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Abstract

We construct a 2-generated group Γ such that its Cayley graph possesses finite
connected subsets with arbitrarily large finite Heesch number. Thus we obtain an
example of a Cayley graph with an infinite Heesch number.
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1 Introduction

A Heesch number of a polygon P is the maximum number of layers of polygons isometric
to P that can surround P without overlapping. For example, a rectangle in the plane has
Heesch number infinity since it actually tiles the entire plane. On the other hand, there
exist polygons which form only a partial tile for the plane, hence they have a finite Heesch
number. It is more interesting to find polygons with a finite Heesch number so we will
drop the perfect tiles of the plane from the consideration.

The term Heesch number is named after the geometer Heinrich Heesch who found an
example of a polygon with Heesch number 1 (See [5], p.23). This polygon is described in
Figure 1 1, and consists of a union of a square, an equilateral triangle and a right triangle
with angles 30-60-90. It is already much harder to find polygons with a Heesch number 2
(a well known example of such a polygon is given in Figure 2).

The first examples of polygons with Heesch numbers 2, 3, 4 and 5 have been first
discovered by A.Fontaine [3], R.Ammann, F.W.Marshall and C.Mann [6] respectively (See
[7] for the history of this problem). DeWeese and Coronaldi have reported (unpublished)
the existence of hexagons marked with generalized edge matching rules (i.e. imposing
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Figure 1: A pentagon with Heesch number 1.

extra conditions on the tiling) having Heesch numbers 0-9 and 11.
Without assuming any condition on the tiling, it is not known if there exists any

polygon with a finite Heesch number N > 5. This is called Heesch’s Problem and has
close connections to a number of problems in combinatorial geometry such as Domino
Problem and Einstein Problem. The latter asks if there exists a tile of the plane consisting
of a single polygon P such that any tiling of the plane by P is nonperiodic (“Ein Stein”
stands for “one stone” in German; this word play is attributed to Ludwig Danzer). Such
polygons have been constructed by G.Margulis and S.Mozes [8] in the hyperbolic plane,
while in the Euclidean plane no such examples are known. (The famous Penrose tiling
is known to be always nonperiodic, but it uses two polygons, not one. Also, J.Socolar
and J.Taylor [9, 10], have found an aperiodic hexagon in the Euclidean plane but again
with some extra matching rules.) Incidentally, in the hyperbolic plane H2, the Heesch’s
Problem is solved completely; it is shown by A.S.Tarasov [11] that there exist polygons
in H2 with an arbitrary Heesch number N > 1.

In the Euclidean plane, one can also try to work with its lattice Z2 noticing that any
finite connected set K in the Cayley graph of Z2 with respect to the standard generating
set {(±1, 0), (0,±1)} gives rise to the polygon

P (K) = {(x, y) ∈ R2 | min
(u,v)∈K

max{|x− u|, |y − v|} 6 1

2
}

which consists of the 1
2
-neighborhood of the discrete set K in the l∞-metric. Then one

can ask if there exist polygons of the form P (K) with a big Heesch number. Indeed, the
polygon with Heesch number 2 constructed in [3] is of the form P (K) but this is not the
case for the known examples of polygons with Heesch numbers 3, 4 and 5. Notice also
that if K ⊂ Z2 is not connected then P (K) is not a polygon any more, hence restricting
to connected sets is natural. We also would like to recall that if one allows disconnected

1Figure 1 and Figure 2 in this paper have been borrowed from the web page
http://math.uttyler.edu/cmann/math/heesch/heesch.htm
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Figure 2: C.Mann’s example of a 20-gon with Heesch number 2.

polygons (i.e. union of finitely many connected ordinary polygons) then the Einstein
Problem is already solved, see [9].

The notion of a partial tile can be defined in any group (where one moves the sets
around by a left translation), and more generally in any graph (where one moves the sets
around by an automorphism of the graph). It becomes interesting then if there exists a
homogeneous graph (e.g. a vertex transitive graph), and more specifically, a Cayley graph
which possesses connected partial tiles with arbitrarily big Heesch number. In the current
paper we provide a positive answer to this question; we construct a group Γ generated by a
two element subset S such that the Cayley graph of Γ with respect to S possesses partial
tiles of arbitrarily big finite Heesch number (in the Cayley graph, the sets are moved
around by left translations of the group). Notice that it is very easy to find disconnected
sets with a big finite Heesch number, so without the connectedness condition the question
is easy (and somewhat unnatural).

To state our main result, we need to define the notions of tile, partial tile, and Heesch
number in the setting of an arbitrary finitely generated group.

Definition 1. (tiles) Let Γ be a countable group, F be a finite subset with cardinality
at least 2. F is called a tile if there exists C ⊂ Γ such that Γ = t

g∈C
gF . The partition

t
g∈C

gF is called a tiling, and the set C is called the center set of this tiling. We will always

assume that 1 ∈ C.

