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Abstract

A tableau inversion is a pair of entries from the same column of a row-standard
tableau that lack the relative ordering necessary to make the tableau column-
standard. An i-inverted Young tableau is a row-standard tableau with precisely
i inversion pairs, and may be interpreted as a generalization of (column-standard)
Young tableaux. Inverted Young tableaux that lack repeated entries were intro-
duced by Fresse to calculate the Betti numbers of Springer fibers in Type A, and
were later developed as combinatorial objects in their own right by Beagley and
Drube. This paper generalizes earlier notions of tableau inversions to row-standard
tableaux with repeated entries, yielding an interesting new generalization of semi-
standard (as opposed to merely standard) Young tableaux. We develop a closed
formula for the maximum numbers of inversion pairs for a row-standard tableau
with a specific shape and content, and show that the number of i-inverted tableaux
of a given shape is invariant under permutation of content. We then enumerate
i-inverted Young tableaux for a variety of shapes and contents, and generalize an
earlier result that places 1-inverted Young tableaux of a general shape in bijection
with 0-inverted Young tableaux of a variety of related shapes.

Keywords: Young tableaux, inversions of Young tableaux

1 Introduction

Consider the non-increasing sequence of positive integers λ = (λ1, λ2, . . . , λm), and let
N = λ1 + . . . + λm. A Young diagram Y of shape λ is a left-justified array of N total
boxes such that there are λi boxes in the ith row of Y . A (semistandard) filling of a
Young diagram Y is an assignment of positive integers (possibly repeated) to the boxes
of Y such that integers strictly increase from left-to-right across each row and weakly
increase from top-to-bottom down each column. We assume that no positive integers are

the electronic journal of combinatorics 23(1) (2016), #P1.43 1



skipped, so that the boxes of Y are filled with 1, 2, . . . ,M for some M 6 N . We call the
resulting array T a semistandard Young tableau of shape λ. If each of 1, 2, . . . , N
appears precisely once in T , the semistandard Young tableau T qualifies as a standard
Young tableau of shape λ. In this paper we will also need to consider a generalization
of semistandard fillings where integers strictly increase from left-to-right across each row
but no longer need to weakly increase down each column. We refer to such an array as a
row-standard tableau.

If µ = (µ1, µ2, . . . , µM) is an ordered partition of N , we say that a semistandard tableau
T of shape λ has content µ if its boxes are filled with precisely µ1 copies of 1, µ2 copies
of 2, etc. We often use the abbreviated notation µ = 1µ12µ2 . . .MµM . Thus a standard
Young tableau is simply a semistandard Young tableau with content µ = 1121 . . . N1.
We denote the entire set of semistandard Young tableaux with shape λ and content µ
by S(λ, µ), and the set of standard Young tableaux with shape λ by S(λ). For a great
introduction to Young tableaux, see Fulton [5].

Now consider the permutation σ ∈ Sn. An inversion of σ is a pair of integers i, j
satisfying i < j and σ(i) > σ(j). In this situation we call (i, j) an inversion pair of σ.
Denote the number of distinct inversion pairs of σ by ninv(σ).

As introduced by Fresse in [3], permutation inversions admit a generalization to row-
standard tableaux with non-repeated entries. Let Y be a Young diagram of shape λ whose
boxes have been filled with 1, 2, . . . , N to produce the row-standard tableau τ . Following
[3], a pair of entries i, j from the same column of τ participate in an inversion of τ if
i < j and either of the following conditions hold:

1. At least one of i and j lacks an entry directly to its right, and i is below j.

2. i is directly to the left of i′, j is directly to the left of j′, and i′ > j′.

In this situation, we write (i, j)τ or simply (i, j) and say that i, j constitute a single
inversion pair of τ . If a row-standard tableau τ has precisely K distinct inversion pairs
we write ninv(τ) = K. Notice that a row-standard tableau τ is also column-standard and
hence is a standard Young tableau if and only if ninv(τ) = 0. Also notice that our definition
of tableau inversion specializes to the earlier notion of permutation inversion if one inter-
prets σ as a single-column row-standard tableau whose entries appear as σ(1), . . . , σ(n)
from top-to-bottom.

As shown in [3], for any row-standard tableau τ without repeated entries one can
always recursively eliminate inversions to produce a unique column-standard tableau with
no inversions. The resulting standard Young tableau is known as the standardization
of τ and is written st(τ). As any such τ may be transformed into a standard Young
tableau st(τ) by recursively removing inversions, we henceforth refer to the row-standard
τ as an inverted (standard) Young tableau based on st(τ). In Figure 1 we show an
inverted tableau of shape λ = (4, 3, 2) alongside its standardization. For a given shape
λ, we denote the set of all inverted standard Young tableaux of shape λ with precisely i
inversions by Si(λ). Thus S(λ) = S0(λ). We more specifically refer to elements of Si(λ)
as i-inverted (standard) Young tableaux of shape λ.
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1 5 8 9

3 4 6

2 7

⇒ 1 4 6 9

2 5 8

3 7

Figure 1: An inverted tableau with inversion pairs (6, 8), (1, 3), (2, 3) and its standard-
ization

Fresse introduced tableau inversions in [3] to calculate the Betti numbers of Springer
fibers in type A. Fixing the standard Young tableau T of shape λ, he showed that the
component of the Springer variety Fλ associated with T has mth Betti number equal to
the number of (d−m)-inverted Young tableaux based on T , where d is the dimension of
the entire Springer variety. Fresse also presents an algorithm for determining the number
of i-inverted Young tableaux based on a specific standard tableau T . In a more recent
publication [4], Fresse, Mansour and Melnikov calculate the number of inverted tableaux
in several special cases and show that the distribution of these numbers is unimodal.

In [1], the author and Beagley present results enumerating the total number of i-
inverted Young tableaux of shape λ, simultaneously ranging over all underlying standard-
izations. By [3], this yielded easily calculable formulas for the Betti numbers of the entire
Springer variety Fλ in a number of interesting cases. In particular, [1] gives closed formu-
las for |S1(λ)|, |SM−1(λ)|, and |SM−2(λ)|, where M is the maximum number of inversions
possible for any inverted Young tableau of shape λ. That same paper also presents closed
formulas for general |Si(λ)| in the case of relatively “easy” choices for λ.

The combinatorial results of [1] also formalized earlier work on the Bar-Natan skein
module of the solid torus presented by Russell in [6], with the generators of Russell’s
skein module standing in bijection with inverted Young tableaux of shape λ = (n, n). It
is hypothesized that Russell’s work extends to the sln skein module of the solid torus for
all n > 2, giving an interesting topological interpretation of inverted Young tableaux for
any rectangular shape λ = (n, . . . , n). An upcoming paper by the author [2] explicitly
demonstrates this correspondence in the n = 3 case.

The primary goal of this paper is to generalize the notion of tableau inversions to the
semistandard case, where repeated entries are possible, and to investigate which results
from [3] and [1] extend to this more sophisticated case. Although the algebraic geometry
of this case has not been explicitly worked out, seeing as Spaltenstein varieties are the
generalization of Springer varieties corresponding to semistandard Young tableaux, the
author suspects that this paper may shed light on the Betti numbers of Spaltenstein
varieties. In the spirit of [6] and [2], the author also suspects that this semistandard
generalization will be topologically realized by skein modules of the solid torus where the
boundary circles are not consistently oriented. Do note that the focus of this paper is
purely combinatorial; no knowledge of algebraic varieties or skein modules is required,
and Springer/Spaltenstein varieties will only be mentioned in passing.

