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Abstract

Let G be a connected graph of order n. The resistance matrix of G is defined
as RG = (rij(G))n×n, where rij(G) is the resistance distance between two vertices
i and j in G. Eigenvalues of RG are called R-eigenvalues of G. If all row sums
of RG are equal, then G is called resistance-regular. For any connected graph G,
we show that RG determines the structure of G up to isomorphism. Moreover, the
structure of G or the number of spanning trees of G is determined by partial entries
of RG under certain conditions. We give some characterizations of resistance-regular
graphs and graphs with few distinct R-eigenvalues. For a connected regular graph G
with diameter at least 2, we show that G is strongly regular if and only if there exist
c1, c2 such that rij(G) = c1 for any adjacent vertices i, j ∈ V (G), and rij(G) = c2

for any non-adjacent vertices i, j ∈ V (G).

Keywords: Resistance distance; Resistance matrix; Laplacian matrix; Resistance-
regular graph; R-eigenvalue

1 Introduction

All graphs considered in this paper are simple and undirected. Let V (G) and E(G) denote
the vertex set and the edge set of a graph G, respectively. The resistance distance is a

∗Corresponding author.
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distance function on graphs introduced by Klein and Randić [19]. Let G be a connected
graph of order n. For two vertices i, j in G, the resistance distance between i and j, de-
noted by rij(G), is defined to be the effective resistance between them when unit resistors
are placed on every edge of G. The resistance matrix of G is defined as RG = (rij(G))n×n.
Eigenvalues of RG are called R-eigenvalues of G. The resistance (distance) in graphs has
been studied extensively [8,9,11,12,14,19-21,24-28]. Some properties of the determinant,
minors and spectrum of the resistance matrix can be found in [3, 4, 6, 22, 24, 25].

It is known that rij(G) 6 dij(G) (dij(G) denotes the distance between i and j), with
equality if and only if i and j are connected by a unique path [19]. Hence for a tree T ,
RT is equal to the distance matrix of T . The determinant and the inverse of the distance
matrix of a tree are given in [15, 16]. These formulas have been extended to the resistance
matrix [3]. In [23], Merris gave an inequality for the spectrum of the distance matrix of a
tree. This inequality also holds for the spectrum of the resistance matrix of any connected
graph [24].

For a connected graph G of order n, let Di =
∑n

j=1 dij(G), Ri =
∑n

j=1 rij(G). If
D1 = D2 = · · · = Dn, then G is called transmission-regular [1, 2]. Similar to transmission-
regular graphs, we say that G is resistance-regular if R1 = R2 = · · · = Rn.

In this paper, we show that RG determines the structure of any connected graph G
up to isomorphism. The structure of G or the number of spanning trees of G is deter-
mined by partial entries of RG under certain conditions. We give some characterizations
of resistance-regular graphs and graphs with few distinct R-eigenvalues. Applying prop-
erties of the resistance matrix, we obtain a characterization of strongly regular graphs via
resistance distance.

2 Preliminaries

For a graph G, let AG denote the adjacency matrix of G, and let DG denote the diagonal
matrix of vertex degrees of G. The matrix LG = DG −AG is called the Laplacian matrix
of G.

The {1}-inverse of a matrix A is a matrix X such that AXA = A. If A is singular,
then it has infinite many {1}-inverses [5, 11]. We use A(1) to denote any {1}-inverse of
A. Let (A)uv or Auv denote the (u, v)-entry of A.

Lemma 1. [5, 11] Let G be a connected graph. If L
(1)
G is a symmetric {1}-inverse of LG,

then ruv(G) = (L
(1)
G )uu + (L

(1)
G )vv − 2(L

(1)
G )uv.

For a real matrix A, the Moore-Penrose inverse of A is the unique real matrix A+

such that AA+A = A, A+AA+ = A+, (AA+)> = AA+ and (A+A)> = A+A. Let I denote
the identity matrix, and let Jm×n denote an m× n all-ones matrix.