We will also be interested in partial tiles of groups.

Definition 2. (partial tiles) Let Γ be a countable group, F be a finite subset with
cardinality at least 2 such that F does not tile Γ. For a subset M of Γ, we say F
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tiles M if there exists C ⊂ Γ such that 1 ∈ C and M ⊆ t
g∈C

gF . F will be called a partial

tile of Γ, and the partition t
g∈C

gF is called a partial tiling.

Let now Γ be a finitely generated group. We will fix a finite symmetric generating set S
of Γ, and study partial tiles in the Cayley graph of Γ w.r.t. the left invariant Cayley metric
given by S (by a set in a Cayley graph we mean a set of vertices). We will always assume
that the generating set does not include the identity element so, in particular, the Cayley
graphs do not have loops. For all g ∈ Γ, |g|Γ will denote the length of the element g in the
Cayley metric, and for all x, y ∈ G, dΓ(x, y) will denote the distance between x and y, i.e.
dΓ(x, y) = |x−1y| (we will drop the index if it is clear from the context which group we are
considering). For any g ∈ Γ, we will also write Bg(r) = {x ∈ Γ | d(g, x) 6 r} for the ball of
radius r around g; for any two subsets A,B of Γ we will write d(A,B) = min

x∈A,y∈B
d(x, y) for

the distance between the sets A and B; and for any finite subset A ⊂ Γ, we will also write
∂A = {x ∈ A | |B1(x) ∩ (Γ\A)| = |B1(x)| − 2} for the boundary of A; so the boundary
of A consists of those points x of A such that exactly one neighbor of x belongs to A.
Finally, a set F in a Cayley graph will be called connected if for any a, b ∈ F , there exists
a subset {z1, . . . , zn} ⊆ F such that z1 = a, zn = b and d(zi, zi+1) = 1, 1 6 i 6 n− 1.

If α = (x1, . . . , xn), β = (y1, . . . , ym) are paths in a Cayley graph then we say β is quasi-
transversal to α if there exists p ∈ {2, . . . , n−1} such that y1 = xn, y2 = xn−1, . . . , yn−p+1 =
xp and yi /∈ {x1, . . . , xn} for all i > n − p. If β is quasi-transversal to α as above,
then the path (y1, . . . , yn−p, yn−p+1) will be called the head of β(w.r.t. α), and the path
(yn−p+1, . . . , ym) will be called the tail of β(w.r.t. α). We also will say that the divergence
of α and β occurs at xp. We will say β contains α if {x1, . . . , xn} ⊆ {y1, . . . , ym}; and β
follows α if y1 = xn and {x1, . . . , xn−1}∩{y1, . . . , yn} = ∅. The length of α will be defined
as |α| = |x−1

1 xn|.
For a partial tile K, we say that the Heesch number of K equals N , if one can tile N

layers around K but not N + 1 layers. To be precise, we need the following definitions.

Definition 3. (layers) Let C ⊆ Γ such that π = t
g∈C

gK is a partial tiling. Let also

C0 ⊆ C. We say C0K is the layer of level 0 of π if C0 = {1}. For a subset C1 ⊆ C, we
say C1K is the layer of level 1 of π, if C1 is a minimal subset of C such that C1 ∩C0 = ∅
and {x ∈ Γ | d(x,K) = 1} ⊆ C1K. (notice that if C1 exists then it is unique). For any
n > 2, inductively, we define the layer of level n of π as follows: if C0K,C1K, . . . , Cn−1K
are the layers of level 0, 1, . . . , n− 1 respectively, then we say CnK is the layer of level n
if Cn is a minimal subset of C such that

Cn ∩ t
06i6n−1

Ci = ∅ and {x ∈ Γ | d(x, t
06i6n−1

CiK) = 1} ⊆ CnK

Motivated by the above definitions, one naturally defines the notion of a Heesch num-
ber for partial tiles of the group Γ.

Definition 4. (Heesch number) Let K be a finite subset of Γ. We write Heesch(K) = N
if N is the maximal non-negative integer such that Γ has a partial tiling by the left shifts
of K which has N layers.
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If a finite subset K tiles Γ then we will write Heesch(K) =∞.
The main result of the paper is the following

Theorem 5. There exists a finitely generated group Γ with a fixed finite generating set
S such that for any natural N , Γ has a connected partial tile KN with a finite Heesch
number bigger than N .

Let us emphasize again that without the condition “connected” the result would be
trivial as the group Z easily possesses disconnected partial tiles with arbitrarily big finite
Heesch number. The statement of Theorem 5 also motivates the notion of a Heesch num-
ber for an arbitrary Cayley graph G = G(Γ, S) of a group Γ with respect to the symmetric
generating set S, namely, we define this number as Heesch(G(Γ, S)) = supH(Γ, S) where

H(Γ, S) = {N > 0 | G(Γ, S) admits a connected partial tile KN with Heesch(KN) = N}.

