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Abstract

Mader first proved that high average degree forces a given graph as a minor.
Often motivated by Hadwiger’s Conjecture, much research has focused on the av-
erage degree required to force a complete graph as a minor. Subsequently, various
authors have considered the average degree required to force an arbitrary graph
H as a minor. Here, we strengthen (under certain conditions) a recent result by
Reed and Wood, giving better bounds on the average degree required to force an
H-minor when H is a sparse graph with many high degree vertices. This solves an
open problem of Reed and Wood, and also generalises (to within a constant factor)
known results when H is an unbalanced complete bipartite graph.

1 Introduction

Mader [13, 14] first proved that high average degree forces a given graph as a minor1. In
particular, Mader [13, 14] proved that the following function is well-defined, where d(G)
denotes the average degree of a graph G:

f(H) := inf{D ∈ R : every graph G with d(G) > D contains an H-minor}.

Often motivated by Hadwiger’s Conjecture (see [18]), much research has focused on
f(Kt) where Kt is the complete graph on t vertices. For 3 6 t 6 9, exact bounds on the
number of edges due to Mader [14], Jørgensen [6], and Song and Thomas [19] imply that
f(Kt) = 2t−4. But this result does not hold for large t. In particular, f(Kt) ∈ Θ(t

√
ln t),

where the lower bound is independently by Kostochka [7, 8] and de la Vega [4] (based on

∗Research supported by the Australian Research Council.
1A graph H is a minor of a graph G if a graph isomorphic to H can be constructed from G by vertex

deletion, edge deletion and edge contraction.
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the work of Bollobás et al. [1]), and the upper bound is independently by Kostochka [7, 8]
and Thomason [20]. Later, Thomason [21] determined the exact asymptotic constant.

Subsequently, other authors have considered f(H) for arbitrary graphs H. Thomason
[22] surveys some of these results. Myers and Thomason [16] determined an upper bound
on f(H) for all H, which is tight up to lower order terms when H is dense. Hence
much recent work has focused on f(H) for sparse graphs H. There have been two major
approaches in this case.

Specific Sparse Graphs

The first approach is to consider specific sparse graphs H. For example, Myers [15]
considered unbalanced complete bipartite graphs Ks,t where s� t. It is easily seen that
f(K1,t) = t− 1. Myers proved that f(K2,t) = t+ 1 for large t, and Chudnovsky et al. [3]
proved the same result for all t. Kostochka and Prince [10] proved that f(K3,t) = t+3 for
large t. In fact, for all these results, the authors determined the exact maximum number
of edges in a Ks,t-minor-free graph (for s 6 3).

Myers conjectured that f(Ks,t) 6 cst for some constant cs depending only on s.
Strengthenings of this conjecture were independently proved by Kühn and Osthus [12]
and Kostochka and Prince [9]. In particular, Kühn and Osthus [12] proved that for every
ε ∈ (0, 10−16), if t is sufficiently large (with respect to ε) and s 6 ε6 t

ln t
, then

f(Ks,t) 6 (1 + ε)t. (1)

Kostochka and Prince [9] proved a sharper bound on f(Ks,t) under a stronger assumption:
if t > (180s log2 s)

1+6s log2 s then

t+ 3s− 5
√
s 6 f(Ks,t) 6 t+ 3s. (2)

Later, Kostochka and Prince [11] proved an upper bound between (1) and (2) under a
similar assumption to (1): if s 6 t

1000 log2 t
then

f(Ks,t) 6 t+ 8s log2 s. (3)

General Sparse Graphs

A second approach for sparse graphs is to determine upper bounds on f(H) in terms of
invariants of H. This is the approach of a recent paper by Reed and Wood [17]. Their
main result is as follows: for every t-vertex graph H with average degree d(H) at least
some constant d0, then

f(H) 6 3.895 t
√

ln d(H), (4)

If d(H) is very small, then this result is not applicable. For all H, Reed and Wood [17]
proved that

f(H) 6 (1 + 3.146 d(H)) t. (5)

Inequalities (4) and (5) imply that for some constant c, for every t-vertex graph H,

f(H) 6 ct
√

ln(d(H) + 2). (6)
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A lower bound of Myers and Thomason [16] shows that (6) is tight for random or close-to-
regular graphs H. But for some graphs it is not tight. For example, for Ks,t with s� t,

inequality (6) says that f(Ks,t) 6 ct
√

ln s since d(Ks,t) ≈ 2s, whereas f(Ks,t) = Θ(t) as
discussed above.

Our Results

In this paper, we make a first attempt at unifying these two approaches, both improving
the bounds of Reed and Wood [17] in certain cases, and generalising the above mentioned
results on unbalanced complete bipartite graphs up to a constant factor.

