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Abstract

A Costas array of order n is an n× n permutation matrix such that all vectors
between pairs of ones are distinct. Thus, a permutation matrix fails to be a Costas
array if and only if it contains ones that form a (possibly degenerate) parallelogram.
In this paper, we enumerate parallelograms in an n × n permutation matrix. We
use our new formulas to improve Davies’s O(n−1) result for the density of Costas
arrays.
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1 Introduction

In 1965, John P. Costas introduced a special class of permutations of n elements with
applications to improving the target detection performance of radar and sonar systems
[6], [7]. Edgar Gilbert also wrote about this special class of permutations in the same year,
referring to them as permutations with distinct differences and devising a construction
method for certain values of n [14]. Today, these permutations are referred to as Costas
arrays and mathematicians and engineers alike have been studying these structures in an
attempt to answer some fundamental questions about them, such as how to construct
these arrays, whether these arrays exist for all n, and how many distinct Costas arrays
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of order n exist. Readers interested in more details regarding the applications of Costas
arrays in target detection should read Section III of [1].

A Costas array of order n is an n × n matrix of ones and zeroes such that there is
exactly one 1 per row and column (i.e., it is a permutation matrix) and such that all
vectors between pairs of ones are distinct, i.e., if the permutation matrix has 1’s at (ik, jk)
for k = 1, 2, 3, 4 and if i1 − i2 = i3 − i4 and j1 − j2 = j3 − j4, then (i1, j1) = (i3, j3) and
(i2, j2) = (i4, j4). Thus, a permutation matrix fails to be a Costas array if and only if it
contains (at least 3) 1’s that form a (possibly degenerate) parallelogram.

One easy way to check if a given permutation matrix is a Costas array is to consider
its corresponding permutation and form a triangular difference table of values where the
first row of the table contains the differences between the elements of the permutation
that are adjacent, the second row contains the differences between the elements that are
2 places apart, etc. Then the permutation matrix is a Costas array if and only if the
entries in each row of the triangular difference table are distinct. For example, consider
the permutation 1243. Its triangular difference table and corresponding matrix are

−1 −2 1
−3 −1
−2

A =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Since no row of this table has repeated entries, the permutation matrix A for 1243 is a
Costas array. Alternatively, consider the permutation 3214. Its triangular difference table
and corresponding matrix are

1 1 −3
2 −2
−1

B =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


Since the first row of this table contains the difference 1 twice, the permutation matrix B
for 3214 is not a Costas array.

In this paper we count how many parallelograms of 1’s are possible in an n × n per-
mutation matrix. At first glance, this might seem like a tangential enumerative problem.
However, by understanding the ways a permutation matrix fails to be a Costas array, we
are led towards new insights about density among permutation matrices and enumera-
tion. The proofs of our formulas make use of a geometric fact about quadrilaterals and a
binomial coefficient identity known as the hockey-stick identity.

2 Challenges and Enumerative Progress

In 1984, S. Golomb, using previously available empirical constructions, stated and proved
two algebraic construction methods for Costas arrays based on finite fields, known as the
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Table 1: Number of Costas arrays C(n) as a function of order n

n C(n) n C(n) n C(n) n C(n) n C(n)

1 1 7 200 13 12828 19 10240 25 88
2 2 8 444 14 17252 20 6464 26 56
3 4 9 760 15 19612 21 3536 27 204
4 12 10 2160 16 21104 22 2052 28 712
5 40 11 4368 17 18276 23 872 29 164
6 116 12 7852 18 15096 24 200 30 ?

Golomb and Welch methods [15], [16] (Gilbert’s construction in [14] is the logarithmic
Welch construction.) These remain the only general constructions available and work for
infinitely many orders due to the infinitude of primes, but not all orders. It was then
that Costas arrays acquired their present name and became an object of study (see [8]
for more details and a summary of results).