So let τ be a row-standard tableau of shape λ and content µ, and let i, j be a pair of
entries from the same column of τ . Let {i1, i2, . . .} denote the (possibly empty) sequence
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of entries directly to the right of i in τ , read from left-to-right, and let {j1, j2, . . .} denote
the (possibly empty) sequence of entries directly to the right of j, read from left-to-right.
We assert that i, j participate in an inversion of τ if i < j and one of the following holds:

1. At least one of i1 and j1 doesn’t exist, and i is below j.

2. i1 and j1 both exist, and i1 > j1.

3. ik and jk both exist for all k 6 M with ik = jk for all k 6 M , at least one of iM+1

or jM+1 doesn’t exist, and i is below j.

4. ik and jk both exist for all k 6M with ik = jk for all k 6M , iM+1 and jM+1 both
exist, and iM+1 > jM+1.

In Section 2, the somewhat redundant definition above will be streamlined utilizing
what we refer to as the “height order” on tableau entries. The reason for the lengthier
set of conditions above is that it betrays how our notion is a direct generalization of
tableau inversions for standard tableaux: as ik = jk is impossible in the case of non-
repeated entries, only the first two conditions above are relevant in that situation. If any
of the conditions above hold, we once again write (i, j)τ or simply (i, j) and say that i, j
constitute an inversion pair of τ . We also retain our notation that ninv(τ) denotes the
total number of distinct inversion pairs in τ . In this case, the row-standard τ qualifies as
a semistandard Young tableau if and only if ninv(τ) = 0.

A direct generalization of the technique from [3] shows that one may recursively remove
inversions in any row-standard tableau τ to produce a column-standard semistandard
tableau with no inversions, which we again refer to as the standardization st(τ) of τ .
This standardization is merely the semistandard tableau where one has independently
reordered the entries in each column so that they are weakly-increasing from top-to-
bottom, and is guaranteed to be row-standard if the original τ was row-standard. This
fact prompts our definition of τ as an inverted semistandard Young tableau based on
st(τ). Figure 2 shows an example of an inverted semistandard tableau with λ = (4, 4, 3)
and µ = 1121314152617282. If ninv(τ) = i, we refer to τ as an i-inverted semistandard
Young tableau. For given λ and µ, we denote the set of all such tableaux with precisely
i inversion pairs by Si(λ, µ). If we range across all possible numbers of inversions, we
collectively refer to the set of all inverted semistandard tableaux as I(λ, µ) =

⋃∞
i=0 Si(λ, µ).

1 3 7 8

4 5 6 8

2 5 7

⇒ 1 3 6 8

2 5 7 8

4 5 7

Figure 2: An inverted semistandard tableau with inversion pairs (2, 4), (3, 5), (6, 7) and
its standardization.

It should be noted that the notion of “tableau inversion” presented here as well as in
[3],[1] is a distinct concept from the “inversions in standard Young tableaux” introduced
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by Shynar in [7]. In [7], a (weak) inversion in a standard Young tablau T is a pair (i, j)
of entries such that i < j and where j appears both strictly south and strictly (resp.
weakly) west of j in T . As such, Synar’s inversions are a measure on standard Young
tableau that do not address the more general row-standard case. Although possibly
related to the maximal possible number of inversion pairs in an inverted Young tableau
τ with st(τ) = T , Shynar’s distinct notion of tableau inversion will have absolutely no
bearing on what follows.

1.1 Outline of Results

We begin in Section 2 by generalizing a variety of basic results from [1] to the semistandard
case. Our most significant theorem in this realm is a closed formula giving the maximum
possible number of inversion pairs for an inverted semistandard Young tableau of given
shape and content, a result that eventually appears as Theorem 7 and is presented in
truncated form below:

Theorem 1. Consider the shape λ = (λ1, . . . , λm) and content µ = 1µ12µ2 . . . KµK , and
let hj be the height of the jth column in any tableau of shape λ. If I(λ, µ) is nonempty,
then the maximum number of inversions for any element of I(λ, µ) is:

Mλ,µ =
∑
j

(
hj
2

)
−
∑
j

(
µi
2

)
Also included in Section 2 is the most theoretically significant result of the paper,

a demonstration that the number of i-inverted semistandard Young tableaux of a fixed
shape is invariant under “permutation of content”. Eventually appearing as Theorem 11,
notice that the simplified version shown below specializes to the well-known invariance of
semistandard Young tableau presented in [5] and elsewhere if we let i = 0:

Theorem 2. Take any shape λ and any content µ using the entries 1, 2, . . . ,M . For any
permutation σ on M letters, we have |Si(λ, µ)| = |Si(λ, σ(µ))| for all i > 0.

Section 3 proceeds to give a series of direct enumerative results about inverted semis-
tandard Young tableaux. Closed formulas are given for the number of i-inverted tableaux
in the one-column case (Theorem 13) and two-row case (Theorem 14), for any valid con-
tent µ. Our result for the one-column case, which reveals an intriguing new application
of the q-factorial, is shown below:

Theorem 3. Let λ be the one-column tableau shape with M total entries, and let µ =
1µ12µ2 . . .mµm be any content with

∑
k µk = M . Then the |Si(λ, µ)| have generating

function:

∞∑
i=0

|Si(λ, µ)|qi =
[M ]q!

[µ1]q![µ2]q! . . . [µm]q!

Where [p]q = 1 + q + . . . + qp−1 is the q-number and [p]q! = [p]q[p − 1]q . . . [2]q[1]q is the
q-factorial.
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We close the paper with proofs of Theorems 16 and 17, which directly generalize results
from [1] by demonstrating a bijection between 1-inverted semistandard Young tableaux
of a given shape and 0-inverted semistandard Young tableaux of a collection of related
shapes. The more easily-digested specialization of this result to rectangular shapes is
given below:

Theorem 4. Let m,n > 1, and take the m-row tableau shapes λ = (n, . . . , n), λ̃ =
(n+ 1, n, . . . , n, n− 1). Then |S1(λ, µ)| = |S0(λ, µ)| for any content µ compatible with λ.

It should be reiterated that the focus of this paper is purely combinatorial. Many of
the results above suggest reinterpretations in terms of algebraic varieties if the terminology
is carefully recast. For example, Theorem 3 may be interpreted as an equality between
two writings of the Poincare polynomial for the variety F of partial flags V0 = 0 ⊂ V1 ⊂
. . . ⊂ Vm = CM with dim(Vi/Vi−1) = µi. Induction shows that the right-side of Theorem
3 directly equals to the Poincare polynomial of F , whereas the |Si(λ, µ)| on the left-side
equal the number of i-dimensional cells in the Bruhat decomposition of F .

2 Basic Results About Inverted Semistandard Young Tableaux

Before moving on to specific results about inverted semistandard Young tableaux, we
formalize the definition of tableau inversion from Section 1 via a complete order on the
entries of any fixed column in a tableau. So let τ be an inverted semistandard Young
tableau. Beginning with the rightmost column of τ and recursively working our way
leftward, we place a complete order J on the entries {ai} of each column as follows:

• If either ai or aj lacks an entry directly to its right and ai lies above aj, then ai J aj.

• If ai lies directly to the left of bi, aj lies directly to the left of bj, and bi < bj, then
ai J aj.

• If ai lies directly to the left of bi, aj lies directly to the left of bj, bi = bj, and bi J bj,
then ai J aj.

We call J the height order on the jth column of τ . If c is the kth smallest element in
its column of τ relative to the height order on that column, we say that c has a height
of k in τ and write ht(c) = k.