Thus, if G(Γ, S) possesses connected partial tiles with arbitrarily large Heesch number
N , then we will have Heesch(G(Γ, S)) = ∞. (Also, if all finite connected subsets of Γ
actually tile Γ then H(Γ, S) = ∅, and we will have Heesch(G(Γ, S)) = −∞; here, we
follow a convention that sup ∅ = −∞). Notice that the quantity Heesch(G(Γ, S)) is quite
sensitive to the choice of the generating set S.

Theorem 5 now implies the existence of a finitely generated group Γ such that its
Cayley graph G(Γ, S) with respect to a certain finite symmetric generating set S has an
infinite Heesch number, i.e. Heesch(G(Γ, S)) =∞.

Remark 6. Let G(Γ, S) be the Cayley graph of Γ with respect to a finite symmetric
generating set S. One can consider the automorphism group Aut(G(Γ, S)) of the Cayley
graph. Notice that this automorphism group contains an isomorphic copy of the group Γ
since the latter acts on the Cayley graph by left translations. Then for any finite connected
set F of the Cayley graph G(Γ, S), one can introduce the notion of partial tiles and Heesch
numbers similarly; for g ∈ Aut(G(Γ, S)) and x ∈ Γ, the expression gx will be understood
as the image of the automorphism g applied to x (instead of the left translation of x by
g). The main result of the paper, i.e. Theorem 5 holds in this general setting as well by
the same proof adapted to this new language.

Example 7. Considering the full automorphism groups of Cayley graphs (instead of just
the left translations) allows more possibilities for constructing polyhedral shapes of finite
Heesch number in the spaces where the Cayley graphs embed. Following A.Fontaine, we
consider a subset

K = {(i, 0) | 0 6 i 6 10} t {(i, 1) | 0 6 i 6 3} t {(i, j) | 7 6 i 6 10, 1 6 j 6 2}

of Z2 viewed also as a subset of the Cayley graph G of Z2 = 〈a, b〉 with respect to the
standard generating set {a±1, b±1}. The automorphisms of G include all translations by
the group elements as well as some reflections and rotations (such as reflections w.r.t.
coordinate axis or rotations by multiples of 90 degrees). Let Rx, Ry denote the reflections
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w.r.t. x-axis and y-axis respectively, and let r be a rotation by 90 degrees in the clockwise
direction. We consider the following sets of automorphisms of G:

C0 = {1},

C1 = {a7b12Ryr, a
7b14r, a12b7Ryr, a

9r2, a−3b−7Ryr
−1, a−7b5Rx},

C2 = {a−5b5, a−6b8, a−6b11, a7b12r−1, a7b14Ryr
−1, a20b13Ry, a

20b10Ry,

a19b10r2, a12b8r, a16b−5Ry, a
2b−12Ryr

−1, a−1b−14Ryr
−1, a−1b−7Ryr,

a−3b−8r−1, a−6b−8r−1, a−7b5r2, a−5b5Ry}.

Then C1K forms a layer around C0K = K and C2K forms a layer around C1K. It is
impossible to make a partial tiling with three layers. Thus by the extended definition in
Remark 6, K has a Heesch number two. The three sets ∪

g∈Ci

P (gK), 0 6 i 6 2 also form

a partial tiling of the polygon P (K) in the Euclidean plane.

2 Hyperbolic Limits

We will be using the well known concept of hyperbolic limits. The reader may consult with
[1] for basic notions of the theory of word hyperbolic groups but we will assume nothing
other than the familiarity with the definition of a word hyperbolic group. Following the
convention, we will say that a word hyperbolic group is elementary if it is virtually cyclic.
Let us first recall a well known theorem due to Gromov and Delzant which motivates the
notion of hyperbolic limit.

Theorem 8. (See [4] and [2]) Let H be a non-elementary word hyperbolic group with a
fixed finite generating set. Then for any non-torsion element γ ∈ H and for any R > 0
there exists a positive integer N0 such that for all N > N0 the quotient H ′ = H/〈γN = 1〉
is non-elementary word hyperbolic, moreover the quotient map π : H → H ′ is injective on
the ball BR(1) of radius R around the identity element. [in other words, adding the relation
γN = 1 is injective on the ball of radius R and the quotient remains non-elementary word
hyperbolic].