Theorem 1. There is a constant d0 such that for integers s > 0 and t > 3 with s 6
10−5 t

ln t
, for every (s+t)-vertex graph H and set S of s vertices in H such that d(H−S) >

d0,
f(H) 6 3.895 t

√
ln d(H − S).

Theorem 1 solves the second open problem of Reed and Wood [17], and is an im-
provement over (4) when H contains a set S of vertices with high degree (compared to
the average degree). Then Theorem 1 forces H as a minor in a graph G as long as
d(G) > 3.895 t

√
ln d, where d is the average degree of H − S, instead of H itself. Since

vertices in S have high degree, one expects that d(H − S) is significantly less than d(H).
Our second contribution relates f(H) directly to f(H − S).

Theorem 2. For ε ∈ (0, 1] and integers s > 0 and t > 3 with s 6 ε
100

t
ln t

, for every graph
H and set S of s vertices in H,

f(H) 6 4d(1 + ε)f(H − S)e.

Theorem 2 may allow a better result than Theorem 1 if we happen to know a good
upper bound on f(H−S). It also makes no explicit assumption on d(H−S). Theorems 1
and 2 together imply the following general result.

Theorem 3. There is a constant c such that for integers s > 0 and t > 3 with s 6 10−5 t
ln t

,
for every (s+ t)-vertex graph H and set S of vertices in H of size s,

f(H) 6 ct
√

ln(d(H − S) + 2).

Consider Theorem 3 with H = Ks,t, where S is the smaller colour class. Thus d(H −
S) = 0 and Theorem 3 says that f(H) 6 ct, for some constant c independent of s, which
is within a constant factor of the bounds in (1), (2) and (3). Note however that these
older results are still stronger, since Theorem 3 has a large multiplicative constant. On
the other hand, Theorem 3 applies more generally when H−S is not an independent set.

The following section contains a few preliminary lemmas. Section 3 contains proofs
of Theorems 1, 2 and 3. Section 4 contains an observation about f(H) when H is series-
parallel. Section 5 considers some future directions.
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2 Preliminaries

We first prove a few useful preliminaries before proving our theorems.
A connected dominating set A of a graph G is a set of vertices such that the induced

subgraph G[A] is connected, and each vertex of V (G) is either in A or adjacent to a vertex
in A. Lemma 4 is well known, and weaker than other previous results such as that by
Caro et al. [2]. We present it here for completeness and because the upper bound on
the order of the connected dominating set has no lower order terms, which simplifies the
calculations in Section 3. Similarly, Lemma 5 resembles a previous result of Kostochka
and Prince [9].

Lemma 4. Every graph G with n vertices and minimum degree at least 1
2
n has a connected

dominating set of order less than 2 log2 n.

Proof. Let A be a set of blog2 nc vertices in G chosen uniformly at random. For each
vertex x of G − A, since degG(x) > n

2
, the probability that x has no neighbour in A is

less than (1
2
)log2 n = 1

n
, and so the probability that A does not dominate G is less than

1. Hence there is some choice of A that does dominate G. Label the vertices of this A
by x1, . . . , xblog2 nc. For i = 1, . . . , blog2 nc − 1, let vi = xi+1 if xi and xi+1 are adjacent,
otherwise let vi be a common neighbour of xi and xi+1, which exists since xi and xi+1

each have at least n
2

neighbours in a set of n− 2 vertices. Then A∪ {v1, . . . , vblog2 nc−1} is
a connected dominating set of G with less than 2 log2 n vertices.

Lemma 5. For every integer s > 1 and ρ > 1
2
, every graph G with n vertices and

minimum degree at least ρn + 2s log2 n contains vertex sets A1, . . . , As and subgraphs
G0, G1, . . . , Gs such that G0 = G, Gi = G− (A1 ∪ · · · ∪ Ai) for i ∈ {1, . . . , s}, and

(a) Ai is a connected dominating set in Gi−1,

(b) |Ai| < 2 log2 n,

(c) Gi has minimum degree at least ρn+ 2(s− i) log2 n.

(d) Gi has at least n− 2i log2 n vertices.

Proof. We use induction on i. Say i = 1. Let A1 be a connected dominating set in G0 = G
from Lemma 4. This satisfies (a) and (b). The minimum degree of G1 = G − A1 is at
least the minimum degree of G minus |A1|, which proves (c). The number of vertices of
G1 is at least n− |A1|, which proves (d).

Assume our lemma holds for i−1. Let Ai be a connected dominating set in Gi−1 from
Lemma 4; such a set exists since Gi−1 has minimum degree greater than ρn > 1

2
n. This

satisfies (a) and (b). Finally, Gi has minimum degree at least ρn+ 2(s− (i− 1)) log2 n−
|Ai| > ρn − 2(s − i) log2 n and |V (Gi)| > n − 2(i − 1) log2 n − |Ai| > n − 2i log2 n, as
required.