Lemma 2. [18] Let G be a connected graph of order n. Then L+
GJn×n = Jn×nL

+
G = 0,

LGL
+
G = L+

GLG = I − 1
n
Jn×n.
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For a vertex u of a graph G, let LG(u) denote the principal submatrix of LG obtained
by deleting the row and column corresponding to u. By the Matrix-Tree Theorem [5],
LG(u) is nonsingular if G is connected.

Lemma 3. Let G be a connected graph of order n. Then

(
LG(u)−1 0

0 0

)
∈ Rn×n is a

symmetric {1}-inverse of LG, where u is the vertex corresponding to the last row of LG.

Proof. Suppose that LG =

(
LG(u) x
x> du

)
, where du is the degree of u. Since G is

connected, LG(u) is nonsingular. By using the Schur complement formula, we have
rank(LG) = rank(LG(u)) + rank(du− x>LG(u)−1x) = n− 1. By rank(LG(u)) = n− 1, we
get du = x>LG(u)−1x. Then

LG

(
LG(u)−1 0

0 0

)
LG =

(
I 0

x>LG(u)−1 0

)(
LG(u) x
x> du

)
= LG.

Hence

(
LG(u)−1 0

0 0

)
is a symmetric {1}-inverse of LG.

Lemma 4. [11] Let M =

(
A B
B> C

)
be a nonsingular matrix, and A is nonsingular. Then

M−1 =

(
A−1 + A−1BS−1B>A−1 −A−1BS−1

−S−1B>A−1 S−1

)
, where S = C −B>A−1B.

For a connected graph G of order n, let τi = 2 −
∑

j∈Γ(i) rij(G), where Γ(i) denotes
the set of all neighbors of i. Let τ be be the n× 1 vector with components τ1, . . . , τn.

Lemma 5. [3, 5] Let G be a connected graph of order n, and let X = (LG + 1
n
Jn×n)−1,

X̃ = diag(X11, . . . , Xnn). Then the following hold:

(a) τ = LGX̃j + 2
n
j, where j is an all-ones column vector.

(b) RG = X̃Jn×n + Jn×nX̃ − 2X.
(c) L+

G = X − 1
n
Jn×n.

For a real symmetric matrix M of order n, let λ1(M) > λ2(M) > · · · > λn(M) denote
the eigenvalues of M .

Lemma 6. [24] Let G be a connected graph of order n. Then

0 > − 2

λ1(LG)
> λ2(RG) > − 2

λ2(LG)
> · · · > − 2

λn−1(LG)
> λn(RG).

The Kirchhoff index of G is defined as Kf(G) = 1
2

∑n
i=1

∑n
j=1 rij(G).

Lemma 7. [17, 29] Let G be a connected graph of order n. Then

Kf(G) = n

n−1∑
i=1

1

λi(LG)
.
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Lemma 8. [14, 24] Let G be a connected graph of order n. Then∑
ij∈E(G)

rij(G) = n− 1.

3 Main results

All connected graphs in this section have at least two vertices. We first show that the
structure of a connected graph is determined by its resistance matrix up to isomorphism,
i.e., if two connected graphs have the same resistance matrix, then they are isomorphic.

Theorem 9. For any connected graph G, the structure of G is determined by RG up to
isomorphism.

Proof. By Lemma 3, the matrix

(
LG(u)−1 0

0 0

)
is a symmetric {1}-inverse of LG, where

u is the vertex corresponding to the last row of LG. Since RG is known, by Lemma 1, all
entries of LG(u)−1 is known, i.e., LG(u) is determined by RG. Since each row (column) sum
of LG is 0, LG is determined by RG. Hence G is determined by RG up to isomorphism.

A vertex of degree one is called a pendant vertex. For a vertex u of a connected graph
G, let RG(u) denote the principal submatrix of RG obtained by deleting the row and
column corresponding to u. Next we show that RG(u) determines G up to isomorphism
if u is not a pendant vertex, i.e., if u is not a pendant vertex of G, and H is a connected
graph satisfying RH(v) = RG(u) for some v ∈ V (H), then H is isomorphic to G.