Let now H be a non-elementary word hyperbolic group with a fixed finite symmetric
generating set S. The group H∞ is called a hyperbolic limit of H if there exists a sequence
H0, H1, H2, . . . of non-elementary word hyperbolic groups such that

(i) H0 = H;
(ii) Hn+1 is a quotient of Hn for all n ∈ N ∪ {0};
(iii) for all n ∈ N∪ {0}, the quotient epimorphism πn : Hn → Hn+1 is injective on the

ball of radius n + 1 around identity element w.r.t. the generating set S [more precisely,
with respect to the generating set πn−1 . . . π1π0(S), but by abusing the notation, we will
denote it by S].
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Since the ball of radius n remains injective (unchanged) by all the epimorphisms πi,
i > n, the union of these stable balls determines a group, denoted by H∞, and called
a hyperbolic limit of H. If g ∈ Hn belongs to the ball of radius n around the identity
element then, by abusing the notation, we will denote the image of g in H∞ by g. So the
image of the generating set S of H in H∞ will be denoted by S.

A non-elementary word hyperbolic group may have many different hyperbolic lim-
its, and groups which are very far from being word hyperbolic can be hyperbolic lim-
its. Hyperbolic limits are very useful; for example, using Theorem 8, one immediately
obtains a finitely generated infinite torsion group as a hyperbolic limit of an arbitrary
non-elementary word hyperbolic group.

In the proof of Theorem 5, the group Γ will be constructed as a hyperbolic limit of
virtually free groups. Having a virtually free group at each step allows a great simplifica-
tion in the argument but that also means we need to make extra efforts to keep the group
virtually free at each step. Indeed, with a much more complicated argument, starting
with an arbitrary non-elementary word hyperbolic group H0, one can construct a group
as a quotient of H0 with connected partial tiles of arbitrarily big finite Heesch number.

3 Intermediate Results

The following simple lemma will be extremely useful.

Lemma 9. Let F be a finite subset of Γ, and π : Γ → Γ′ be an epimorphism such that
π(F ) is a tile of Γ′ and |F | = |π(F )|. Then F is a tile of Γ.

Proof. Assume N = ker(π), and Γ′ = t
g′∈C′⊆Γ′

g′π(F ) is a partition of Γ′ into tiles. For

every g′ ∈ C ′ we choose a representative g ∈ Γ with π(g) = g′. Let C be the set of all
representatives. Then we have a partition Γ = t

g∈C,n∈N
gnF .

In the proof of the main theorem, we will be considering virtually free groups. If G is
such a group with a fixed Cayley metric |.|, and N is finite index free subgroup of rank
r > 2 with a generating set S of cardinality r, then, in general, it is possible that |g| < |s|
where s ∈ S while g ∈ N\({1}∪S∪S−1). However, we can avoid this situation by taking
N to be a very deep (still of finite index) subgroup in G. The following lemma will be
useful.

Lemma 10. Let G be a virtually non-abelian free group with a fixed finite generating set
and the corresponding left-invariant Cayley metric |.|. Then there exists a finite index
normal subgroup N EG such that the following conditions hold:

(c1) N is a free group of rank k > 2 generated by a subset {g1, . . . , gk},
(c2) min{|g1|, . . . , |gk|} 6 1.1min{|x| : x ∈ N\{1}}.

Proof. Since G is virtually free, with respect to the metric |.|, it is δ-hyperbolic for some
δ > 0 (i.e. geodesic triangles are δ-thin, see [1]). Let G0 be a free subgroup of G of
finite index such that G0 ∩ BR0(1) = {1} where R0 > 100δ. Let also r = rank(G0) and
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S0 = {f1, . . . , fr} be a generating set of G0. We will denote the left invariant Cayley
metric of G0 with respect to S0 by |.|0. (It is well known that the metrics |.| and |.|0 are
bi-Lipshitz equivalent, i.e. there exists λ > 1 such that for all x ∈ G0, 1

λ
|x|0 6 |x| 6 λ|x|0.

However, we will need a finer analysis to get stronger inequalities.)
G0 has a finite index normal subgroup N such that N is a normal subgroup of G. Let

N ∩BR(1) = {1} for some R > R0. Let also k = rankN and

A = {(γ1, . . . , γk) : 〈γ1, . . . , γk〉 = N, |γ1|0 6 |γ2|0 6 . . . 6 |γk|0}.

Now we choose a suitable generating k-tuple of N , i.e. an arbitrary (g1, . . . , gk) ∈ A
such that for any (γ1, . . . , γk) ∈ A we have |g1|0 6 |γ1|0, moreover, for all i ∈ {1, . . . , k−1},
if (g1, . . . , gi, γi+1, . . . , γk) ∈ A then |gi+1|0 6 |γi+1|0.