The challenges of enumerating Costas arrays and improving estimates of their asymp-
totic density are two of the four core challenges of Costas arrays[10]. It is not known if
Costas arrays of all orders exist. Besides arrays from the constructions that have been
devised, sporadic arrays not arising from known constructions have also been found in
exhaustive computer searches. Massively-distributed backtracking searches [13][11][12] in
recent years have helped to identify all Costas arrays for n 6 29. The search for n = 29 re-
quired the equivalent of 366.55 years for a single CPU [12]. Define C(n) to be the number
of Costas arrays of order n. All known values of C(n) are given in Table 1. Correll [3] used
Möbius inversion to establish a theoretical formula for C(n), but the resulting summands
are impractical to evaluate. James Beard has tabulated all known Costas arrays out to
n = 500 [2]. Discovery of arrays up to and including order 31 has been achieved but it
is not known if any Costas arrays of order 32 or 33 exist. Aggressive computing with an
efficient new recursive approach [17] to C(n) may change this, however. Verification of
the Costas property for a candidate permutation of order n involves O(n3) comparisons;
therefore, the decision problem “Is C(n) > 0?” is in NP [10] [1].

3 Violating Configurations

Davies, within [8], notes that a permutation matrix fails to be a Costas array if it contains 3
equally-spaced collinear ones. Davies referred to these configurations as L3-configurations.
An L3-configuration is not the only configuration of ones whose existence prevents a
permutation matrix from being a Costas array. Four ones that form a non-degenerate
parallelogram have this property. We will refer to such sets of ones as P4-configurations.
Two equally-spaced pairs of ones forming four distinct ones, all of which are collinear,
form a degenerate parallelogram and also have this property. We will refer to such sets
of ones as L4-configurations. One may think of an L3-configuration as a degenerate L4-
configuration in which two ones overlap.

the electronic journal of combinatorics 23(1) (2016), #P1.44 3



For the 4 permutation matrices below, matrix A is a Costas array, matrix B is not
a Costas array as it contains an L3-configuration, matrix C is not a Costas array as it
contains a P4-configuration and matrix D is not a Costas array as it contains an L4-
configuration (as well as two L3-configurations).

A =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , B =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , C =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 , D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
For n > 3, Davies showed that the number of L3-configurations when considering

permutations of n elements is

l3(n) =

{
1
8
n2(n− 2)2, n even

1
8
(n− 1)4, n odd.

He derived this by considering the placement of the endpoints of an L3-configuration–
see [8] for details. We created an entry in the Online Encyclopedia of Integer Sequences
(OEIS, http://oeis.org/) for l3(n) which was merged into A212892. The two distinct
descriptions of the same sequence suggest the following:

Problem: Let n > 3 be a positive integer. Let A(n) be the number of ordered 4-
tuples (w, x, y, z) of positive integers such that w, x, y, z ∈ {0, 1, . . . , n} with the differences
w − x, x− y, and y − z all odd. Show that A(n− 2) = l3(n).

Proof: Consider a 4-tuple (w, x, y, z) with the desired property. By parity arguments,
the 4-tuple must be of the form (E,O,E,O) or (O,E,O,E) where O and E denote odd
and even integers drawn with replacement from {0, 1, . . . , n}. It follows that A(n) =
2e(n)2o(n)2 where e(n) is the number of even integers in the set and o(n) = n+ 1− e(n)
is the number of odd integers in the set. It is readily seen that e(n) equals (n+ 2)/2 if n
is even and (n+ 1)/2 if n is odd and that o(n) equals n/2 if n is even and (n+ 1)/2 if n
is odd, so the result follows.

So why should we care about violating configurations? Davies studied the the random
variable X counting L3-configurations in a permutation matrix to prove the strongest-
known result about the density C(n)

n!
of Costas arrays among permutation matrices. He

showed that C(n)
n!

= O( 1
n
) as n → ∞ using the second moment method, thus settling

Unsolved Problem 5 in [16]. Davies reasoned that

C(n)

n!
6 P (X = 0) 6 P (|X − E(X)| > E(X)) 6

E(X2)

E2(X)
− 1

where the right-hand inequality follows from Chebyshev’s Inequality. From the formula
for l3(n) it follows that E(X) = l3(n)

n(n−1)(n−2) . Davies completed his proof by devising an

upper bound on the second moment E(X2) of X as a function of n by reasoning about

how two L3-configurations intersect. Table 1 supports the stronger conjecture that C(n)
n!

has exponential decay [4], [9].
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As Davies’s result only used L3-configurations, it may be possible to improve on the
upper bound of the asymptotic behavior of the density of Costas arrays by applying a
similar technique that incorporates P4-configurations and/or L4-configurations. In order
to do this, it is first necessary to determine how many L4- and P4-configurations exist in
permutation matrices of order n, the theorems we present in this paper.