Theorem 10. For a connected graph G, if u is a vertex of G with degree larger than one,
then RG(u) determines G up to isomorphism.

Proof. Without loss of generality, suppose that the first row of LG corresponds to vertex

u, and the last row of LG corresponds to a vertex v. By Lemma 3,

(
LG(v)−1 0

0 0

)
is a

symmetric {1}-inverse of LG. Suppose that LG(v) =

(
du L2

L>2 L3

)
, where du is the degree

of u. Let S = L3 − d−1
u L>2 L2. By Lemma 4, we have

(
LG(v)−1 0

0 0

)
=

d−1
u + d−2

u L2S
−1L>2 −d−1

u L2S
−1 0

−d−1
u S−1L>2 S−1 0

0 0 0

 .

Since RG(u) is known, by Lemma 1, all entries of S−1 are known, i.e., S is determined by
RG(u). Since du > 1 and S = L3 − d−1

u L>2 L2, the following hold:
(1) For any vertex i ∈ V (G) \ {u, v}, i and u are adjacent if (S)ii is not an integer, are

non-adjacent if (S)ii is an integer. Moreover, the degree of i is di = d(S)iie, where d(S)iie
is the smallest integer larger than or equal to (S)ii.
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(2) There exists a vertex i ∈ V (G) \ {u, v} such that i and u are adjacent, and
du = (d(S)iie − (S)ii)

−1.
(3) For any vertex i, j ∈ V (G) \ {u, v}, i and j are adjacent if (S)ij 6 −1, are non-

adjacent if (S)ij > −1.
From (1)-(3) we know that G is determined by S up to isomorphism. Since S is

determined by RG(u), RG(u) determines G up to isomorphism.

Remark 1. Let Pn denote the path with n vertices. Let G be the graph obtained from
Pn by attaching a pendant vertex u at a vertex of degree two, and let v be a pendant
vertex of Pn+1. In this case, we have RG(u) = RPn+1(v) and G is not isomorphic to Pn+1.
Hence the condition “u is a vertex of degree larger than one” in Theorem 10 is necessary.

Let t(G) denote the number of spanning trees of a graph G. If V1 and V2 are disjoint
subsets of V (G), then we define E(V1, V2) = {ij ∈ E(G) : i ∈ V1, j ∈ V2}.

Theorem 11. Let G be a connected graph whose vertex set has a partition V (G) =
V1 ∪ V2 ∪ {u}, and G− u has a unique perfect matching M satisfying M ⊆ E(V1, V2). Let

RG =

R1 R3 a1

R>3 R2 a2

a>1 a>2 0

, where R1 and R2 are principal matrices of RG corresponding to

V1 and V2 respectively. Then t(G) is determined by a1, a2 and R3.

Proof. Without loss of generality, suppose that the last row of LG corresponds to the

vertex u. By Lemma 3,

(
LG(u)−1 0

0 0

)
is a symmetric {1}-inverse of LG. Since G − u

has a unique perfect matching M satisfying M ⊆ E(V1, V2), LG(u) can be partitioned as

LG(u) =

(
L1 L3

L>3 L2

)
, where L3 is an upper triangular matrix, L1 and L2 correspond to V1

and V2 respectively. Let S = L2 − L>3 L−1
1 L3. By Lemma 4, we have(

LG(u)−1 0
0 0

)
=

L−1
1 + L−1

1 L3S
−1L>3 L

−1
1 −L−1

1 L3S
−1 0

−S−1L>3 L
−1
1 S−1 0

0 0 0

 .

Since a1 and a2 are known, by Lemma 1, all diagonal entries of LG(u)−1 are known. Since
R3 is also known, by Lemma 1, the matrix A = −L−1

1 L3S
−1 is known. Hence det(A) =

det(−L3)[det(L1) det(S)]−1 is determined by a1, a2 and R3. Note that −L3 is an upper
triangular matrix and each diagonal entry of −L3 is 1. So det(A) = [det(L1) det(S)]−1.
From the Matrix-Tree Theorem, we have t(G) = det(LG(u)) = det(L1) det(S). Hence
t(G) is determined by a1, a2 and R3.