The order J tells us how a column of a tableau “should be” ordered (relative to the
column immediately on its right) if that column is to avoid any inversion pairs. Notice
that, if τ is column semistandard, then the height of c is always equal to its row number.
In an inverted tableau, if ht(c) does not equal the row number of c, then c is involved in
at least one inversion pair. Most generally:

Proposition 5. Let τ be a row-standard tableau and let i, j be two entries from the same
column of τ . Then (i, j) forms an inversion pair of τ if and only if i < j and j J i.
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As one final basic comment about inversion pairs notice that, unlike in the non-
repeated entry case of [1] and [3], the location of an inversion pair (i, j) is not uniquely
identified by specifying which two entries are involved. This is because, when one allows
for repeated entries, it is possible for a pair of entries to appear together in more than one
column of an inverted tableau or even for a specific inversion (i, j) to appear multiple times
in one column (if different instances of i and j are involved in those distinct inversions).
When one needs to specify the column of origin for an inversion pair, we henceforth use
(i, j)k to denote that the inversion pair (i, j) occurs in the kth column of τ . Much as a
standardization T and a collection of inversion pairs was enough to uniquely identify a
particular inverted standard Young tableau τ in the setting of [3] of [1], it is straightfor-
ward to show that a standardization along with a collection of column-specified inversion
pairs (with multiplicities for each column) is enough to uniquely identify a particular
inverted semistandard Young tableau.

For the remainder of this section, we consider which basic results about inverted stan-
dard Young tableau from [1] generalize to the semistandard case. The most fundamental
result discussed in [1] was an explicit formula for the total number of inverted Young
tableaux |I(λ)| of an arbitrary shape λ = (λ1, λ2, . . . , λm). A quick counting argument
yielded:

|I(λ)| =
(
λ1 + . . .+ λm

λm

)(
λ1 + . . .+ λm−1

λm−1

)
. . .

(
λ1 + λ2
λ2

)
=

(λ1 + . . .+ λm)!

λ1!λ2! . . . λm!
(1)

Unfortunately, Equation 1 does not appear to possess a tractable generalization to
the general semistandard case |I(λ, µ)|. In particular, the necessity of the row-standard
condition with regard to repeated entries prompts a series of increasingly sophisticated
sub-cases and prevents a succinct probabilistic formulation akin to the rightmost side of
Equation 1. One of the few specific cases where |I(λ, µ)| is directly calculable with our
current resources is when λ has one column:

Proposition 6. Let λ = 1M be the one-column tableau shape with M total entries,
and let µ = 1µ12µ2 . . .mµm be some content such that

∑
k µk = M . Then |I(λ, µ)| =

M !

µ1!µ2! . . . µm!
.

Proof. Temporarily assume that all of the entries are distinct. In this case there are
M ! possible arrangements. Dividing through by µi! then accounts for the fact that the
µi instances of i are indistinguishable, thus accounting for repetitions in our original
enumeration.

Luckily, the remaining results from Chapter 2 of [1] all admit generalizations to semi-
standard tableaux. In Subsection 2.1 we prove a general formula for the “maximum
inversion number” of an element in I(λ, µ). In Subsection 2.2 we then prove an extremely
useful result about the invariance of the |Si(λ, µ)| under permutation of content: a theorem
that has no analog in [1] but which directly generalizes the classic permutation invariance
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of (non-inverted) semistandard Young tableaux. All enumerative results, including the
“straightforward cases” of one-column and two-row tableaux, are delayed until Section 3
so that they can make direct usage of the permutation invariance of Theorem 11.

2.1 Maximum Number of Inversions for Shape λ and Content µ

Obviously, a tableau of finite size cannot possess an infinite number of inversions. It is
then of interest to ask the maximum number of inversion pairs that an element of I(λ, µ)
may possess. In other words, what is the largest i for which |Si(λ, µ)| is nonempty? For
an inverted tableau without repeated entries, in [1] it was shown that the maximum such
i for an element of I(λ) was:

Mλ =
∑
j

T(hj−1) =
∑
j

(
hj
2

)
(2)

where Tk = 1 + 2 + . . . + k is the triangle number and hj is the height of the jth column
in any tableau of shape λ. In addition to an explicit formula for Mλ, [1] also showed that
there was always precisely one element in I(λ) with Mλ inversions. When one allows for
general content µ with repeated entries, Equation 2 directly generalizes to the following:

Theorem 7. Let λ = (λ1, . . . , λm) and µ = 1µ12µ2 . . . KµK , and define hj = |{λi | λi > j}|
to be the height of the jth column for any tableau of shape λ. If I(λ, µ) is nonempty, then
the maximum number of inversions for any inverted semistandard Young tableau of shape
λ with content µ is:

Mλ,µ =
∑
j

T(hj−1) −
∑
i

T(µi−1) =
∑
j

(
hj
2

)
−
∑
i

(
µi
2

)
Moreover, this maximum inversion number is realized by precisely one inverted semistan-
dard Young tableau of shape λ and content µ, so that |SMλ,µ

(λ, µ)| = 1.

Proof. Our strategy is to pick an arbitrary semistandard Young tableau T ∈ S(λ, µ)
and argue that an inverted tableau τ ∈ I(λ, µ) with st(τ) = T can have no more than∑

j T(hj−1) −
∑

i T(µi−1) = Mλ,µ inversions pairs. We then show that there is a unique
semistandard tableau T ∗ ∈ S(λ, µ) such that an inverted tableau with st(τ) = T ∗ can
actually obtain that upper bound, and we construct a unique inverted tableau τmax with
standardization T ∗ such that ninv(τmax) = Mλ,µ.

So fix λ, µ, and let hj denote height of the jth column in any tableau of shape λ.
Then take any semistandard tableau T ∈ S(λ, µ), and pick a value α in T . As T is
row-standard, at most one copy of α may appear in each row of T . This allows us to
place a complete order ≺ on the µα copies of α in T such that αk ≺ αl if αk appears in
a higher row than αl. Henceforth index the copies of α in T according to this complete
order, so that α1 ≺ . . . ≺ αµα . Pause to notice that, since T is column semistandard,
αk ≺ αl ensures that αk appears at least as far right in T as does αl.
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Now consider the jth column of T , whose entries we denote a1 6 a2 6 . . . 6 ahj from
top to bottom. This means that ai has height htT (ai) = i in T . If we take any τ ∈ I(λ, µ)
with st(τ) = T , we can immediately say that the jth column of τ may possess at most
(i − 1) inversion pairs in which ai is the larger entry.1 Ranging over all ai, we see that
the jth column of τ may possess at most T(hj−1) inversion pairs, allowing use to conclude
that τ may contain at most

∑
j T(hj−1) inversion pairs (see Equation 2).

To obtain the more precise upper bound of this theorem, let b1 6 b2 6 . . . 6 bhj+1

denote the entries in the (j+1)st column of T , read from top to bottom. For a fixed entry
ai in the jth column of T , let bγi be the highest entry in the (j + 1)st column of T such
that bγi > ai, so that there are precisely γi− 1 entries bk in the (j+ 1)st column of T with
bk 6 ai. For any τ with st(τ) = T , notice that row-standardness ensures that htτ (ai) > γi
in τ and hence that the jth column of τ may contain at most i− γi inversion pairs whose
larger entry is ai. We are now ready to account for repeated entries.