4 Configuration Enumeration

Let l4(n) and p4(n) denote the numbers of L4- and P4-configurations when considering
permutations of n elements, respectively. Our main results are

Theorem 1. For n > 3,

l4(n) = 2
n−1∑
a=1

n−1∑
b=1

(n− a)(n− b)
⌊

gcd(a, b)− 1

2

⌋
Theorem 2. For n > 3,

l4(n) + p4(n) =

{
8[4
(n

2
3

)
+
(n

2
2

)
]2 = 1

72
n2(n− 2)2(2n− 5)2, n even

8[4
(n+1

2
3

)
−
(n−1

2
2

)
]2 = 1

72
(n− 1)2(n− 3)2(2n− 1)2, n odd.

Theorem 2 refines the result of Appendix A of [17], which shows that l3(n) + l4(n) +
p4(n) = O(n6). We made use of Theorem 2 in [5] where it was stated with proof in
conjunction with the Lovász Local Lemma to study the existence of Costas arrays and
partial Costas arrays. Our proofs for Theorems 1 and 2 make use of the geometric result
that a quadrilateral is a parallelogram if and only if its diagonals bisect each other. We
apply this result bijectively to enumerate violating configurations by counting pairs of
diagonals of a violating configuration with the same midpoint such that each of the 4
endpoints has distinct x- and y-coordinates (with values between 1 and n, inclusive) on
an n×n grid. If the 4 endpoints are collinear, then they correspond to an L4-configuration
while if they are not collinear, they correspond to a P4-configuration.

Focusing on counting the L4-configurations, let (x1, y1) and (x2, y2) be two points on
the n × n grid with x1 < x2 and y1 < y2 and let M be the midpoint of the segment
connecting these two points. Then the slope of the segment connecting these two points
is positive and the number of additional grid points on this line segment is gcd(x2 −
x1, y2− y1)− 1. If gcd(x2− x1, y2− y1) is even, then M is one of these grid points. These
additional grid points (excluding M) can be paired together to form line segments with
midpoint M as well. Thus, the number of shorter line segments having midpoint M is⌊
gcd(x2−x1,y2−y1)−1

2

⌋
. Summing this expression over all points (x1, y1) and (x2, y2) with

x1 < x2 and y1 < y2 counts the number of L4-configurations on lines with positive slopes.
Due to symmetry, there is the same number of L4-configurations on lines with negative
slopes. Thus,
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l4(n) = 2
n−1∑
x1=1

n∑
x2=x1+1

n−1∑
y1=1

n∑
y2=y1+1

⌊
gcd(x2 − x1, y2 − y1)− 1

2

⌋

Let a = x2 − x1 and b = y2 − y1. Then

l4(n) = 2
n−1∑
x1=1

n−x1∑
a=1

n−1∑
y1=1

n−y1∑
b=1

⌊
gcd(a, b)− 1

2

⌋

= 2
n−1∑
a=1

n−a∑
x1=1

n−1∑
b=1

n−b∑
y1=1

⌊
gcd(a, b)− 1

2

⌋

= 2
n−1∑
a=1

n−1∑
b=1

(n− a)(n− b)
⌊

gcd(a, b)− 1

2

⌋
Turning our attention to proving Theorem 2, we need to count pairs of line segments

with the same midpoint and with each endpoint having distinct x- and y-coordinates on
the n×n grid. Note the set of all midpoints of line segments having endpoints on this grid
is {(x

2
, y
2
)|3 6 x 6 2n− 1, 3 6 y 6 2n− 1}. Given any one of these midpoints M = (x

2
, y
2
),

any line segment with endpoints (x1, y1) and (x2, y2) with x1 6= x2 and midpoint M on
the grid must have x1 or x2 less than x

2
and the other coordinate greater than x

2
. Without

loss of generality, assume x1 <
x
2
< x2. Note the number of positive integers less than x

2

is
⌊
x−1
2

⌋
and the number of positive integers greater than x

2
and less than or equal to n is

n−
⌊
x
2

⌋
. Thus, there are

fn(x) = min

{⌊
x− 1

2

⌋
, n−

⌊x
2

⌋}
possible values for x1. Similarly, given x1, the number of possible values for y1 is 2fn(y) as
y1 can be less than or greater than y

