∈ (F 2)∗, (1)

and S(Φ,ΞI), for z0, z1 depending only on ΞI , by〈(
yt−10 z0 yt−20 y1z0 . . . yt−11 z0
yt−10 z1 yt−20 y1z1 . . . yt−11 z1

)〉
, (y0, y1) ∈ (F 2)∗. (2)

Proof. (i), (iii) The proof in [4, Sect.41 no.3], which is offered for F = C, works exactly
the same provided that |F | > t or, more generally, that Φ is contained in some subvariety
St−1,1,F of Sn−1,1,F . In case |F | 6 t, the size of Φ being |F | + 1 implies |F | = t, so Φ is
just a set of t + 1 independent points in a subspace isomorphic to PG(t, t), hence Φ is a
normal rational curve of order t.

(ii) The case |F | > t is proved in [4] immediately after the corollary at p. 175. If |F | 6
t, then |F | = t and two cases are possible. If Φ is contained in some St−1,1,F ⊆ Sn−1,1,F ,
Burau’s proof is still valid as was mentioned in case (ii); so, S(Φ,ΞI) is a normal rational
curve of order t− 1 = |F | − 1. Otherwise S(Φ,ΞI) is an independent (t+ 1)-set, hence a
normal rational curve of order |F |.

Remark 2. If |F | = t both cases in Lemma 1 (ii) can occur. The following two examples
use the Segre embedding σ = σt−1,1,F of the product space PG(t−1, t)×PG(1, t) in PG(2t−
1, t). Let {s0, s1, . . . , st} be the set of points on PG(1, t) and suppose {r0, r1, . . . , rt} is a
set of t+ 1 points in PG(t− 1, t). Put ΞI = σ(PG(1, t)× s0) and Φ := {σ(ri × si) : i =
0, 1, . . . , t}. Then Φ consists of t + 1 points on the Segre variety St−1,1,F . Depending on
the set {r0, r1, . . . , rt} one obtains the two cases described in Lemma 1 (ii).
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a. If {r0, r1, . . . , rt} is a frame of a hyperplane of PG(t − 1, t) then Φ generates a t-
dimensional subspace of PG(2t − 1, t) intersecting St−1,1,F in Φ and S(Φ,ΞI) is a
normal rational curve of order t− 1.

b. If {r0, r1, . . . , rt} generates PG(t − 1, t) then Φ generates a t-dimensional subspace
of PG(2t − 1, t) intersecting St−1,1,F in Φ and S(Φ,ΞI) is a normal rational curve
of order t.

Remark 3. By (1) and (2), the map α : Φ→ S(Φ,ΞI) defined by the condition that X and
Xα are on a common line in SIIn−1,1,F is related to a projectivity between the parametrizing
projective lines. Such an α is also called a projectivity.

3 The order of normal rational curves contained in Sn−1,1,q
Here n > 2 is an integer. The field reduction map Fm,n,q from PG(m−1, qn) to PG(mn−
1, q) will also be denoted by F . If S is a set of points, in PG(m− 1, qn), then F(S) is a
set of subspaces, whose union, as a set of points will be denoted by F̃(S). The Fqh-span
of a subset b of PG(d, qn) is denoted by 〈b〉qh .

Proposition 4. Let b be a q-subline of PG(1, qn), and let Θ be a point of PG(1, qn). Let
(1, ζ) and (1, ζ ′) be homogeneous coordinates of Θ with respect to two reference frames for
〈b〉qn, each of which consists of three points of b. Then Fq(ζ) = Fq(ζ ′).

Proof. Homogeneous coordinates of a point in both reference frames, say (x0, x1) and
(x′0, x

′
1), are related by an equation of the form ρ(x′0 x

′
1)
T = A(x0 x1)

T , ρ ∈ F∗qn , A ∈
GL(2, q). Hence (ρ ρζ ′)T = A(1 ζ)T and this implies ζ ′ ∈ Fq(ζ). The proof of ζ ∈ Fq(ζ ′)
is similar.

By Proposition 4, given a q-subline b in a finite projective space PG(d, qn) and a point
Θ ∈ 〈b〉qn , with homogeneous coordinates (1, ζ) with respect to a reference frame of 〈b〉qn
consisting of three points of b, the degree of Θ over b, denoted by [Θ : b], is well-defined
in terms of the field extension degree as follows: [Θ : b] = [Fq(ζ) : Fq].