So assume that an entry ai in the jth column of T is the kth instance of α according to
our complete order ≺, namely ai = αk. Additionally assume there are k1 other instances
of α above ai in the jth column of T and there are k2 instances of α in a more rightward
column of T , so that k1 + k2 = k − 1. It follows that there are at least k2 entries in the
(j + 1)st column of T that are smaller than ai, so that γi > k2 + 1. As flipping identical
entries fails to produce an inversion pair, there are k1 additional entries above ai in T with
which ai may not form an inversion pair in any τ with st(τ) = T . It follows that the jth

column of τ may contain at most i−(k2+1)−k1 = i−k inversion pairs whose larger entry
is ai. Notice that this “inversion deficiency” for ai, when compared to the non-repeated
entry case of Equation 2, is k− 1. So when we range over all instances of α in τ we must
have at least 0 + 1 + . . .+ (µα− 1) = T(µα−1) fewer inversions than the maximum number
of inversion pairs allowed by Equation 2. Ranging over all values α allows us to conclude
that any τ with st(τ) = T may have at most Mλ,µ =

∑
j T(hj−1) −

∑
i T(µi−1) inversions.

Now consider the unique T ∗ ∈ S(λ, µ) such that, for all j, every entry in the (j + 1)st

column of T ∗ is at least as large as every entry in the jth column of T ∗. We claim that
this is the only tableau in S(λ, µ) such that τ ∈ I(λ, µ) with st(τ) = T ∗ may possess
up to Mλ,µ inversion pairs. So let T be any other semistandard tableau in S(λ, µ). For
some j, there exists entries ai in the jth column of T and b in the (j + 1)st column of
T such that ai > b. If a is the kth instance of α in our complete order ≺, equivalent
reasoning to the previous paragraph ensures that any τ ∈ I(λ, µ) with st(τ) = T may
contain at most i − k − 1 inversion pairs in its jth column whose larger entry is ai. As
our previously-established upper bounds are unaffected for all other entries in T , we may
conclude that any τ with st(τ) = T may contain at most Mλ,µ − 1 inversion pairs.

It remains to be shown that there is precisely one τ ∈ I(λ, µ) with st(τ) = T ∗ such
that ninv(τ) = Mλ,µ. We begin by constructing the requisite tableau, which we call
τmax. Working one column at a time, from right-to-left, we place the hn largest available
entries in the rightmost (nth) column of τmax from top-to-bottom in the unique non-
increasing order. For the (n − 1)st column, we work through the hn−1 largest remaining

1Throughout this proof, ai refers to a specific copy of an entry α, so that if the jth column contains
multiple copies α there may be more than i−1 total inversion pairs in the jth column of the form (ak, α).
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entries in decreasing order, placing each element in the available spot with the lowest
height that does not violate the row-standard condition. Notice that, if the instances
of a repeated entry are split across two columns, this means that an entry need not be
placed in the available spot with the lowest height. Repeat this procedure for each of the
remaining columns, placing the largest remaining entry in the lowest height slot available
that does not result in identical entries being placed in the same row. As we are recursively
placing smaller entries leftward, the resulting tableau τmax is clearly row-standard and has
standardization st(τmax) = T ∗. For an example of the resulting τmax, see Figure 3.

1 4 5

2 3 5

2 3

1 2

⇒
1 2 5

1 3 5

2 3

2 4

Figure 3: The unique inverted semistandard Young tableau τmax for λ = (3, 3, 2, 2) and
µ = 1223324152 with Mλ,µ = 7 inversion pairs, alongside its standardization T .

The tableau τmax has been specifically constructed so that it maximizes the number of
inversion pairs involving each element upon the placement of that element. In particular,
assume that the ith entry placed in the jth column of τmax, namely ai, is the kth instance of
the value α to have been placed in τmax. We consider two cases, depending upon whether
the instances of α are split across one of two columns of τmax. If all previous instances of
α also lie in the jth column of τmax, there are i − (k − 1) strictly smaller entries a < ai
in the jth column, and we have ai J a for all such a. If k1 instances of α had previously
been placed in the jth column and k2 instances of α had previously been placed in the
(j + 1)st column (so that k1 + k2 = k − 1), there are i− k1 strictly smaller entries a < ai
in the jth column but k2 of those entries (those directly to the left of other instances of α)
have a J ai. This leaves i−k1−k2 other entries a in the jth column such that a < ai and
ai J a. In both cases, we may conclude that τmax contains precisely i− (k − 1) inversion
pairs in which ai is the larger element. This gives τmax a total of ninv(τ) = Mλ,µ inversion
pairs when ranging over all entries ai and all columns.

Lastly, we claim that τmax is the only inverted tableau with standardization T ∗ that
may possess Mλ,µ inversion pairs. If we take any other τ ∈ I(λ, µ) such that st(τ) = T ∗,
τ is related to τmax in that at least one of its columns have been re-ordered. So assume
that the jth column of τ has a distinct ordering from τmax. Via our construction of τmax,
there must exists an entry ai in the jth column of τ such that, if ai corresponds to the
kth instance of α in our complete ordering ≺ on T ∗, there exists fewer than ht(ai)− k− 1
inversion pairs in the jth column of τ whose larger entry is ai. As our previously-argued
upper bounds for inversions involving other elements still holds, we conclude that τ has at
most Mλ,µ−1 total inversions. Thus τmax is the only inverted tableau with standardization
T ∗, and by extension the only element of I(λ, µ), with precisely Mλ,µ inversion pairs.
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2.2 Invariance Under Permutation of Content

One of the most fundamental results involving semistandard Young tableaux is that the
number of such tableaux with a fixed shape λ is invariant under permutation of content.
In particular, given a content µ = (µ1, µ2, . . . , µM) and any permutation σ ∈ SM , then
|S(λ, µ)| = |S(λ, σ(µ))|. The most common proof of that fact, as outlined in [5], identifies
the number of semistandard tableaux of given content as the coefficient in a certain Schur
polynomial and then utilizes the fact that Schur polynomials are symmetric polynomials.

In this Subsection we show that the “permutation invariance” outlined above extends
to i-inverted semistandard tableaux with a fixed number of inversions: that |Si(λ, µ)| =
|Si(λ, σ(µ))| for all i > 0. Since the traditional notion of semistandard Young tableau cor-
responds to the case of i = 0, our general result specializes to the previously-established
permutation invariance result of [5] when i = 0. Note that our techniques in no way ref-
erence symmetric polynomials, meaning that our i = 0 specialization offers an apparently
new proof of the well-known result from [5].

Before proceeding to our primary proof, we require a series of technical lemmas char-
acterizing how inversion numbers behave under manipulations of inverted semistandard
Young tableaux with certain “basic” shapes.

Lemma 8. Let τ be a one-column row-standard tableau with N total boxes and content
µ = 1j2N−j. If τ ∗ is the row-standard tableau of content µ obtained by reversing the
vertical ordering of τ , then ninv(τ) + ninv(τ ∗) = j(N − j).

Proof. Notice that the maximum possible number of inversions for a tableau with given
λ and µ is j(N − j), occurring when all 2 entries lie above all 1 entries. Now take any two
entries ai, aj in τ such that ai 6= aj. The entries ai and aj form an inversion pair in τ if
and only if their reflections aN−i+1, aN−j+1 do not form an inversion pair in τ ∗. It follows
that any such pair ai, aj constitutes an inversion pair in precisely one of τ or τ ∗. Thus
ninv(τ) + ninv(τ ∗) = j(N − j).

Lemma 9. Let τ be a one-column row-standard tableau with N total boxes and content
µ = 1j2N−j. If τ̄ is the row-standard tableau of content µ̄ = 1N−j2j obtained by flipping
all instances of 1 and 2 in τ , then ninv(τ) + ninv(τ̄) = j(N − j).