Theorem 12. Let G be a connected graph with n vertices. Then the following are equiv-
alent:
(1) G is resistance-regular.
(2) The spectral radius of RG is

λ1(RG) =
2Kf(G)

n
.
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(3) The spectrum of RG is

λ1(RG) =
2Kf(G)

n
, λi(RG) = − 2

λi−1(LG)
, i = 2, . . . , n.

(4) X11 = · · · = Xnn, where X = (LG + 1
n
Jn×n)−1.

(5) (L+
G)11 = · · · = (L+

G)nn.
(6) For each i ∈ V (G), we have

∑
j∈Γ(i) rij(G) = 2− 2

n
, where Γ(i) denotes the set of all

neighbors of i.

Proof. By [22, Corollary 2.2], we have (1)⇐⇒(2).
(2)=⇒(3). The trace of RG is

n∑
i=1

λi(RG) =
2Kf(G)

n
+

n∑
i=2

λi(RG) = 0.

By Lemmas 6 and 7, we have λi(RG) = − 2
λi−1(LG)

, i = 2, . . . , n.

(3)=⇒(2). Obviously.

(1)⇐⇒(4). By part (b) of Lemma 5, we have RGj = nX̃j+(
∑n

i=1 Xii)j−2j, where j is
an all-ones column vector. Hence G is resistance-regular if and only if X11 = · · · = Xnn,
where X = (LG + 1

n
Jn×n)−1.

By part (c) of Lemma 5, we have (4)⇐⇒(5).
(4)⇐⇒(6). By Lemma 5(a), (4) is equivalent to τ = 2

n
j; that is,

∑
j∈Γ(i) rij(G) = 2− 2

n

for any i ∈ V (G).

Remark 2. For any nonsingular matrix B, there exists polynomial p(x) such that B−1 =
p(B) [7]. Hence X = (LG + 1

n
Jn×n)−1 is a polynomial in LG + 1

n
Jn×n. If G is a connected

regular graph of degree r, then Jn×n is a polynomial in AG (see [5, Theorem 6.12]). In
this case, X = (rI − AG + 1

n
Jn×n)−1 is a polynomial in AG. A graph G of order n is

called walk-regular, if (AkG)11 = · · · = (AkG)nn for any k > 0 [10]. For a connected walk-
regular graph G of degree r, since X = (rI − AG + 1

n
Jn×n)−1 is a polynomial in AG and

(AkG)11 = · · · = (AkG)nn for any k > 0, we have X11 = · · · = Xnn. By Theorem 12,
connected walk-regular graphs (including distance-regular graphs and vertex-transitive
graphs) are resistance-regular.

Graphs with few distinct eigenvalues with respect to adjacency matrix and Laplacian
matrix have interesting combinatorial properties [10, 13]. Next we consider graphs with
few distinct R-eigenvalues.

Theorem 13. A connected graph with two distinct R-eigenvalues is a complete graph.

Proof. Let G be a connected graph of order n with two distinct R-eigenvalues λ1 > λ2.
Since RG is irreducible and nonnegative, λ1 is simple. So RG−λ2I has rank 1. Since each
diagonal entry of RG is 0, we have RG − λ2I = −λ2Jn×n, RG = λ2(I − Jn×n). Hence G is
resistance-regular. By part (3) of Theorem 12, LG has only one nonzero eigenvalue. So
G is complete.
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A strongly regular graph with parameters (n, k, λ, µ) is a k-regular graph on n vertices
such that for every pair of adjacent vertices there are λ vertices adjacent to both, and for
every pair of non-adjacent vertices there are µ vertices adjacent to both. It is well known
that a connected regular graph whose adjacency matrix has three distinct eigenvalues is
strongly regular [10].

Theorem 14. A resistance-regular graph with three distinct R-eigenvalues is strongly
regular.