2
. Given any one of these line segments, the number

of ways to select a second line segment with the same midpoint and endpoints with x-
and y-coordinates different than (x1, y1) and (x2, y2) is (fn(x)− 1)(2fn(y)− 2) as we lose
one possible value for the x-coordinate (since x1 must be less than x

2
) and two possible

values for the y-coordinate. Thus, the number of pairs of line segments with midpoint
M = (x

2
, y
2
) and with each endpoint having distinct x- and y-coordinates on the grid

equals

1

2
(fn(x) · 2fn(y))(fn(x)− 1)(2fn(y)− 2)

where we have multiplied by 1
2

for otherwise we would count each pair of segments twice -
once for each order the segments are selected. We can rewrite the product with binomial
coefficients as
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1

2
· 2
(
fn(x)

2

)
· 8 ·

(
fn(y)

2

)
.

Thus, summing over all possible midpoints M (see above), we have

l4(n) + p4(n) =
2n−1∑
x=3

2n−1∑
y=3

8

(
fn(x)

2

)(
fn(y)

2

)

= 8
2n−3∑
x=5

(
fn(x)

2

) 2n−3∑
y=5

(
fn(y)

2

)

The indices of the summations in the last expression change since there cannot be
two line segments with distinct x- and y-coordinates for their endpoints if the x- or y-
coordinate of the midpoint is in the set {3

2
, 2, 2n−1

2
, n− 1}.

If n is even, then

2n−3∑
y=5

(
fn(y)

2

)
=

(
2

2

)
+

(
2

2

)
+

(
3

2

)
+

(
3

2

)
+ · · ·+

(
n
2
− 1

2

)
+

(
n
2
− 1

2

)
+

(
n
2

2

)
+

(
n
2
− 1

2

)
+

(
n
2
− 1

2

)
+ · · ·+

(
3

2

)
+

(
3

2

)
+

(
2

2

)
+

(
2

2

)
= 4 ·

[(
2

2

)
+

(
3

2

)
+ · · ·+

(
n
2
− 1

2

)]
+

(
n
2

2

)
= 4

(
n
2

3

)
+

(
n
2

2

)
The final simplification follows from a binomial coefficient identity known as the

hockey-stick identity, namely
∑n

i=r

(
i
r

)
=
(
n+1
r+1

)
.

Repeating this for the summation involving x, we see that if n is even, then l4(n) +

p4(n) = 8 ·
(

4
(n

2
3

)
+
(n

2
2

))2
= 1

72
n2(n− 2)2(2n− 5)2.

If n is odd, then

2n−3∑
y=5

(
fn(y)

2

)
=

(
2

2

)
+

(
2

2

)
+

(
3

2

)
+

(
3

2

)
+ · · ·+

(
n−3
2

2

)
+

(
n−3
2

2

)
+

(
n−1
2

2

)
+

(
n−1
2

2

)
+

(
n−1
2

2

)
+

(
n−3
2

2

)
+

(
n−3
2

2

)
+ · · ·+

(
3

2

)
+

(
3

2

)
+

(
2

2

)
+

(
2

2

)
= 4 ·

[(
2

2

)
+

(
3

2

)
+ · · ·+

(
n−1
2

2

)]
−
(
n−1
2

2

)
= 4

(
n+1
2

3

)
−
(
n−1
2

2

)
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Thus, if n is odd then

l4(n) + p4(n) = 8 ·
(

4

(
n+1
2

3

)
−
(
n−1
2

2

))2

=
1

72
(n− 1)2(n− 3)2(2n− 1)2,

hence completing the proof of Theorem 2.
We created OEIS entries A234471 and A243643 for l4(n) and p4(n), respectively, for

1 6 n 6 1000.
Direct computation reveals that

C(n)

n!
<

(
1− 1

n(n− 1)(n− 2)

)l3(n)(
1− 1

n(n− 1)(n− 2)(n− 3)

)l4(n)+p4(n)
for 4 6 n 6 29, n 6= 5. The right-hand expression can be interpreted as the probability
that none of the violating configurations of order n occurs if we make the assumption
that the occurrences of violating configurations are mutually independent events. We
have no proof that this inequality holds for all sufficiently large n. If it is valid for
n > 5, the inequality can be used to quantify exponential decay. For n > 5, define
a(n) = n(n− 1)(n− 2) and b(n) = a(n) · (n− 3). Rewrite the right-hand expression as[(

1− 1

a(n)

)a(n)] l3(n)
a(n)

[(
1− 1

b(n)

)b(n)] l4(n)+p4(n)
b(n)

.