Proof. Notice that the maximum possible number of inversions for a tableau with given
λ and either content µ or µ̄ is j(N − j), once again occurring when all 2 entries lie above
all 1 entries. Take any two entries ai, aj in τ such that ai 6= aj, and let āi, āj be the
equivalently placed entries in τ̄ . The entries ai and aj form an inversion pair in τ if and
only if āi and āj do not form an inversion pair in τ̄ , as the relative ordering of the entries
has been inverted in τ̄ . It follows that ninv(τ) + ninv(τ̄) = j(N − j).

Lemma 10. Let λ be a two-column tableau of shape λ with N total boxes. If we define
contents µ = 1j2N−j and µ̄ = 1N−j2j, where 0 6 j 6 N , then |Si(λ, µ)| = |Si(λ, µ̄)| for
every i > 0.
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Proof. The general form of such a row-standard tableau (with content µ or µ̄) is shown
in Figure 4. No matter the number of inversions, the only portion of such a tableau that
is not determined is the one-column “tail”. Observe that any inversion pairs from such a
tableau must occur in its “tail”. For any τ ∈ I(λ, µ), we refer to the two-column “head”
subtableau as τ+ and the “tail” subtableau as τ−.

Now fix i > 0, and define a map φ : Si(λ, µ) → Si(λ, µ̄) that is the identity on τ+
and which maps each τ− to τ̄ ∗−. Notice that the “flipping” portion of φ|τ− ensures that
φ(τ) has content µ̄. By Lemmas 8 and 9 we see that ninv(τ̄ ∗) = j(N − j) − ninv(τ̄) =
j(N−j)−j(N−j)+ninv(τ) = ninv(τ), ensuring that φ(τ) is in fact an element of Si(λ, µ̄).
As φ is clearly reversible it represents a bijection.

1 2
...

...

1/2
...

Figure 4: General form of a two-column row-standard tableau with content µ = 1j2N−j

Theorem 11. Take any tableau shape λ and any content µ = 1µ12µ2 . . .MµM compatible
with λ. For any permutation σ ∈ SM , we have |Si(λ, µ)| = |Si(λ, σ(µ))| for all i > 0.

Proof. We show |Si(λ, µ)| = |Si(λ, σ(µ))| for a simple transposition (a, a + 1) ∈ SM
of consecutive elements a, a + 1 ∈ {1, 2, . . . ,M}. The general result then follows from
repeated application of our procedure.

So take consecutive values a, a+ 1 ∈ {1, 2, . . . ,M}. We begin by fixing semistandard
T ∈ S(λ, µ) and identifying all instances of a, a+1 in T . The boxes with these two entries
form a skew sub-tableau ηT of T with content aµa(a + 1)µa+1 . As T is row-standard, no
row in ηT contains more than two entries. Subdivide ηT into a set of “blocks” ηjT , one for
each upper-left corner entry αj in ηT , by working leftward through the columns of T and
assigning to ηjT all entries that are below or to the right of αj and which have not yet
been assigned to any previous block. An example of this procedure is shown in Figure 1.

D

C C

B B

B

A A

A A

A

Figure 5: A standarized 7-row tableau with four “blocks” for the consecutive values a,a+1.

With the ηjT clearly defined, take any τ ∈ I(λ, µ) such that st(τ) = T . Denote by ηjτ
(respectively ητ ) the entries in τ that correspond to the entries of ηjT (respectively ηT ) in
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T . Clearly, ητ is merely the collection of all instances of a and a + 1 in τ . If multiple
instances of a or a+ 1 appear in the same column of τ , we ensure that each such instance
is assigned a unique block ηjτ by assuming that repeated instances of a fixed entry in the
same column maintain the same relative height ordering as we pass between τ and T . We
informally refer to each ηjτ as an “inverted block”.

Now consider the set of all semistandard tableaux S(λ, µ). Divide elements of S(λ, µ)
into subsets depending upon the exact placement of their skew sub-tableau ηT , and for
each distinct placement γ define Sγ(λ, µ) = {T ∈ S(λ, µ) | ηT has placement γ in T}.
For each i > 1, similarly divide all i-inverted tableaux Si(λ, µ) into subsets based upon
the placement of ηT in their standardizations, so that Sγi (λ, µ) = {τ ∈ Si(λ, µ) | st(τ) ∈
Sγ(λ, µ)}. Pause to notice that, since a and a + 1 are consecutive numbers, the possible
placements γ are identical for S(λ, µ) and S(λ, σ(µ)). To show |Si(λ, µ)| = |Si(λ, σ(µ))|,
our strategy is to define a map φ : Si(λ, µ) → Si(λ, σ(µ)) that restricts to a bijection
φ|γ : Sγi (λ, µ)→ Sγi (λ, σ(µ)) for each possible placement γ.

So fix a placement γ as well as an inversion number i > 0. To define our bijection,
begin by recalling that an inverted tableau is uniquely identified by its standardization
alongside a collection of column-specific inversion pairs (with multiplicities). For each
τ ∈ Sγi (λ, µ), we divide the i inversion pairs of τ into subsets depending upon whether
their participants both lie in a specific inverted block ηjτ . For each j, denote by ζj the set

of all inversion pairs (b1, b2) of τ such that b1, b2 ∈ ηjτ . Then denote by ζ̃ the set of all
inversion pairs of τ that aren’t in ζj for any j.

Notice that each “block” ηjT of T ∈ Sγ(λ, µ) is a (non-skew) one- or two-column
tableau with content of the form ax(a + 1)y for some x, y > 0. For any τ ∈ Sγi (λ, µ)
with st(τ) = T , specifying ζj allows us to associate each inverted block ηjτ with a specific
|ζj|-inverted young tableau with content ax(a + 1)y whose standardization is ηjT . Notice
that these are precisely the sort of inverted tableau addressed in Lemma 10.

We are now ready to define our map φ|γ : Sγi (λ, µ) → Sγi (λ, σ(µ)). For an arbitrary
τ ∈ Sγi (λ, µ), we define φ|γ(τ) as follows:

1. For each inverted block ηjτ of τ , we interpret ηjτ as an |ζj|-inverted tableau with
content ax(a + 1)y. φ|γ is then defined on ηjτ using the bijection of Lemma 10,
replacing ηjτ with a new inverted block ηjφ(τ) that we interpret as a |ζj|-inverted

tableau of the same shape but with content (a + 1)xay. On the level of inversion
pairs, this simply swaps ζj for |ζj| inversion pairs whose members lie within ηjφ(τ).

2. Outside of ητ , φ|γ is the identity apart from entries that lie to the left of a block ηjτ .
If the bijection of Lemma 10 changes the height order of entries directly to the left
of ηjτ , permute the “partial rows” to the left of ηjτ in the unique way that preserves
the height order of those elements. On the level of inversion pairs, this is the unique
rearrangement of entries outside of ητ so that the |ζ̃| is unchanged as we pass from τ

to φ|γ(τ) (specific inversion pairs in ζ̃ may only change in that they swap instances
of a and a+ 1, as determined by the bijection of Lemma 10.
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For an example of the procedure above, see Figure 6. Our map φ|γ is clearly well-
defined. When considered on the level of inversion pairs, the map also fixes the total
number of inversion pairs. As Step #2 fixes content and Step #1 flips the content of a
and a + 1, as per Lemma 10, the output always has content σ(µ). To conclude that φ|γ
is our desired map it remains to be shown that φ|γ(τ) is always row-standard and hence
in Sγi (λ, µ), as well as that φ|γ is bijective.