Proof. Let G be a resistance-regular graph of order n with three distinct R-eigenvalues.
By part (3) of Theorem 12, LG has two distinct nonzero eigenvalues. Let µ1 > µ2 > 0 be
two distinct nonzero eigenvalues of LG. Since (LG − µ1I)(LG − µ2I) has rank 1 and row
sum µ1µ2, we have

(LG − µ1I)(LG − µ2I) =
µ1µ2

n
Jn×n,

L2
G − (µ1 + µ2)LG + µ1µ2I =

µ1µ2

n
Jn×n. (3.1)

By Lemma 2, we have

LGL
+
G = I − 1

n
Jn×n, L

2
GL

+
G = LG(I − 1

n
Jn×n) = LG, Jn×nL

+
G = 0.

We multiply L+
G on both side of (3.1), then

[L2
G − (µ1 + µ2)LG + µ1µ2I]L+

G =
µ1µ2

n
Jn×nL

+
G,

LG − (µ1 + µ2)(I − 1

n
Jn×n) + µ1µ2L

+
G = 0.

From part (5) of Theorem 12, we know that G is regular. Since G is a connected regular
graph and LG has two distinct nonzero eigenvalues, G is strongly regular.

Theorem 15. Let G be a connected regular graph with diameter at least 2. Then G is
strongly regular if and only if there exist c1, c2 such that rij(G) = c1 for any adjacent
vertices i, j ∈ V (G), and rij(G) = c2 for any non-adjacent vertices i, j ∈ V (G).

Proof. Suppose that G has n vertices and m edges. We need to prove that G is strongly
regular if and only if there exist c1, c2 such that

RG = c1AG + c2(Jn×n − I − AG). (3.2)

If G is strongly regular, then rij(G) depends only on the distance between i and j (see
[8, 20]), i.e., the equation (3.2) holds.

If (3.2) holds, then by Lemma 8, we have c1 = n−1
m

. Then
∑

j∈Γ(i) rij(G) = (n−1)k
m

=

2− 2
n

for each i ∈ V (G), where k is the degree of regular graph G. By parts (4) and (6) of
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Theorem 12, there exists c0 such that c0 = X11 = · · · = Xnn, where X = (LG+ 1
n
Jn×n)−1 =

(kI + 1
n
Jn×n − AG)−1. By part (b) of Lemma 5 and (3.2), we have

RG = 2c0Jn×n − 2X = c2(Jn×n − I) + (c1 − c2)AG,

2c0Jn×nX
−1 − 2I = c2(Jn×n − I)X−1 + (c1 − c2)AGX

−1. (3.3)

Since G is regular, by the equation (3.3), there exist a1, a2, a3 such that

(c1 − c2)A2
G + a1AG = a2I + a3Jn×n. (3.4)

If c1 = c2, then by (3.2), we get RG = c1(Jn×n − I). In this case, RG has two distinct
eigenvalues. By Theorem 3.5, G is complete, a contradiction to that the diameter of G
at least 2. Hence c1 6= c2. By the equation (3.4), we know that there exist λ, µ such that
(A2

G)ij = λ for any adjacent vertices i, j ∈ V (G), and (A2
G)ij = µ for any non-adjacent

vertices i, j ∈ V (G). Then G is a strongly regular graph with parameters (n, k, λ, µ).

4 Concluding remarks

In this paper, the relationship between the graph structure and resistance matrix is stud-
ied, and some spectral properties of the resistance matrix are obtained. We list some
problems as follows.

(1) For a connected graph G, the structure of G or t(G) is determined by partial
entries of RG under certain conditions (see Theorems 10 and 11). Are there some other
graph properties can be determined by partial entries of the resistance matrix?

(2) Some equivalent conditions for resistance-regular graphs are given in Theorem 12.
From Remark 2, we know that connected walk-regular graphs are resistance-regular. It
is natural to consider the problem“Which graphs are resistance-regular?”. Note that a
transmission-regular graph does not need to be a (degree) regular graph [1, 2]. Is there a
nonregular resistance-regular graph?
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