We will first prove the claim (a somewhat stronger version of it) for the group G0 in the
|.|0 metric, more precisely, we will show that for all g ∈ N\{1} such that |g|0 = min{|x|0 :
x ∈ N\{1}} we have |g|0 = |g1|0. We can write g as a reduced word W (g1, . . . , gk) in
the alphabet {g±1

1 , . . . , g±1
k } such that the length of g in this alphabet is minimal; we

will denote this length by q. Each of g±1
i , 1 6 i 6 k and the element g itself can be

represented as reduced word in the alphabet {f±1
1 , . . . , f±1

r } as well. In the Cayley graph
of G w.r.t. this generating set, W can be represented as a concatenation γ1γ2 . . . γq of the
paths γi, 1 6 i 6 q, where the path γi represents the i-th letter of the word W (g1, . . . , gk)
(in the alphabet {g±1

1 , . . . , g±1
k }).

By the choice of the generating k-tuple (g1, . . . , gk) and by the minimality assumption
on |g|0, γi+1 does not contain γi, 1 6 i 6 q−1. Then, either γi+1 follows γi, or γi+1 is quasi-
transversal to γi, for all 1 6 i 6 q−1. In the latter case, again by the choice of (g1, . . . , gk),
we have |tail(γi+1)|0 > |head(γi+1)|0 (although not really needed, by the minimality of q
we can even claim a strict inequality). Moreover, if γi+2 is also quasi-transversal to γi+1

then the divergence occurs at the tail of γi+1, i.e. |head(γi+2)|0 < |tail(γi+1)|0. From these
inequalities we immediately obtain that |g|0 > |g1|0.

Now we need to prove the same inequality (with an extra factor of 1.1.) in the original
|.| metric. For this, first, we need to arrange that the generating set S0 = {f1, . . . , fr} we
start with is also suitable: let

B = {(γ1, . . . , γr) : 〈γ1, . . . , γr〉 = G0, |γ1| 6 |γ2| 6 . . . 6 |γk|}

and choose an arbitrary r-tuple (f1, . . . , fr) ∈ B such that for any (γ1, . . . , γr) ∈ B we
have |f1| 6 |γ1|, moreover, for all i ∈ {1, . . . , r − 1}, if (f1, . . . , fi, γi+1, . . . , γr) ∈ B then
|fi+1| 6 |γi+1|.

Now we choose a suitable generating k-tuple of N in the |.| metric, i.e. we will look
at the following set of k-tuples

C = {(γ1, . . . , γk) : 〈γ1, . . . , γk〉 = N, |γ1| 6 |γ2| 6 . . . 6 |γk|}

and choose an arbitrary k-tuple (g1, . . . , gk) ∈ C such that for any (γ1, . . . , γk) ∈ C we
have |g1| 6 |γ1|, moreover, for all i ∈ {1, . . . , k − 1}, if (g1, . . . , gi, γi+1, . . . , γk) ∈ C then
|gi+1| 6 |γi+1|.
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We will assume that g ∈ N\{1} with |g| = min{|x| : x ∈ N\{1}} and we need to show
that |g| 6 1.1|g1|. Again, g can be written as a reduced word W (g1, . . . , gk) = γ1 . . . γq
in the alphabet {g±1

1 , . . . , g±1
k } such that the length q of g in this alphabet is minimal,

and g also can be represented as reduced word in the alphabet {f±1
1 , . . . , f±1

r } as well.
In this case, we will have the inequalities |tail(γi+1)| > |head(γi+1)| − 10δ (when γi+1 is
quasi-transversal to γi) and |head(γi+2)| < |tail(γi+1)| + 10δ (when, in addition, γi+2 is
also quasi-transversal to γi+1) instead. However, if R0 is sufficiently big w.r.t. δ, by the
choice of S0 and by δ-hyperbolicity, we obtain that, in the Cayley graph of G0 w.r.t. S0,
the path γi+2 will not include any neighbor of x in the concatenation γiγi+1 where x is an
element at which the divergence of γi and γi+1 occurs. Thus we again have the inequality
|g| > |g1| − 20δq. Then, for sufficiently big R we obtain that |g| > 1

1.1
|g1|.

We now would like to state the central result of this section.

Proposition 11. Let G be a finitely generated virtually non-abelian free group, N be a
finite index normal subgroup of G such that N is a free group of rank k > 4 generated
by elements g1, . . . , gk. Then there exists a generating k-tuple (h1, . . . , hk) of N such that
for all positive real numbers R > 0, there exists n0 > 1 such that for all n > n0, the
quotient G/〈hni = 1, 1 6 i 6 k〉 is a virtually non-abelian free group and the quotient
epimorphism G → G/〈hni = 1, 1 6 i 6 k〉 is injective on the ball of radius R around the
identity element.