This [Θ : b] also equals the minimum integerm such that a subgeometry Σ ∼= PG(d, qm)
exists containing both b and Θ.

Proposition 5. Any n-subspace of PG(2n − 1, q) containing an (n − 1)-subspace SI ∈
SIn−1,1,q intersects Sn−1,1,q in the union of SI and a line in SIIn−1,1,q.

Theorem 6. Let b be a q-subline of PG(1, qn), and Θ 6∈ b a point of PG(1, qn). Then in
PG(2n − 1, q) any n-subspace H containing F(Θ) intersects the Segre variety Sn−1,1,q =
F̃(b), in a normal rational curve whose order is min{q, [Θ : b]}.

Proof. Set L = Fqn , F = Fq. Without loss of generality, PG(2n − 1, q) = PGq(L
2),

F(b) = {L(x, y) | (x, y) ∈ (F 2)∗}2, and Θ = L(1, ξ) with [F (ξ) : F ] = [Θ : b]. The

2For x, y ∈ L, F (x, y) = 〈(x, y)〉q, and L(x, y) = 〈(x, y)〉qn .
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n-subspace H intersects L(1, 0) in one point Y of the form Y = F (θ, 0), θ ∈ L∗. For any
x ∈ F , seeking for the intersection 〈F(Θ), Y 〉q ∩ L(x, 1), or

〈L(1, ξ), F (θ, 0)〉q ∩ L(x, 1)

gives two equations in α, β ∈ L:

α + θ = βx, αξ = β,

whence β = θ(x− ξ−1)−1. The intersection point is then F (xθ(x− ξ−1)−1, θ(x− ξ−1)−1).
So, for Ξ = L(0, 1), the set of the intersections of Ξ with all lines in SIIn−1,1,q which meet
H is

S(H ∩ Sn−1,1,q,Ξ) = {F (0, θ(x− ξ−1)−1) | x ∈ Fq} ∪ {F (0, θ)}.

This S(H∩Sn−1,1,q,Ξ) is obtained by inversion from the line joining the points F (0, θ−1)
and F (0, θ−1ξ−1). By [10, Theorem 5], CY is a normal rational curve of order δ′ =
min{q, [F (ξ−1) : F ]−1} = min{q, [Θ : b]−1}. Now apply lemma 1 for St = 〈H∩Sn−1,1,q〉q:if
t > q, then t = q and δ′ = q or δ′ = q − 1, so [Θ : b] > q and t = min{q, [Θ : b]}. If on
the contrary t < q, then t − 1 = δ′ = [Θ : b] − 1, so t = [Θ : b] and t = min{q, [Θ : b]}
again.

An important consequence of the above result answers the question of the existence
of a Desarguesian spread containing a given regulus R and a subspace disjoint from R.

Corollary 7. If a regulus R = Sn−1,1,q and an (n− 1)-dimensional subspace U , disjoint
from R, in PG(2n− 1, q) are contained in a Desarguesian spread then there is an integer
c such that any n-subspace H containing U intersects R in a normal rational curve of
order c.

The following remark illustrates that this necessary condition is not always satisfied.

Remark 8. For n > 2 by using the package FinInG [5] of GAP [6] examples can be given
of (n− 1)-subspaces disjoint from Sn−1,1,q contained in n-subspaces intersecting the Segre
variety in normal rational curves of distinct orders. We include one explicit example. Let
q = 4, Fq = F2(ω), with ω2 +ω+ 1 = 0. Let R be the regulus of 3-dimensional subspaces
of PG(7, 4) obtained from the standard subline PG(1, q) in PG(1, q4), and put

S3 := 〈(1, 0, 0, 0, ω2, 1, 0, 1), (0, 1, 0, 0, 1, ω2, 0, ω2),

(0, 0, 1, 0, 0, ω, 1, ω), (0, 0, 0, 1, ω2, ω2, ω, 1)〉.