Using the formulas for l3(n) and l4(n) + p4(n) and taking the limit of this expression as
n→∞ gives

Conjecture 3.

C(n)

n!
= O

(
e−

n2

18
−n

8

)
.

5 Configuration Enumeration for Identity Permutations

While a Costas array is a permutation matrix that contains no violating configurations,
we may also ask what is the permutation matrix that contains the maximal number
of violating configurations. Intuition and numerical evidence suggest that the identity
matrix and the anti-diagonal matrix of 1’s contain the maximal number of violating
configurations, but how many such violating configurations do these matrices contain?
Clearly they contain no P4-configurations. Let Idl3(n) and Idl4(n) denote the number of
L3-configurations and L4-configurations In contains. The results are

Theorem 4. For n > 3,

Idl3(n) =

{
(n
2
)(n−2

2
), n even

(n−1
2

)2, n odd.
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Theorem 5. For n > 4,

Idl4(n) =

{
4
(n

2
3

)
+
(n

2
2

)
= 1

24
n(n− 2)(2n− 5), n even

4
(n+1

2
3

)
−
(n−1

2
2

)
= 1

24
(n− 1)(n− 3)(2n− 1), n odd.

Focusing on Theorem 4, note that (a, a) and (b, b) are both endpoints of the same
L3-configuration if and only if a+b

2
is an integer. Thus, a and b must have the same parity.

If n is even, the number of pairs of even (or pairs of odd) integers less than or equal to n
is
(n

2
2

)
. Thus, if n is even, Idl3(n) =

(n
2
2

)
· 2 = (n

2
)(n−2

2
). If n is odd the number of pairs

of even integers less than or equal to n is
(n−1

2
2

)
while the number of pairs of odd integers

less than or equal to n is
(n+1

2
2

)
. Thus, if n is odd, Idl3(n) =

(n−1
2
2

)
+
(n+1

2
2

)
= (n−1

2
)2, thus

completing the proof of Theorem 4.
Turning our attention to proving Theorem 5, we essentially repeat the technique that

we used to prove Theorem 2 noting that our midpoints are of the form M = (x
2
, x
2
) and

the y-coordinates are equal to the x-coordinates for any L4-configuration on In. Thus, we
are only free to choose 2 x-coordinates less than x

2
for any midpoint M = (x

2
, x
2
), which

can be done in
(
fn(x)

2

)
ways. Summing over the potential midpoints M , the number of

L4-configurations In contains is

Idl4(n) =
2n−3∑
x=5

(
fn(x)

2

)

=

{
4
(n

2
3

)
+
(n

2
2

)
= 1

24
n(n− 2)(2n− 5), n even

4
(n+1

2
3

)
−
(n−1

2
2

)
= 1

24
(n− 1)(n− 3)(2n− 1), n odd

as derived in Section 4.
Sequences Idl3(n) and Idl4(n) correspond to OEIS entry A002620 and the (n − 4)th

term of OEIS entry A002623, respectively. We also noticed that the total number of
violating configurations that In contains, Idl4(n) + Idl3(n), is the (n− 3)rd term of OEIS
entry A002623 and thus also equals Idl4(n+ 1). While this can be verified algebraically,
we provide a combinatorial proof instead.