Before proving Proposition 11, we need to make a small digression into the outer
automorphisms of free groups explaining also why do we need the condition k > 4. Let
G,N be as in Proposition 11, i.e. G is a virtually non-abelian free group, and N is a finite
index free normal subgroup. If g ∈ N then we have NN(g) 6 NG(g) 6 N but the normal
closure NG(g) of g in G can be much bigger than the normal closure NN(g) of g in N .
This is an undesirable situation for us; however, one can replace (g1, . . . , gk) with another
generating k-tuple (h1, . . . , hk) of N , and let g be quite special by taking g = hm1 , for
some (sufficiently big) m > 1. Then we can take the normal closure of a more symmetric
set S = {hm1 , . . . , hmk }, and it turns out that if k > 4 then the normal closure of S in N
coincides with its normal closure in G. To see this let us first recall the following nice
result of B. Zimmerman [12].

Theorem 12. Let k > 2. A finite subgroup Out(Fk) has a maximal order 12 for k = 2,
and a maximal order 2kk! for k > 3. Moreover, for k > 4, all finite subgroups are
conjugate to a unique maximal subgroup Hk of order 2kk!. �

If a1, . . . , ak are some generators of Fk then let

Lk = {φ ∈ Aut(Fk) | ∀i, φ(ai) ∈ {a±1
1 , . . . , a±1

k }.

Notice that Lk is a subgroup of Aut(Fk) of order exactly 2kk!. Moreover, the group Lk
induces a finite subgroup Lk of Out(Fk) of the same cardinality. Then by Theorem 12, for
k > 4, all finite subgroups of Out(Fk) are conjugate to a subgroup of Lk (in other words,
in the statement of Theorem 12, one can take Hk to be Lk).

Thus we obtain the following lemma.

the electronic journal of combinatorics 23(1) (2016), #P1.38 9



Lemma 13. G be a finitely generated virtually non-abelian free group, N be a finite
index normal subgroup of G such that N is free of rank k > 4. Then there exists a
generating k-tuple (h1, . . . , hk) of N such that for all m > 2, we have NN(S) = NG(S)
where S = {hm1 , . . . , hmk }.

The Lemma 13 guarantees that N/NN(S) is a finite index subgroup of G/NG(S); it
remains to recall a folklore result that N/NN(S) is always virtually free. For the sake of
completeness we would like to formalize this claim in the following lemma.

Lemma 14. Let N ∼= Fk be a free group of rank k > 3 generated by elements a1, . . . , ak.
Then for all m > 2, the quotient group Nm = N/〈am1 = · · · = amk = 1〉 is virtually
non-abelian free.

For the proof, it suffices to recall a well known fact that the free product of two finitely
generated virtually free groups is still virtually free (in particular, the free product of
finite groups is virtually free), moreover, the free product of two non-trivial finite groups
is virtually non-abelian free provided at least one of these finite groups have order at least
3.

Now, Proposition 11 follows immediately from Theorem 8, Lemma 13 and Lemma 14,
by taking m to be a sufficiently big positive integer.

We close this section with the following very useful result.

Lemma 15. Let G be a group with a fixed finite symmetric generating set S of cardinality
at least four such that there is no non-trivial relation of length less than four among the
elements of S, and for some s > 1, and for all distinct x, y, z ∈ S there exists a path
in G\{1} of length at most s from x to y not containing z. Let also N be a finite
index normal subgroup of G such that N ∩ B10s(1) = {1}, and g ∈ N\{1} such that
|g| 6 1.1min{|x| | x ∈ N\{1}}. Then there exists a connected subset A ⊂ G such that the
following conditions hold:

(a1) |A| = |G/N |,
(a2) 1 ∈ A,
(a3) x−1y /∈ N for all distinct x, y ∈ A,
(a4) d(g, A) = 1,
(a5) if π = t

h∈C
hA is the left tiling of G by A then gn ∈ C for all n ∈ Z. 2.

Proof. Let ε : G → G/N be the quotient map, and G,G1 be the Cayley graphs of the
groups G,G/N with respect to the generating sets S, ε(S) respectively. Let also r = (x0 =
1, x1, . . . , xn, xn+1 = g) be a path in G connecting 1 to g such that |xi| = i, 0 6 i 6 n+ 1.

We will first demonstrate the construction of the set A satisfying conditions (a1)-(a4).
In the Cayley graph G1, we consider the path r1 = (1, ε(x1), . . . , ε(xn)), and build the
subsets Q1, Q2, . . . , Q|G/N |−n in G/N inductively as follows.

We let Q1 = {1, ε(x1), . . . , ε(xn)}, and if the sets Q1, . . . , Qk are already defined for
some k < |G/N |−n, then we let Qk+1 = Qkt{zk} where |z−1

k z| = 1 for some z ∈ Qk (i.e.