Then S3 is a three-dimensional subspace disjoint from the regulus R. Moreover, the 4-
dimensional subspace 〈S3, (1, 0, 0, 0, 0, 0, 0, 0)〉 intersects the regulusR in a normal rational
curve of order 4, while the 4-dimensional subspace 〈S3, (0, 1, 0, ω

2, 0, 0, 0, 0)〉 intersects R
in a conic.
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4 André-Bruck-Bose representation

The André-Bruck-Bose representation of a Desarguesian affine plane of order qn is related
to the image of PG(2, qn), under the field reduction map F , by means of the following
straightforward result.

Proposition 9. Let D be the Desarguesian spread in PG(3n−1, q) obtained after applying
the field reduction map F to the set of points of PG(2, qn), l∞ a line in PG(2, qn), and
K a (2n)-subspace of PG(3n − 1, q), containing the spread F(l∞). Take PG(2, qn) \ l∞
and K \ 〈F(l∞)〉q as representatives of AG(2, qn) and AG(2n, q), respectively. Then the
map ϕ : AG(2, qn) → AG(2n, q) defined by ϕ(X) = F(X) ∩ K for any X ∈ AG(2, qn)
is a bijection, mapping lines of AG(2, qn) into n-subspaces of AG(2n, q) whose (n − 1)-
subspaces at infinity belong to the spread F(l∞).

The notation in Proposition 9 is assumed to hold in the whole section. The following
result improves [2, Theorems 3.3 and 3.5], by determining the order of the involved normal
rational curves.

Theorem 10. Let b be a q-subline of PG(2, qn), not contained in l∞. Set Θ = 〈b〉qn ∩ l∞.
Then the André-Bruck-Bose representation ϕ(b\l∞) is the affine part of a normal rational
curve whose order is δ = min{q, [Θ : b]}. More precisely, if δ = 1, then ϕ(b \ l∞) is an
affine line; if δ > 1, then b ∩ l∞ = ∅, and ϕ(b) is a normal rational curve with no points
at infinity.

Proof. The intersection H = 〈F(b)〉q ∩ K is an n-space containing F(Θ), and contained
in the span of the Segre variety Sn−1,1,q = F̃(b), as defined at the start of Section 3. The
result follows from Proposition 5 and Theorem 6.

The results in [2, Theorems 3.3 and 3.5] also characterize the normal rational curves
arising from q-sublines in AG(2, qn).

In [3, 14, 16] for n = 2 and [2, Theorem 3.6 (a)(b)] for any n the André-Bruck-Bose
representation of a q-subplane tangent to a line at the infinity is described. Further
properties are stated in the following theorem:

Theorem 11. Let B be a q-subplane of PG(2, qn) that is tangent to l∞ at the point T .
Let b be a line of B not through T , Θ = 〈b〉qn ∩ l∞, and δ = min{q, [Θ : b]}. Then there
are a normal rational curve C0 of order δ in the n-subspace ϕ(〈b〉qn), a normal rational
curve C1 ⊂ F(T ) of order δ′, with

δ′
{

= [Θ : b]− 1 for q > [Θ : b]
∈ {q − 1, q} otherwise,

(3)

and a projectivity κ : C0 → C1 (in the sense of Remark 3), such that ϕ(B \ l∞) is the ruled
surface union of all lines XXκ for X ∈ C0.
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Proof. By Theorem 10, C0 := ϕ(b) is a normal rational curve of order δ in the n-subspace
ϕ(〈b〉qn \ l∞), and for any P = ϕ(X) ∈ C0, the subline TX of B corresponds to an affine
line PP κ with P κ ∈ F(T ) at infinity. Define C1 = {P κ | P ∈ C0}.

By the field reduction map F = F3,n,q, the subplane B is mapped to F(B) which is the
set of all maximal subspaces of the first family in Sn−1,2,q ⊂ PG(3n − 1, q). Considering
Fqn as an Fq-vector space, the homomorphism

Fqn × F3
q → Fqn ⊗ F3

q : (λ, v) 7→ λ⊗ v

corresponds to a projective embedding g : PG(n − 1, q) × B → Sn−1,2,q whose image is
Sn−1,2,q, and such that F(X) = (PG(n − 1, q) × X)g for any point X in B. It holds
ϕ(B \ l∞) = Sn−1,2,q ∩ K \ F(T ). For any point U in B define

κU : (X, Y )g ∈ Sn−1,2,q 7→ (X,U)g ∈ F(U).