Theorem 6. For n > 4,

Idl4(n) + Idl3(n) = Idl4(n+ 1)

The number of L4-configurations contained by In+1 is the number of L4-configurations
contained by this matrix that do not include the point (n + 1, n + 1) plus the number
that do contain the point (n + 1, n + 1). Those L4-configurations that do not contain
(n + 1, n + 1) are precisely the L4-configurations of In and hence there are Idl4(n) such
configurations. For simplicity of notation, we represent the location of a 1 in the identity
matrix simply by its corresponding integer, so n+1 will represent the point (n+1, n+1).
Given an L4-configuration with points a < b < c < n+ 1, we have n+ 1− c = b−a. Then
the points c− b < n+ 1− b < n+ 1− a form an L3-configuration in In. Conversely, given
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an L3-configuration with points x < y < z in the In, we have z − y = y − x. Then the
points n + 1− z < n + 1− y < n + 1− y + x < n + 1 form an L4-configuration in In+1.
As these two mappings are inverses of each other, the number of L4-configurations that
contain the point (n+ 1, n+ 1) is Idl3(n).

6 Density Revisited

Let the random variables X, Y and Z be the number of L3-, L4- and P4-configurations
in a permutation matrix and let W = X + Y + Z. Then the permutation matrix is a
Costas array if and only if W = 0. Can we use the second moment method on W to
improve Davies’s result? To find out, we begin by calculating E(W ). By the additivity
of the expectation operator, it suffices to consider E(Y ) and E(Z). Let Pn denote the
set of n × n permutation matrices. By L4 ⊂ A we denote the fact that the particular
L4-configuration appears in a fixed permutation matrix A. For n > 4, we have

E(Y ) =
1

n!

∑
A∈Pn

Y (A)

=
1

n!

∑
A∈Pn

∑
L4⊂A

1

=
1

n!

∑
L4

∑
{A∈Pn|L4⊂A}

1

=
1

n!

∑
L4

(n− 4)!

=
l4(n)

n(n− 1)(n− 2)(n− 3)

Similar reasoning shows that

E(Z) =
p4(n)

n(n− 1)(n− 2)(n− 3)

Combining these results with the expression for E(X) gives

E(W ) =

{
n(n−2)(4n2−11n−2)

72(n−1)(n−3) , n even
(n−1)(4n−3)(n+1)

72n
, n odd

which yields

E(W ) ∼ n2

18
.

At this point we suspect that an improvement over Davies’s result in [8] could be
possible from applying the second moment method to W since E2(W ) = O(n4) instead
of O(n2). We will have to show that E(W 2) = O(nα) for some α < 3 to make an
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improvement to his power-law decay result. Bounding E(W 2) is made more complicated
by the fact that W is a sum and thus we would be obliged to consider cross terms upon
squaring W . The formula for l4(n) in Theorem 1 makes it clear that l4(n) < n5 and thus
E(Y ) = O(n). As E(X) = O(n) and E(W ) = O(n2), it follows that E(Z) = O(n2) and
thus E2(Z) = O(n4). Hence Z is the dominant term in W and E(Z) ∼ n2

18
. We consider

applying the second moment method to Z:

C(n)

n!
= P (W = 0) 6 P (Z = 0) 6 P (|Z − E(Z)| > E(Z)) 6

E(Z2)

E2(Z)
− 1

We approach bounding the second moment of Z in the same way that Davies did
within [8] when bounding the second moment of X:

E(Z2) =
1

n!

∑
A∈Pn

(Z(A))2 =
1

n!

∑
A∈Pn

(∑
P4⊂A

1

)2

=
1

n!

∑
A∈Pn

∑
(P 1

4⊂A,P 2
4⊂A)

1

The inner sum in the last expression is over ordered pairs (P 1
4 , P

2
4 ) of P4-configurations

appearing in the permutation matrix A. Interchanging the order of summation allows us
to write

E(Z2) 6
1

n!
{m4(n− 4)! +m3(n− 5)! +m2(n− 6)! +m1(n− 7)! +m0(n− 8)!}

where mi = mi(n) is the number of ordered pairs of P4-configurations with exactly i points
in common. Thus, the utility of the second moment method applied to Z for improving
density results depends on any formulas and upper bounds for the mi. In finding upper
bounds for mi(n), for i < 4, the ones of the second P4-configuration that are not also ones
of the first P4-configuration must be in distinct rows and columns from the ones of the
first configuration. Why is this? If we picked one of the remaining 4 − i points as being
in the same row or column as a 1 for the first configuration, then since there is only one 1
in each row and column in the permutation matrix, it would have to be a one of the first
configuration. Thus there would be at least i+ 1 points in common.