2let us recall that, by definition, the identity element always belongs to the set of centers of the tiling
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Figure 3: The sets V0 and U ; the elements of V0 are represented with black dots

the distance from zk to Qk equals 1, in the Cayley graph G1). Then Q|G/N |−n = G/N , and
we start defining A1, . . . , A|G/N |−n inductively as follows: we let A1 = {1, x1, . . . , xn}, and
if A1, . . . , Ak are defined for some k < |G/N | − n, then we let Ak+1 to be any connected
set in G such that Ak+1 = Ak ∪ {yk} where yk ∈ ε−1(zk).

Then the set A|G/N |−n already satisfies conditions (a1)-(a4) of the lemma. To make it
satisfy the condition (a5) as well we need to modify our strategy little bit.

Let

a = x−1
n xn+1 = x−1

n g, b = x−1
0 x1 = x1, U1 = {x ∈ G | d(x, xn) = 1, x 6= g}.

Let also U2 ⊂ B2(xn)\B1(xn) such that |U2| = |U1|−1 = |S|−2 and for all x ∈ U1\{xn−1},
the set

(B1(x)\{x}) ∩ U2

consists of a single element y(x) where x−1y(x) /∈ {a, a−1} (See Fig. 3). Finally, we let
U = U1 t U2 and V0 = {1, x1, . . . , xn−1} ∪ U . Notice that by minimality assumption on
|g|, we have b 6= a−1, |V0| < |G/N | and the map ε is still injective on the set V0; so the set
V0 already satisfies conditions (a2), (a3) and (a4). Our goal is to extend V0 such that it
also satisfies (a1) and (a5). However, notice that V0 is not necessarily connected so first
we would like to make it connected.

For this purpose, let S\{a} = {g1, . . . , g|S|−1}, and for all 1 6 j 6 |S| − 1, let Rj be a
shortest path connecting xngj to xn−1 avoiding {xn, g}. Then we let V = V0∪ ∪

16j6|S|−1
Rj,

and observe that V still satisfies conditions (a2), (a3) and (a4)3, moreover, V is connected

3for the condition (a3), it suffices to notice that N ∩ B10s(1) = {1}, and recall the condition on the
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and V ∩ {xn, g} = ∅.
Let us observe that

∂V ⊆ {1} t U1 t U2 and {x ∈ ∂V | xa ∈ V }\{xn−1} = ∅.

Moreover, if fV is any shift of V disjoint from V then fV cannot contain xn. Indeed,
if such a shift exists then xn = fx where x must belong to the boundary of V , but also
xa must be an element of V . But since b 6= a−1, we cannot have x = 1. On the other
hand, by the definition of U2, no element of U2 or U1\{xn−1} can be equal to x. Finally,
(even though xn−1 can potentially belong to the set {x ∈ ∂V | xa ∈ V }) we cannot have
x = xn−1 because by the structure of V , this causes an overlap between V and fV .

We let A′1 = V,Q′1 = ε(V ). Now for all 1 6 k < |G/N | − |V | suppose the connected
subsets A′1, . . . , A

′
k of G\{xn, g} are already defined such that {x ∈ ∂A′j\{xn−1} | xa ∈

A′j}\{a−1} = ∅ for all 1 6 j 6 k. Then we let Q′i = ε(Ai), 1 6 i 6 k, and build a
connected subset A′k+1 ⊃ A′k such that the conditions

(i) 1 6 |A′k+1\A′k| 6 2,
(ii) {x ∈ ∂A′k+1\{xn−1} | xa ∈ A′k+1}\{a−1} = ∅,
(iii) A′k+1 ∩ {xn, g} = ∅,
hold.
For this purpose, let

D = {x ∈ G | d(x,A′k) = 1}, D′ = {x ∈ G/N | d(x,Q′k) = 1}

and for all z ∈ D′, define C(z) = {x ∈ Q′k | d(x, z) = 1}. If there exist z ∈ D′, y ∈
D\{xn+1, g}, u ∈ C(z) such that ε(y) = z and z 6= uε(a−1), then we define Q′k+1 = Q′k∪{z}
and let A′k+1 = A′k t {y}.

But if such z, y and u do not exist, then, necessarily, there exist

z1, z2 ∈ (G/N)\Q′k, y1, y2 ∈ G\(A′k t {xn, g})

such that ε(yi) = zi, 1 6 i 6 2, z1 ∈ D′, d(z2, z1) = 1 and z2 6= z1ε(a
−1).4 Then we let

Q′k+1 = Q′k t {z1, z2}, and define A′k+1 = A′k t {y1, y2}.
Finally, let m be such that Q′m = G/N . Then the set A = A′m satisfies conditions

(a1)-(a5).

Remark 16. Let us emphasize that because of a particular shape of the set V0, if it tiles
the group G then we have a forced unique partial tiling in a large part of the group. This
is because the set V0 consists of a “head” U and a “tail” V0\U ; we have a small “hole”
{xn, g} at the head so that in any tiling of G by V0 the tail of a shift of V0 must enter

generating set S: S has cardinality at least four; there is no relation of length less than four among
elements of S; and for all distinct x, y, z ∈ S there exists a path in G\{1} of length at most s from x to
y not containing z.