Note that for any Y ∈ B, the restriction of κU to F(Y ) is a projectivity. For any U ∈ b,
using the notation from Lemma 1 it holds CκU0 = S(C0,F(U)), and as a consequence, CκU0 is
a normal rational curve of order δ′ as in (3). Now, since for any P ∈ C0, say P = (XP , YP )g,
the points P , P κ and P κT are on the plane (XP × B)g ∈ SIIn−1,2,q, and P κ, P κT ∈ F(T ),
it follows that P κ = P κT . It also follows that C1 = CκUκT0 = S(C0,F(U))κT , and hence
C1 is a normal rational curve of order δ′ as in (3). Finally, κU : C0 → S(C0,F(U)) is a
projectivity as defined in Remark 3, and hence so is κ.

5 On the classification of clubs

An Fq-club (or simply a club) in PG(1, qn) is an Fq-linear set of rank three, having a
point of weight two, called the head of the club. An Fq-club has q2 + 1 points, and the
non-head points have weight one. From now on it will be assumed that n > 2. The
next proposition is a straightforward consequence of the representation of linear sets as
projections of subgeometries [12, Theorem 2].

Proposition 12. Let L be an Fq-club in PG(1, qn) ⊂ PG(2, qn). Then there are a q-
subplane Σ of PG(2, qn), a q-subline b in Σ, and a point Θ ∈ 〈b〉qn \ b, such that L is the
projection of Σ from the center Θ onto the axis PG(1, qn).

As before the notation F and F̃ is used, where F = F2,n,q denotes the field reduction
map from PG(1, qn) to PG(2n− 1, q).

Proposition 13. Let L be an Fq-club of PG(1, qn) with head Υ. Then F̃(L) contains two
collections of subspaces, say F1 and F2, satisfying the following properties.

(i) The subspaces in F1 are (n−1)-dimensional, are pairwise disjoint, and any subspace
in F1 is disjoint from F(Υ).

(ii) Any subspace in F2 is a plane and intersects F(Υ) in precisely a line.
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(iii) Any point of F(Υ) belongs to exactly q + 1 planes in F2.

(iv) If L is not isomorphic to PG(1, q2), and l is any line of PG(2n− 1, q) contained in
F̃(L), then l is contained in F(Υ) or in a subspace in F1 ∪ F2.

Proof. The assumptions imply the existence of Σ and a q-subline b in Σ as in Proposition
12. The assertions are a consequence of the fact that F̃(Σ) is a Segre variety Sn−1,2,q in
PG(3n− 1, q). Let

p1 : PG(2, qn) \Θ→ PG(1, qn)

be the projection with center Θ, associated with

p2 : PG(3n− 1, q) \ F(Θ)→ PG(2n− 1, q).

The collections F1 and F2 are defined as follows:

F1 = {F(p1(X)) | X ∈ Σ \ b} = F(L) \ F(Υ), F2 = {p2(V II) | V II ∈ F̃(Σ)II}.

The assertion (i) is straightforward, as well as dim(V ) = 2 for any V ∈ F2. For any V II ∈
F̃(Σ)II , the intersection V II∩〈F̃(b)〉q is a line, and this with p−12 (F(Υ)) = 〈F̃(b)〉q \F(Θ)
implies the second assertion in (ii). Next, let P be a point in F(Υ). A plane V = p2(V

II)
contains P if, and only if, V II intersects the n-subspace 〈F(Θ), P 〉q, that is, V II intersects
the normal rational curve Sn−1,2,q ∩ 〈F(Θ), P 〉q; this implies (iii).

Assume that a line l ⊂ F̃(L) exists which is neither contained in F(Υ), nor in a
T ∈ F1 ∪ F2. Let Q be a point in l \ F(Υ), and let V ∈ F2 such that Q ∈ V . It holds
L = B(V ). Then B(l) is a q-subline of L. Suppose that a line l′ in V exists such that
B(l′) = B(l). Since B(Q) 6= B(Q′) for any Q′ ∈ V , Q′ 6= Q, the line l′ contains Q. Then
l, l′ are two distinct transversal lines in B(l)II , a contradiction. Hence B(l′) 6= B(l) for
any line l′ in V , that is, B(l) is a so-called irregular subline [8]. By [8, Corollary 13], no
irregular subline exists in L, and this contradiction implies (iv).