Without extensive effort we can derive upper bounds for the mi(n). Clearly m4(n) =
p4(n). To bound m3(n), note given a P4-configuration, there are 4 ways to select exactly
3 points from it to share with another P4-configuration. Given these 3 points, at most 2
additional P4-configurations are possible. Hence

m3(n) 6 4 · 2 · p4(n)

We claim that

m2(n) 6 9p4(n)(n− 4)2

To see this, first note that there are
(
4
2

)
= 6 ways to pick two common points after fixing

the first P4-configuration. There are at most (n−4)2 valid ways to pick a third one in the
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permutation matrix. Given the third one, the fourth one in the second P4-configuration is
not uniquely determined, but rather there are 3 possibilities for the fourth one. Since we
do not care about the order in which the last 2 points are selected, we divide by 2, avoiding
double counting in the case that these last two points are both in the permutation matrix,
and reducing the error in allowing the second configuration in the case that the the fourth
point falls outside the permutation matrix.

Similar reasoning gives us the inequality

m1(n) 6
4

6
(3)p4(n)(n− 4)2(n− 5)2.

Finally, it is clear that m0 6 p4(n)p4(n− 4). Combining these inequalities gives us

C(n)

n!
<

1 + 8
n−4 + 9(n−4)

(n−5) + 2(n−4)(n−5)
n−6 + p4(n−4)

(n−4)(n−5)(n−6)(n−7)
p4(n)

n(n−1)(n−2)(n−3)

− 1

Letting n→∞ gives

C(n)

n!
<

1 + 8
n−4 + 9 + 2n+ (n−4)2

18

n2

18

− 1

which reduces to

C(n)

n!
<

28

n
+

196

n2
+

144

n2(n− 4)

As mentioned in Section 3, Davies (Theorem 4.2, [8]) showed C(n)
n!

= O( 1
n
) as n→∞

by studying L3-configurations in permutation matrices, thereby proving the strongest
known result about the asymptotic rate of decay of the density C(n)

n!
of Costas arrays.

Our result above, proven using P4-configurations, confirms this rate of decay. Looking
more closely at Davies’s proof, he shows that

C(n)

n!
6
c1(n)

µ
+

9n2 − 45n+ 60

(n− 3)(n− 4)(n− 5)

where µ = E(X) ∼ n
8

is the mean number of L3-configurations in a permutation matrix

and c1(n) = 1 + 4
n−3 + 9n2

4(n−3)(n−4) . Note that c1(n) ∼ 13/4 and thus

c1(n)

µ
+

9n2 − 45n+ 60

(n− 3)(n− 4)(n− 5)
∼ 13/4

n/8
+

9n2 − 45n+ 60

(n− 3)(n− 4)(n− 5)
∼ 26

n
+

9

n
=

35

n

while our upper bound above is asymptotically equal to 28
n

. Thus, our asymptotic upper
bound above is a slight improvement over Davies’s.

The presence of the term 28
n

in our bound suggests that a tighter upper bound on
m1 or a different probabilistic inequality should be used. If the bound on the func-
tion m1(n) could be shown to be asymptotically at most 2/9 of what it currently is
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then it would be canceled in the limit by the linear term of the quadratic in the nu-
merator: (2

9
)2n − 8

18
n = 0. The derivation of our upper bound on m1(n) is based on

assumptions that do allow room for improvement. For instance, the selection of the
second and third vertices on the second P4-configuration can be such that the fourth
point falls outside the grid. The function m1(n) = 0 for n < 7 because two P4-
configurations would overlap in at least two rows or columns. We wrote a C++ pro-
gram to compute the values of m1(n) for 7 6 n 6 18. We found that m1(7) =
636,m1(8) = 25888,m1(9) = 401432,m1(10) = 2788608,m1(11) = 14302888,m1(12) =
57333552,m1(13) = 190675736,m1(14) = 556245344, m1(15) = 1457381068,m1(16) =
3498250624,m1(17) = 7799395304, and that m1(18) = 16399389728. The ratio

m1(n)

2p4(n)(n− 4)2(n− 5)2

is monotone increasing for 7 6 n 6 18 and equals 0.2262 . . . > 2
9

for n = 18. This
numerical evidence suggests that it may not be possible to establish quadratic decay for
density from the second moment method applied to the random variable Z. However, it
is not clear that the ratio must be monotone increasing for larger n.
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