The fact that φ|γ(τ) is always row-standard follows from our definition of the ηjT and
the ηjτ . As a and a+1 are consecutive numbers, reassigning entries within ητ never results
in an instance of a or a+ 1 appearing leftward of an entry less than a, and similarly never
results in an instance of of a or a+ 1 appearing rightward of an entry greater than a+ 1.
Seeing as the bijection of Lemma 10 preserves the fact that the rightward column of each
inverted block consists solely of a+ 1 entries, it is impossible for an instance of a+ 1 from
a fixed inverted block ηjτ to end up left of an instance of a from that same inverted block.
Lastly, due to the way that all “boundary entries” in ηT are assigned to the leftmost of the
two adjacent blocks (such as the lower-right corner in Figure 5 that is assigned a B instead
of a C), a valid rearrangement of entries within ητ never results in an instance of a + 1
from one inverted block lying to the left of an instance of a from another inverted block.
This is because those boundary entries are always necessarily an instance of a+ 1. These
observations combine to let us conclude that φ|γ(τ) is row-standard for any τ ∈ Sγi (λ, µ),
and hence that φ|γ(τ) ∈ Sγi (λ, σ(µ)).

To conclude that φ|γ is a bijection, we again cite the fact that an inverted tableaux
is uniquely determined by its standardization along with a collection of column-specific
inversion pairs. If τ1, τ2 ∈ Sγi (λ, µ) differ in that their inversion pair subsets ζj are distinct
for some j, the bijection of Lemma 10 ensures that φ|γ(τ1), φ|γ(τ2) have distinct sets
of inversion pairs in their jth block. If τ1, τ2 ∈ Sγi (λ, µ) differ in that their inversion

pair subsets ζ̃ are distinct, the fact that Step #2 of our bijection fixes ζ̃ ensures that
φ|γ(τ1), φ|γ(τ2) have distinct subsets ζ̃. It follows that φ|γ is injective. The fact that φ|γ is
surjective quickly follows from the fact that the bijection of Lemma 10 is surjective and,
since a and a + 1 are consecutive values, there is a bijection between acceptable subsets
of inversion pairs ζ̃ for elements of Sγi (λ, µ) and acceptable subsets ζ̃ for elements of
Sγi (λ, σ(µ)). Thus we conclude that φ|γ : Sγi (λ, µ)→ Sγi (λ, σ(µ)) is our desired map.

As one quick corollary of Theorem 11, notice that the total number of inverted semis-
tandard tableaux of shape λ, when ranging over all possible numbers of inversions, is also
invariant under permutation of content:

Corollary 12. Take any tableau of shape λ and any content µ = 1µ12µ2 . . . KµK compatible
with λ. For any permutation σ ∈ SM , |I(λ, µ)| = |I(λ, σ(µ))|.

3 Enumeration of Inverted Semistandard Young Tableaux

With the tools of Section 2 in place, we are ready to present enumerative results about
inverted semistandard Young tableaux. As with [1], closed formulas for |Si(λ, µ)| when
i is arbitrary are only tractable for certain “easy” choices of λ, namely one-column and

the electronic journal of combinatorics 23(1) (2016), #P1.43 14



1 4 6 8

2 5 6 7

3 7 8 9

2 6 10 11

4 6 11 12

⇒
1 4 7 8

2 5 6 7

4 7 8 9

3 7 10 11

2 6 11 12

1 4 6 7

2 5 6 8

2 6 8 9

3 6 10 11

4 7 11 12

⇒
1 4 6 7

2 5 7 8

2 6 8 9

3 7 10 11

4 7 11 12

Figure 6: Part of the bijection φ : S5(λ, µ) → S5(λ, σ(µ)) from the proof of Theorem
11, for λ = (4, 4, 4, 4, 4), µ = 112231425164728291101112121 and σ = (6 7). The left side
shows τ and σ(τ), both of which have inversion pairs (3, 4)1, (4, 5)2, (6, 7)2, (6, 7)2, (7, 8)4.
The right side shows st(τ) and st(σ(τ)). Notice how the first column of σ(τ) has been
reordered to the left of the bottom “block” in order to maintain height order.

one- or two-row shapes. After fully addressing those “easy” cases, we directly enumerate
S1(λ, µ) for arbitrary λ and µ by placing that set in bijection with a collection of sets

of (non-inverted) semistandard Young tableaux
⋃
k S0(λ̃k, µ), thus generalizing Theorems

3.1 and 3.2 of [1].

3.1 Enumerating i-Inverted Semistandard Young Tableaux, λ = (1, 1, . . . , 1)

In the standard tableaux setting of [1], one of the few choices of λ for which specific
|Si(λ)| could be directly computed were the single-column shapes λ = 1m (m > 1). As
inverted standard Young tableaux with one-column are equivalent to permutations, that
paper cited the standard result [8] to give |Si(λ)| = M(m − 1, i), where M(m − 1, i)
is the Mahonian number. If we let [p]q = 1 + q + . . . + qp−1 be the q-number and let
[p]q! = [1]q[2]q . . . [p]q be the q-factorial, this gave the generating function:

∞∑
i=0

|Si(λ)|qi = (1+q)(1+q+q2) . . . (1+q+ . . .+qm−1) = [2]q[3]q . . . [m]q = [m]q! (3)

The single-column case is also relatively tractable when we allow for repeated entries,
yielding a direct generalization of the generating function from Equation 3. In what

follows, we use the standard notation
(
a
b

)
q

= [a]q !

[b]q ![a−b]q ! = (1−qa)(1−qa−1)...(1−qa−b+1)
(1−q)(1−q2)...(1−q)b for the

q-binomial coefficients.

Theorem 13. Let λ = 1M be the one-column tableau shape with M total entries, and
let µ = 1µ12µ2 . . .Mµm be some content such that

∑
k µk = M . Then we have generating

function:

∞∑
i=0

|Si(λ, µ)|qi =

(
µ1

µ1

)
q

(
µ1 + µ2

µ2

)
q

. . .

(
M

µm

)
q

=
[M ]q!

[µ1]q![µ2]q! . . . [µm]q!

Proof. It is possible to “build up” any inverted tableau τ ∈ I(λ, µ) by recursively inserting
µn copies of n into a one-column tableau τn−1 with content 1µ12µ2 . . . (n−1)µn−1 , producing
a sequence {τ1, τ2, . . . , τm} of one-column tableaux such that τm = τ . Notice that distinct
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placements at any step in this process always results in distinct τ , so this procedure
describes a way to uniquely determine every element of I(λ, µ). Furthermore, the number
of inversion pairs in the resulting τ whose larger element is n is determined entirely by
the insertion of the µn copies of n into τn−1: this “level n step” is the only point at which
such inversion pairs may appear, and the number of such inversion pairs is not dependent
upon the prior arrangement of the 1µ12µ2 . . . (n − 1)µn−1 or the later placement of larger
entries.

So fix a one-column tableau τn−1 with content 1µ12µ2 . . . (n−1)µn−1 . A copy of n placed
above j entries in τn−1 results in j inversion pairs whose larger entry is that instance of n.
In particular, each instance of n may be involved in up to µ1+µ2+. . .+µn−1 inversion pairs
where it is the larger entry, and the number of such inversion pairs involving a particular
instance of n is independent of the placement of other instances of n. Now consider the
number of tableaux obtained from τn−1 with precisely i inversion pairs whose larger entry
is n. By our preceding comments, these tableaux are in bijection with partitions of i into
at most µn parts (one part corresponding to each instance of n) where each part is less
than or equal to µ1 + . . .+ µn−1.