4Indeed, if no such z, y, u exist, then there exists v ∈ Qk, z1 ∈ D′ such that z1 = vε(a−1). Then, again
by the non-existence assumption, there is no w ∈ Qk distinct from v where d(w, z1) = 1. Then z1 has a
neighbor z2 such that z2 6= z1ε(a

−1). Lifting z1, z2 to y1, y2 is straightforward.
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into this hole. We use this observation as a key tool in the proof of Lemma 15. For the
proof of the lemma, we need to extend the set V0 (the extension is needed to satisfy the
condition (a1)) by preserving this distinctive property of it which forces the uniqueness
of the tiling. The existence of the tiling follows simply from the conditions (a1) and (a3).

4 Proof of the Main Theorem

Let F2 be generated by the set {a, b}, and H be a virtually non-abelian free quotient of
F2 such that there is no relation of length less than four among a and b, moreover, for any
distinct x, y, z ∈ {a, a−1, b, b−1} there exists a path P z

x,y in H\{1} connecting x to y and
not containing z. Let also s be the maximal length of all these paths P z

x,y, for all distinct
x, y, z ∈ {a, a−1, b, b−1}.

Let us observe that H possesses a connected partial tile with Heesch number zero.
Indeed, the set Bs+1(1)\{1} is connected and no non-overlapping shift of it can cover the
identity element.

For the proof, we will construct the group Γ as a hyperbolic limit of the group H with
a fixed generating set S = {a, a−1, b, b−1}. We will build the hyperbolic limit of H = H0

inductively as follows. Suppose the groups H0, . . . , Hn have been constructed such that
the following conditions hold:

(i) Hi is a quotient of Hi−1, for all 1 6 i 6 n;
(ii) Hi is virtually non-abelian free, for all 0 6 i 6 n;
(iii) Hi possesses a partial tile Ki of finite Heesch number at least i, for all 0 6 i 6 n;
(iv) For all 1 6 i 6 n, the quotient epimorphism πi : Hi−1 → Hi is injective on the

ball of radius (i + 1)(r(i) + 1) around the identity element w.r.t. the generating set S
where r(i) = max{|g|j | 0 6 j 6 i − 1, g ∈ Kj},∀i > 1 and |.|i denotes the left-invariant
Cayley metric in Hi with respect to the generating set S (we let r(0) = 10s).

Let us notice that conditions (i)-(iv) hold for n = 0 (in fact, conditions (i) and (iv)
are void, the condition (ii) is true by our choice of H0, and we already established that
the condition (iii) is satisfied).

Now, by Lemma 10 there exists a normal subgroup NEHn of a finite index such that N
is a free group of rank k > 4 generated by elements a1, . . . , ak and min{|a1|n, . . . , |ak|n} 6
1.1min{|x|n | x ∈ N\{1}} (i.e. conditions (c1) and (c2) of Lemma 10 hold). Without loss
of generality we may assume that

|a1|n = min{|a1|n, . . . , |ak|n}.

Then, by Lemma 15, there exists a connected set A ⊂ Hn satisfying conditions (a1)-(a5).
(In applying this lemma we take g = a1; then, in particular, d(a1, u) = 1 for some u ∈ A).

Let also

R1 = max{|g|n | g ∈ Ki, 1 6 i 6 n}, R2 = max{|aj1|n | 1 6 j 6 10(n+ 1)}.

By Proposition 11 there exists a generating set {h1, . . . , hk} of N , and an odd number
pn > 1 such that the quotient

Hn+1 := Hn/〈hpni = 1, 1 6 i 6 k〉
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is a virtually non-abelian free group, and the quotient epimorphism

Hn → Hn/〈hpni = 1, 1 6 i 6 k〉

is injective on the ball of radius R := max{Rn
1 , R2} around the identity element. Then

notice that, by Lemma 9, all the partial tiles K1, . . . , Kn inject into Hn+1, moreover,
the images of Ki have a finite Heesch number at least i + 1 in Hn+1. Then we take
Kn+1 = A ∪ a1A. Notice that Kn+1 has a Heesch number at least n+ 1.

It remains to notice that by condition (a5) the Heesch number of Kn+1 in Hn+1 is at
most pn

2
thus it is finite. Thus we can continue the inductive process (for the constructed

group Hn+1 we verified all the conditions (i)-(iv) for i = n+1). Then the hyperbolic limit
group H∞ will be a group with desired properties, i.e. the connected sets K1, K2, . . . will
be all partial tiles with finite Heesch numbers k1, k2, . . . such that kn > n for all n > 1.
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