Finally, we cite two key results of Reed and Wood [17].

the electronic journal of combinatorics 23(1) (2016), #P1.42 4



Lemma 6 (Reed and Wood [17], Lemma 2.5). For every integer k > 1, every graph with
average degree at least 4k contains a complete graph Kk as a minor or contains a minor
with n vertices and minimum degree δ, where δ > 0.6518n, and k 6 δ < n 6 4k.

Lemma 7 (Reed and Wood [17], Lemma 5.1). For all λ ∈ (1
2
, 1) and ε ∈ (0, λ) there

exists d0(λ, ε) such that for every graph H with t vertices and average degree d > d0 every
graph G with n > (1 + ε)d

√
logb de t vertices and minimum degree at least λn contains H

as a minor, where b = (1− λ+ ε)−1.

3 Proofs of Theorems

Proof of Theorem 1. Let G be a graph with d(G) > 3.895 t
√

ln d where d := d(H − S) >
d0. Let k := b1

4
(3.895 t

√
ln d)c. Our goal is to show that G contains an H-minor. We

can take d0 large enough so that k > 2t > 1. By Lemma 6, G contains either K2t or G′

as a minor, where G′ is a graph with n vertices and minimum degree at least 0.6518n
such that k + 1 6 n 6 3.895 t

√
ln d. If G contains a K2t minor, then G contain a Ks+t

minor and we are done. Otherwise apply Lemma 5 to G′ where ρ = 0.6517. Since
s 6 10−5 t

ln t
< 5 × 10−5 t

log2 t
6 5 × 10−5 n

log2 n
, we have 2s log2 n 6 10−4n, and it follows

that G′ has minimum degree at least ρn + 2s log2 n, as required. Let G′′ := Gs from
Lemma 5. Then G′′ has minimum degree at least 0.6517n > 0.6517|V (G′′)|.

We wish to find an (H − S)-minor of G′′. Then contracting each Ai to a single vertex
gives an H-minor in G′. We now verify that Lemma 7 gives the desired (H − S)-minor
in G′′, where λ := 0.6517 and ε := 10−6 and b := (1− λ+ ε)−1. Clearly G′′ has sufficient
minimum degree (by our choice of λ) and the average degree d of H−S is sufficiently large
(since we may assume d0 is sufficiently large in terms of absolute constants), and so all that
remains is to ensure that G′′ has sufficiently many vertices. Note |V (G′′)| > n− 2s log2 n

from Lemma 5(d). We may choose d0 large enough so that 3.895 t
√
ln d

log2(3.895 t
√
ln d)

> 100 t
ln t

and so

s 6 10−5 t
ln t

6 10−7 3.895 t
√
ln d

log2(3.895 t
√
ln d)

. Thus it follows that

|V (G′′)| > n− 2(10−7) 3.895 t
√
ln d

log2(3.895 t
√
ln d)

log2 n

> b1
4
(3.895 t

√
ln d)c+ 1− 2(10−7)(3.895 t

√
ln d)

> 1
4
(3.895 t

√
ln d)− 2(10−7)(3.895 t

√
ln d)

= (1
4
− 2(10−7))(3.895 t

√
ln d)

= (1
4
− 2(10−7))(3.895 t

√
ln b

√
logb d)

> 1.00002
√

logb d t

= (1 + 20ε)
√

logb d t

> (1 + ε)(1 +
√

logb d)t (taking d0 large enough)

> (1 + ε)d
√

logb de t.
Hence it follows that G′′ contains an (H −S)-minor. This is an (H −S)-minor in G′ that
avoids the sets A1, . . . , As. Hence G′ (and also G) contains our desired H-minor.
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Proof of Theorem 2. Let G be a graph with average degree d(G) > 4k, where k :=
d(1 + ε)f(H − S)e. If s = 0 this result is trivial, so assume s > 1. It follows from
Lemma 6 that G contains either a Kk-minor or a minor G′ with n vertices and minimum
degree δ(G′) > 0.6518n such that k 6 δ(G′) < n 6 4k. Since f(H − S) > t − 2 (as
Kt−1 has no (H − S)-minor), it follows that k > (1 + ε)f(H − S) > (1 + ε)(t − 2) >
t − 2 + 100s ln t − 2ε > t + 100s − 4 > t + s. Hence a Kk-minor contains an H-minor.
Now assume Lemma 6 finds G′ as a minor.