It is well known that the coefficient of qi in
(
a+b
a

)
q

equals the number of partitions of i

into at most a parts, with each part less than or equal to b. If |τ in−1| denotes the number
tableaux τn obtained from τn−1 with precisely i inversion pairs whose larger entry is n,
we then have generating function

∞∑
i=0

|τ in−1|qi =

(
µ1 + µ2 + . . .+ µn

µn

)
q

(4)

As every inversion pair in τ ∈ I(λ, µ) appears at a unique step in the sequence
{τ1, τ2, . . . , τm}, multiplying the generating functions of Equation 4 for 1 6 i 6 m gives
the result.

Notice that if µk = 1 for all k, Theorem 13 recovers the standard tableaux result
of Equation 3. Specialization of Theorem 13 at q = 1 shows that the total number of
inverted semistandard Young tableaux of shape λ is |I(λ, µ)| = M !

µ1!µ2!...µm!
, independently

verifying Proposition 6.

3.2 Enumerating i-Inverted Semistandard Young Tableaux, λ = (n, n)

The other basic shapes λ that admitted a direct enumeration of i-inverted standard Young
tableaux in [1] were one-row and two-row tableau shapes. The row-standard condition
made one-row shapes predictably trivial: if λ = (n) for any n > 1, then |S0(λ)| = 1 and
|Si(λ)| = 0 for all i > 1. The two-row case involved a recognition of the fact that any two-
row inverted tableau necessarily “split” after a column in which it possessed an inversion
pair. As shown in [1], if λ = (n, n) the formula for |Si(λ)| depends upon summations of
products of Catalan numbers Ck where the subscripts in each term partition n:
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|Si(λ)| =

( ∑
k1+...+ki=n

Ck1Ck2 . . . Cki

)
+

 ∑
l1+...+li+1=n

Cl1Cl2 . . . Cli+1

 (5)

Equation 5 admits a very direct generalization to the semistandard case in the form
of Theorem 14. This theorem also marks our first usage of Theorem 11 as a powerful
simplifying tool:

Theorem 14. Let λ = (n, n), any n > 1, and let µ = 1µ12µ2 . . . be some content such
that

∑
k µk = 2n.

1. If µk > 2 for any k, then |Si(λ, µ)| = 0 for all i > 0.

2. If µk = 2 for precisely m choices of k and µk = 1 for the remaining 2n−2m choices
of k, then:

|Si(λ, µ)| =

( ∑
j1+...+ji=n−m

Cj1Cj2 . . . Cji

)
+

 ∑
l1+...+li+1=n−m

Cl1Cl2 . . . Cli+1


Where Cj is the jth Catalan number, and the summations run over all ordered
partitions of length i and i+ 1, respectively.

Proof. Case #1 is immediate because no such tableau can be row-standard. For Case #
2, by Theorem 11 we may assume that µk = 2 for 1 6 k 6 m and µk = 1 for k > m. This
means that the first m columns of any τ ∈ I(λ, µ) each consist of two instances of the
same entry, and hence cannot partake in an inversion pair. Thus the only place where τ
isn’t predetermined, as well as the only place where τ may possess inversion pairs, is over
it’s final n−m columns. Notice that, when restricted to these final n−m columns, any
τ ∈ I(λ, µ) becomes a inverted standard Young tableau with 2(n − m) distinct entries

m + 1,m + 2, . . . , 2n −m. If we define λ̃ = (n −m,n −m), a truncation of τ ∈ I(λ, µ)
to its final n−m columns and then a reindexing of its entries yields a bijection between
Si(λ, µ) and Si(λ̃) for all i > 0. The result then follows from Theorem 2.3 of [1].

If µk = 1 for all k, the formula of Theorem 14 very obviously simplifies to the standard
tableaux formula of Equation 5. Less obvious from Theorem 14 is an enumeration of the
total number of inverted tableaux |I(λ, µ)|, but a similar bijection with shorter two-row
standard tableaux yields the following:

Proposition 15. Let λ = (n, n) for any n > 1, and let µ = 1µ12µ2 . . . be some content
with

∑
k µk = 2n. If µk = 2 for precisely m choices of k (0 6 m 6 n) and µk = 1

otherwise, then |I(λ, µ)| =
(
2(n−m)
n−m

)
.
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Proof. By Theorem 12, we may assume that µk = 2 for 1 6 k 6 m and µk = 1 for k > m.
As in the proof of Theorem 14, this means that the first m columns of any τ ∈ I(λ, µ) each
consist of two instances of the same entry, and that elements of I(λ, µ) are in bijection

with inverted standard Young tableaux of shape λ̃ = (n − m,n − m). The result then
follows from Proposition 2.1 of [1], as we merely need to specify which of the 2(n −m)
non-repeated entries appear in the first row.

3.3 Enumerating 1-Inverted Semistandard Young Tableaux

Enumeration of Si(λ, µ) for general λ and any i > 0 is a daunting (and potentially in-
tractable) task that wasn’t even accomplished in the non-repeated entry case of [1]. If
one wishes to address arbitrary λ, one enumeration |Si(λ, µ)| that remains approachable
is the single inversion pair case of i = 1. In this subsection we exhibit a bijection between
1-inverted semistandard Young tableaux and (0-inverted) semistandard Young tableaux
of a collection of related shapes. Unlike in [1], this doesn’t allow for an immediate de-
termination of |S1(λ, µ)| via the hook-length formula, seeing as the hook-content formula
for semistandard Young tableaux is ill-suited to enumeration of tableaux with a specific
content. Nonetheless, it does replace the set S1(λ, µ) with a far better understood collec-

tion of sets S0(λ̃, µ). The author also conjectures that the approach of Theorems 16 and
17 may be modified for the calculation of |Si(λ, µ)| for some i > 1, akin to Conjecture 4.4
in [1].

Theorem 16. Let m,n > 1, and consider the m-row shapes λ = (n, . . . , n), λ̃ = (n +

1, n, . . . , n, n− 1). For any content µ compatible with λ, |S1(λ, µ)| = |S0(λ̃, µ)|.

If λ is a rectangular shape of size m × n, then λ̃ is the “stair-step” shape formed by
moving the the lower-right corner in the Young diagram of shape λ to a new, (n + 1)st

column. See Figure 7 for an example of this shape change. Also pause to notice that this
is the only way to rearrange the boxes in a Young diagram of shape λ to produce another
valid Young diagram whereby the old lower-right corner in λ has been moved to a new
lower-right corner in a higher row.

•

−→

•

Figure 7: Shape change in the bijection of Theorem 16 for λ = (3, 3, 3, 3)

Proof of Theorem 16. As in Theorem 3.1 of [1], we define two functions φ1 : S1(λ, µ) →
S0(λ̃, µ), φ2 : S0(λ̃, µ) → S1(λ, µ) such that φ1 and φ2 are inverses of one another. The
general outline of both procedures is in line with the “repeated bumping” maps defined
in [1], apart from the addition of conditions that address how bumping behaves in the
vicinity of repeated entries.
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For the map φ1 : S1(λ, µ)→ S0(λ̃, µ), take τ ∈ S1(λ, µ) and identify the sole inversion
pair (a, b) of τ . Assume that (a, b) appears in the kth column of τ ; as (a, b) is the tableau’s
only inversion pair it must be the case that b appears immediately above a in the kth

column. Let b = ck. Our strategy is to recursively “bump” a sequence of elements
{ck, ck+1, . . . , cn}, one from each column of τ beginning with the kth column, rightward
by one column each. Our procedure is defined as follows:

1. Beginning at the site of the inversion pair (a, b) in the kth column, let ck = b. If
there are any columns in τ to the left of the kth, reorder those columns so that
they are each non-increasing from top-to-bottom. This reordering guarantees that
no new inversion pairs will be added in leftward columns due to the elimination of
the (a, b) inversion pair.