Proposition 14. Let L be an Fq-club with head Υ. Let Θ be the point and b be the subline
as defined in Proposition 12. Then for any point X in F(Υ), the intersection lines of F(Υ)
with any q distinct planes in F2 containing X span an s-dimensional subspace, where

(i) s = [Θ : b]− 1 if q > [Θ : b];

(ii) s ∈ {q − 1, q} if q 6 [Θ : b].

Proof. Let p2 be the projection map as defined in the proof of Proposition 13, X = p2(P ),
and H = 〈F(Θ), P 〉q. For any plane V = p2(V

II), it holds X ∈ V if, and only if
V II ∩H 6= ∅. The intersection H∩F̃(b) is a normal rational curve of order min{q, [Θ : b]}
(cf. Theorem 6). Let V0 = p2(V

II
0 ) be the unique plane of F2 through X distinct from

the q planes chosen in the assumptions (cf. Proposition 13). Let Q = F̃(b)∩V II
0 ; B(Q) is

an (n − 1)-subspace of F̃(b)I . Such B(Q) is mapped onto B(X) = F(Υ) by p2. Assume
Vi = p2(V

II
i ), i = 1, 2, . . . , q, are the q planes chosen in the assumptions. Any V II

i ,
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i = 1, 2, . . . , q, intersectsH, hence V II
i ∩B(Q) is the intersection of B(Q) with a transversal

line of F̃(b) intersecting the normal rational curve H ∩ F̃(b). By Lemma 1 (ii), the set

S = {V II
i ∩ B(Q) | i = 1, 2, . . . , q} ∪ {Q}

is a normal rational curve of order s where s takes the values as stated in (i) and (ii).
Since Vi ∩ F(Υ) is the line through X and a point of p2(S), distinct from X, the span of
the intersection lines is the same as the span of p2(S).

Theorem 15. Let In,q be the set of integers h dividing n and such that 1 < h < q. For
any h ∈ In,q, let Lh be the linear set obtained by projecting a q-subplane Σ of PG(2, qn)
from a point Θh collinear with a q-subline b in Σ and such that [Θh : b] = h. Then the set
Λ = {Lh | h ∈ In,q} contains Fq-clubs in PG(1, qn) all belonging to distinct orbits under
PGL(2, qn).

Proof. If n is odd, then no club is isomorphic to PG(1, q2). So, by Proposition 13 (iv), the
families F1 and F2 are uniquely determined. The thesis is a consequence of Proposition
14, taking into account that if L and L′ are projectively equivalent, then F̃(L) and F̃(L′)
are projectively equivalent in PG(2n− 1, q).

In order to deal with the case n even, it is enough to show that in Λ at most one club
is isomorphic to PG(1, q2). So assume Lh ∼= PG(1, q2). Then F̃(Lh) has a partition P1

in (n − 1)-subspaces, and a partition P2 in 3-subspaces. From [8, Lemma 11] it can be
deduced that any line contained in F̃(Lh) is contained in an element of P1 or P2. The
intersections of a subspace U of a family Pi with the elements of the other family form a
line spread of U . Hence all planes in F2 are contained in 3-subspaces of P2, and all planes
of F2 through a point X in F(Υ) meet F(Υ) in the same line. By Proposition 14 this
implies h = 2.
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Verlag der Wissenschaften, Berlin, 1961.

[5] FinInG – a GAP package - Finite Incidence Geometry, version 1.0, 2014. Bamberg,
J.; Betten, A.; Cara, Ph.; De Beule, J.; Lavrauw, M. and Neunhöffer, M.
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A Appendix: On a result in [4]

In [4, p.175] the following result (Korollar) is stated for F = C.

Corollary 16. Let F be an algebraically closed field. If an s-subspace Ss of PG(2s−1, F )
meets all SI ∈ SIs−1,1,F only in points, then such points span Ss.