We wish to apply Lemma 5 to G′ with ρ = 1
2
. It is sufficient to show that 0.1518n >

2s log2 n. Since n > k+1 > (1+ε)f(H−S)+1 > t−1+εf(H−S), and n and t are integers,
it follows that n > t. Thus s 6 ε

100
t

ln t
6 ε

100
n

lnn
and so 2s log2 n 6 n

50 ln 2
< 0.1518n

as required. Let G′′ := Gs from Lemma 5. By Lemma 5(b), it follows that G′′ has
minimum degree at least δ(G′) − 2s log2 n > k − 2s log2 n. From our upper bound on s
and since k < n 6 4k, it follows that k − 2s log2 n > k − ε n

50 lnn
log2 n > k(1 − 2

25 ln 2
ε) >

(1 + ε)(1− 0.1155ε)f(H − S) > f(H − S). Thus d(G′′) > f(H − S) and G′′ contains an
(H−S)-minor. Contracting the sets A1, . . . , As to single vertices gives an H-minor in G′,
and thus also in G.

Proof of Theorem 3. First suppose that d(H − S) > d0, where d0 is from Theorem 1.
Let c > 3.895. By Theorem 1, f(H) 6 3.895 t

√
ln d(H − S) 6 ct

√
ln(d(H − S) + 2)

as required. Alternatively, d(H − S) < d0. By (5) we have f(H − S) 6 (1 +
3.146d(H − S))t 6 (1 + 3.146d0)t. Let ε = 10−3. It follows from Theorem 2
that f(H) 6 4d(1 + ε)(1 + 3.146d0)te. Setting c large enough, this proves f(H) 6
ct
√

ln(d(H − S) + 2), as required.

4 Series-Parallel Graphs

A graph is series-parallel if it contains no K4 minor (or equivalently, it has treewidth
at most 2). Reed and Wood [17, Lemma 3.3] proved that f(H) 6 6.929t for every t-
vertex 2-degenerate graph H. Every series-parallel graph H is 2-degenerate, implying
f(H) 6 6.929t. Here we make the following improvement.

Proposition 8. For every t-vertex series-parallel graph H,

f(H) 6 2t− 4.

Proof. A 2-tree is a graph that can be constructed by starting with K3 and repeatedly
selecting an edge and adding a new vertex adjacent to exactly the endpoints of that
edge. It is well known that 2-trees are exactly the edge-maximal series-parallel graphs [5].
Hence it suffices to prove that f(H) 6 2t − 4 for every t-vertex 2-tree H. Say a graph
G is minor-minimal (with respect to t) if d(G) > 2t − 4 but every proper minor of G
has average degree less than 2t− 4. Considering the effect of contracting an edge on the
average degree, it is easily seen that every edge of a minor-minimal graph is in at least
t− 2 triangles; see [17, Lemma 2.1]. It suffices to prove that every minor-minimal graph
G contains an H-minor. In fact, we prove that every 2-tree H0 on at most t vertices can
be embedded in G as a subgraph.
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We do this by induction on |V (H0)| with G fixed. Suppose |V (H0)| = 3. Then every
edge of G is in at least t − 2 > 1 triangles, and it is trivial to embed H0. Now suppose
|V (H0)| = i > 3. There is a vertex v ∈ V (H0) with neighbours x and y such that H0 − v
is also a 2-tree. By induction, H0 − v can be embedded in G. Let x′, y′ denote the
vertices of G where x, y are respectively embedded. Then x′y′ is an edge of G in at least
t− 2 > |V (H0)− {v, x, y}|+ 1 triangles. Hence there exists a common neighbour w of x′

and y′ in G where no vertex of H0 − {v, x, y} is embedded. Clearly, neither x nor y are
embedded at w. Embedding v at w, we obtain H0 as a subgraph of G, as required.

5 Open Problems

An obvious question is whether the upper bound on f(H) provided by Theorem 3 is within
a constant factor of optimal for all H. If S is a small (perhaps empty) set of vertices in
H and H − S is sufficiently large and either random or close-to-regular, then it follows
from the lower bound of Myers and Thomason [16] that

f(H) > f(H − S) > c|V (H − S)|
√

ln(d(H − S)),

and Theorem 3 is within a constant factor of optimal.
Is it possible that Theorem 3 always gives a result within a constant factor of optimal

(for the best possible choice of S)? If not, for which graphs is Theorem 3 not within a
constant factor of optimal, and what approach should we take for such graphs? More
generally, is there a small set of upper bounds on f(H) such that for each graph H, one of
these bounds is within a constant factor of optimal? Similarly, is there a constant factor
approximation algorithm for computing f(H)?
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[1] Béla Bollobás, Paul A. Catlin, and Paul Erdős. Hadwiger’s conjec-
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