2. At the jth column in the procedure, if j < n let cj+1 be the smallest entry in the
(j + 1)st column such that cj+1 > cj. Then move cj to the spot occupied by cj+1,
temporarily allowing two entries in that spot. This leaves an empty box in the jth

column where cj was formerly located. Recursively fill any open spots in the jth

column by moving the smaller of the two entries directly below or directly to the
right of the empty box into that box. If both entries are equal at any step in this
process, move the entry directly to the right of the empty box into that box. Repeat
this procedure until the empty box has been moved into the (j + 1)st column.

3. At the jth column in the procedure, if j = n move cn to the top spot of a new
(n+ 1)st column. Then slide all entries that were below cn in the nth column up by
one spot.

An example of the full procedure is shown in Figure 8. Notice that this procedure
always results in a tableau of the correct shape λ̃, and that the resulting tableau λ̃ lacks
inversion pairs because the procedure is defined to ensure that every column is non-
increasing from top-to-bottom. The “forward bumping” and “back sliding” procedures
are also defined to ensure that the resulting tableau is row-standard. In particular, observe
that the condition in #2 whereby the rightward of two identical entries is slid left prevents
two identical entries from appearing in the same row. As every step in the procedure is
uniquely determined, we may conclude that the procedure defines a well-defined function
φ1 : S1(λ, µ)→ S0(λ̃, µ).

For the map φ2 : S0(λ̃, µ) → S1(λ, µ), take T ∈ S0(λ̃, µ) and define cn to be the
sole entry in the (n + 1)st column of T . Our strategy is to define a sequence of entries
{cn, cn−1, . . .}, where cj begins in the (j + 1)st column of T , and then recursively “reverse
bump” cj into the jth column in a manner that reverses the φ1 procedure between any
two columns. Our new procedure at the jth column is as follows:

1. Consider cj, which begins in the (j + 1)st column. There is guaranteed to be an
empty box in the jth column. Recursively fill that empty box with the largest entry
from among cj, the entry directly above the empty box, and the entry directly to the
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1 3 4

3 4 5

2 4 6

4 6 7

→
1 3 4

3/4 5

2 4 6

4 6 7

→
1 3 4

2 3/4 5

4 6

4 6 7

→
1 3 4

2 3/4 5

4 6

4 6 7

→
1 3 4

2 3 4/5

4 6

4 6 7

→
1 3 4

2 3 4/5

4 6

4 6 7

→
1 3 4 5

2 3 4

4 6

4 6 7

→
1 3 4 5

2 3 4

4 6 7

4 6

Figure 8: Part of the S1(λ, µ) ↪→ S0(λ̃, µ) bijection for λ = (3, 3, 3, 3) and µ =
11213244516271

left of the empty box. If the largest value at any point in this process is shared by
two or more of those three entries, preference is given to entries that begin in a more
leftward position. Repeat this procedure until the empty box is moved leftward to
the (j − 1)st column or cj directly fills the empty box.

2. If the empty box in the jth column is moved leftward to the (j− 1)st column, define
cj−1 to be the largest entry in the jth column that is strictly less than cj. Move cj in
the box occupied by cj−1, temporarily producing a box with two entries, and then
repeat step #1 with cj−1 and the (j − 1)st column.

3. If the empty box in the jth column is directly filled by cj, we introduce a single new
inversion pair (a, cj) in the jth column with cj and the entry lying directly above
the box into which cj was inserted. Do this by flipping the rows containing cj and a
from the jth column leftward. Flipping leftward entries along with cj and a ensures
that no additional inversion pairs are added in leftward columns.

For an example of this second procedure, see Figure 9. Notice that the “sliding”
and “reverse bumping” rules of steps #1 and #2, along with the addendum addressing
when identical entries are involved, ensure that the tableau is row-standard and column-
semistandard. This means that the only inversion in the resulting tableau is the one
introduced in step #3. Also notice that the resulting tableaux always admits an inversion
at this spot in the jth column since cj < cj+1 and our procedure ensures that the entry
cj always drops down at least one row at this final step (see the proof of Theorem 3.1
in [1] for additional discussion of this final fact). As every step in the procedure is
uniquely determined, we conclude that the procedure induces a well-defined function
φ2 : S0(λ̃, µ)→ S1(λ, µ).

Our maps φ1 and φ2 have been constructed so that they are inverses of one another.
In particular, the intermediate steps of the two procedures coincide after each column.
This holds true even if specific “bumps” / “reverse bumps” aren’t direct reversals of
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1 2 4 5

2 4 5

3 6

→
1 2 4 5

2 4 5

3 6

→
1 2 4/5

2 4 5

3 6

→
1 2 4/5

2 5

3 4 6

→
1 2 5

2 4∗ 5

3 4 6

→
2 4 5

1 2 5

3 4 6

Figure 9: Part of the S0(λ̃, µ) ↪→ S1(λ, µ) bijection for λ = (3, 3, 3), µ = 112231425261.
Notice how the first column has been reordered at the final step to preserve its height
ordering.

one another when working within a specific column, as demonstrated by an inability to
directly reverse specific steps in the examples of Figure 8 or Figure 9. Since φ2 ◦φ1(τ) = τ

for all τ ∈ S1(λ, µ) and φ1 ◦ φ2(T ) = T for all T ∈ S0(λ̃, µ), we may deduce that both

maps are bijections and that |S1(λ, µ)| = |S0(λ̃, µ)|.

Theorem 16 admits a generalization to non-rectangular tableaux that utilizes slight
modifications of the procedures for φ1 and φ2. As with Theorem 3.2 of [1], this requires
the introduction of additional terminology that describes the resulting shape change in
the tableaux.

So consider the tableau shape λ = (λ1, . . . , λm). Define di = λi − λi+1 for 1 6 i < m
and dm = λm, meaning that di > 0 if the ith row contains a “lower-right corner” and
di = 0 otherwise. Then define d̃i = λi−1 − λi for 1 < i 6 m and d̃1 = ∞, so that d̃i > 0
if and only if an additional box may be added to the ith row without yielding an invalid
tableau shape. With di and d̃i defined for each row of the tableau shape λ, we have the
following:

Theorem 17. Consider the tableau shape λ = (λ1, . . . , λm) with m > 1, and let µ be any
content compatible with λ. Then:

|S1((λ1, . . . , λm), µ)| =
∑
E

|S0((λ1 + ε1, . . . , λm + εm), µ)|

Where the summation is over all tuples E = (ε1, . . . , εm) such that εi = 0,±1 for all i,
εi = −1 for precisely one i = i1 with i1 > 1 and di1 > 0, and εi = 1 for precisely one

i = i2 with i2 < i1 and d̃i2 > 0.

Proof. Follows directly from the procedures of Theorem 16, as with the proof of Theorem
3.2 of [1]. For an example of the shape change in this general bijection, which involves
identifying all possible ending points of the φ1 procedure from the proof of Theorem 16,
see Figure 10.
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Figure 10: Shape change in the bijection of Theorem 17 when λ = (4, 3, 2, 2)
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