In [4] the previous result is seemingly proved using methods valid in any field with
enough elements. However such a generalisation would contradict Theorem 3.3. In the
opinion of the authors the proof in [4] is obtained using an erroneous argument. As a
matter of fact, it is claimed in the proof at page 174 that the assumption 〈Φ〉 = Ss is not
used. However the contradiction Ss ⊂ 〈Ss−2,1,C〉 is inferred from Φ ⊂ Ss−2,1,C.

A further counterexample, which exists whenever a hyperbolic quadric Q+(3, F ) in a
three-dimensional projective space admits an external line (a condition which is not met
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when the field F is algebraically closed) is the following. If ` is the line corresponding to
the two-dimensional vector space 〈e1〉⊗ 〈e′1, e′2〉 and m is a line external to the hyperbolic
quadric obtained by the intersection of the Segre variety S2,1,F with the 3-space corre-
sponding to the vector space 〈e2, e3〉 ⊗ 〈e′1, e′2〉, then the 3-dimensional subspace 〈`,m〉
intersects S2,1,F in the line ` belonging to SII2,1,F .

For the sake of completeness, a proof for corollary 16 is given.

Proof of corollary 16. Define

St = 〈Ss ∩ Ss−1,1,F 〉, t = dimSt (4)

and suppose t < s. It is proved in [4, p.173 (6)] that St ⊂ 〈St−1,1,F 〉 for some St−1,1,F ⊂
Ss−1,1,F .

Note that Ss ∩ 〈St−1,1,F 〉 = St; otherwise, comparing dimensions, Ss would intersect
each SI ∈ St−1,1,F in more than one point. Now choose

• a subspace Ss−t−1 ⊂ Ss such that Ss−t−1 ∩ 〈St−1,1,F 〉 = ∅;

• a Segre variety Ss−t−1,1,F ⊂ Ss−1,1,F , such that 〈Ss−t−1,1,F 〉 ∩ 〈St−1,1,F 〉 = ∅;

• two distinct AI , BI ∈ SIs−t−1,1,F .

Since 〈Ss−t−1,1,F 〉 and 〈St−1,1,F 〉 are complementary subspaces of 〈Ss−1,1,F 〉, a projection
map

π : 〈Ss−1,1,F 〉 \ 〈St−1,1,F 〉 → 〈Ss−t−1,1,F 〉

is defined by π(P ) = 〈P ∪ St−1,1,F 〉 ∩ 〈Ss−t−1,1,F 〉.
Now suppose π(Ss−t−1) ∩ Ss−t−1,1,F = ∅. In 〈Ss−t−1,1,F 〉 consider

• the regulus R corresponding to SIs−t−1,1,F , and the projectivity κ : AI → BI such
that, for any P ∈ AI , the line 〈P, κ(P )〉 belongs to SIIs−t−1,1,F ;

• the regulus R′ containing AI , BI and π(Ss−t−1), and the projectivity κ′ : AI → BI

such that, for any P ∈ AI , the line 〈P, κ′(P )〉 is a transversal line of R′.

Since F is an algebraically closed field, κ′−1 ◦ κ has a fixed point P . Therefore κ(P ) =
κ′(P ), soR andR′ have a common transversal. This contradicts π(Ss−t−1)∩Ss−t−1,1,F = ∅.
So, a point P ∈ Ss−t−1 exists such that π(P ) ∈ Ss−t−1,1,F .

Next, let CI ∈ SIs−1,1,F be such that π(P ) ∈ CI , and Q the point in 〈St−1,1,F 〉 such
that Q, P , and π(P ) are collinear. If Q ∈ St, then π(P ) ∈ Ss, a contradiction; also
Q ∈ CI leads to a contradiction (since it implies P ∈ CI). So Q 6∈ St ∪ CI and by a
dimension argument two points Q1 ∈ CI \ St and Q2 ∈ St \CI exist such that Q, Q1 and
Q2 are collinear: they are on the unique line through Q meeting both CI ∩ 〈St−1,1,F 〉 and
a (t− 1)subspace of St disjoint from CI .

The plane 〈P,Q1, Q2〉 contains the lines PQ2 ⊂ Ss and π(P )Q1 ⊂ Ss−1,1,F which meet
outside 〈St−1,1,F 〉. This is again a contradiction.
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