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Abstract

We show that several families of polynomials defined via fillings of diagrams
satisfy linear recurrences under a natural operation on the shape of the diagram.
We focus on key polynomials, (also known as Demazure characters), and Demazure
atoms. The same technique can be applied to Hall–Littlewood polynomials and dual
Grothendieck polynomials.

The motivation behind this is that such recurrences are strongly connected with
other nice properties, such as interpretations in terms of lattice points in polytopes
and divided difference operators.
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1 Introduction

Using a similar technique as in [Ale14], we provide a framework for showing that under
certain conditions, polynomials encoding statistics on certain tableaux, or fillings of
diagrams, satisfy a linear recurrence. We prove that several of the classical polynomials
from representation theory fall into this category, such as (skew) Schur polynomials and
Hall–Littlewood polynomials.

The main concern in this paper are the so called key polynomials, indexed by integer
compositions, and atoms. The key polynomials are natural, non-symmetric generalizations
of Schur polynomials and are specializations of the non-symmetric integer-form Macdonald
polynomials, see [Mas09] for details.

Let λ be a fixed diagram shape, (a partition shape, skew shape, etc.) and let Pkλ(x),
k = 1, 2, . . . be a sequence of polynomials which are generating functions of fillings of
shape kλ. For partitions, kλ is simply elementwise multiplication by k. There are several
reasons why one would be interested in showing that a such sequence satisfies a linear
recurrence:

1. To obtain hints about the existence or non-existence of formulas of certain type.
For example, the Weyl determinant formula for Schur polynomials implies that the
ordinary Schur polynomials satisfy a linear recurrence.

2. To obtain evidence for alternative combinatorial interpretations of the tableaux
involved. For example, the skew Schur polynomials can be obtained as lattice points
in certain marked order polytopes, called Gelfand–Tsetlin polytopes. Such a polytope
interpretation implies the existence of a linear recurrence relation.

3. To prove polynomiality in k of the number of fillings of shape kλ.

4. To obtain results about asymptotics. For example, in [Ale12] we used such recurrences
to give a new proof of a classical result on asymptotics of eigenvalues of Toeplitz
matrices.

In the last section, we provide several examples of polynomials that satisfy such linear
recurrences. We also sketch two additional proofs in the case of key polynomials, to
illustrate that several nice properties imply the existence of a linear recurrence relation.
These methods are based on a lattice-point representation and an operator characterization
of the key polynomials. There is no straightforward way to check if a family of polynomials
have such characterizations, but it is easy to generate computer evidence that a sequence
of polynomials satisfy a linear recurrence. Thus, proving the existence or non-existence
of linear recurrence relations is an informative step towards alternative combinatorial
descriptions of the family of polynomials.
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2 Diagrams and fillings

A diagram D is a subset of {(i, j) : i, j > 1} which is realized as an arrangement of
boxes, with a box at (i, j) for every (i, j) in D. Here, i refers to the row and j is
the column of box (i, j) and we draw diagrams in the English notation. For example,
D = {(1, 1), (1, 3), (1, 4), (2, 2), (3, 2)} is shown as

.

A filling is said to have l rows, if row l contains a box, but every row below row l is
box-free.

Given an integer composition α = (α1, . . . , αl), the diagram of shape α, Dα, is given
by Dα = {(i, j) : 1 6 j 6 αi, 1 6 i 6 l}. If β = (β1, . . . , βl) is another integer composition
such that α ⊇ β, that is, αi > βi for all i, then the diagram of shape α/β is given by the
set-theoretic difference Dα \Dβ, and is denoted Dα/β. Finally, if D is a diagram, let kD
be the diagram obtained from D by repeating each column in D k times, that is,

kD =
⋃

(i,j)∈D
{(i, kj − k + 1), (i, kj − k + 2), . . . , (i, kj)}.

Note that kDα/β = Dkα/kβ.

2.1 Fillings

A filling of a diagram is a map T : D → N, which we represent by writing T (i, j) in the
box (i, j). For example,

1 8
× × 9 1
× × 5
×
× × × 9 2 7

(1)

is a filling of the diagram with shape (2, 4, 3, 1, 6)/(0, 2, 2, 1, 3), where the entries marked
× correspond to boxes in Dβ. The shape of a filling refers to the shape of the underlying
diagram.

The jth column in a diagram D with l rows has a shape defined as the integer
composition (s1, . . . , sl), where si = 1 if (i, j) ∈ D and 0 otherwise. Thus, if α is an
integer composition with only 0 and 1 as parts, then the first column of Dα has shape
α. Whenever α is an integer partition, Dα is called a Young diagram and any filling of
a Young diagram is called a tableau. A filling with shape α/β where both α and β are
partitions, is called a skew tableau.

Given a diagram or a filling, we can duplicate or delete columns. For example, deleting
the fourth column and duplicating the third column two times in the filling in Eq. (1)
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results in the filling
1 8
× × 9 9 9
× × 5 5 5
×
× × × × × 2 7

. (2)

Note that if the original filling T has shape Dα/β, then duplication and deletion on T will
result in some T ′ of shape Dα′/β′ . This is straightforward to prove.

2.2 Column-closed families of fillings

In most applications, one is interested in a restricted family of fillings, perhaps tableaux
or skew tableaux, together with some conditions on the numbers that appear in the boxes.
Note that a filling T can be viewed as a concatenation of its columns, some of which might
be empty. Obviously, T can only be expressed in one such way if we require that the last
(rightmost) column is non-empty.

Let (C1, . . . , Cl) be a filling with columns C1, . . . , Cl and let (m1C1, . . . ,mlCl) denote
the filling with m1 copies of the column C1, followed by m2 copies of C2 and so on. Finally,
the concatenation, ‖ , of two fillings (C1, . . . , Cl) and (C ′1, . . . , C ′l′) is simply given by

(C1, . . . , Cl) ‖ (C ′1, . . . , C ′l′) = (C1, . . . , Cl, C
′
1, . . . , C

′
l′).

Definition 1. A family of fillings, T , is said to be weakly column-closed if

(C1, . . . , Ci, . . . , Cl) ∈ T if and only if (m1C1, . . . ,mlCl) ∈ T (3)

holds for every combination of integers mi where mi > 1. The family T is said to be
strictly column-closed if Eq. (3) holds for every combination where mi > 0. That is, the
family is closed under deletion of any column.

Less formally, T is weakly column-closed if it is closed under column duplication, and
reduction of duplicate columns. The family is strictly column closed if it, in addition, is
closed under removal of any column.

Combinatorial objects would be less interesting if it were not for combinatorial statistics.
A combinatorial statistic on a family T is a map σ : T → Ns. We will study a special type
of statistics on fillings:

Definition 2. A combinatorial statistic σ on a weakly column-closed family T is affine if

σ(m1C1, . . . ,mlCl) = A+ S1m1 + S2m2 + · · ·+ Slml

for all choices of mi > 1, where A and Si are vectors in Ns. Similarly, σ defined on a
strictly column-closed family T is linear if

σ(m1C1, . . . ,mlCl) = S1m1 + S2m2 + · · ·+ Slml

for all choices of mi > 0. Note that this is equivalent with the statement that σ(T1 ‖ T2) =
σ(T1) + σ(T2) for every pair T1 and T2 of fillings such that T1 ‖ T2 is in T .
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Note that the statistic given by w(T ) = (w1, w2, . . . , wn) where wi is the number of
boxes filled with i in T is a linear statistic. This is usually called the weight of T . Finally,
two statistics σ1 : T → Ns1 and σ2 : T → Ns2 can be combined into a new statistic σ in
the obvious manner as σ(T ) = (σ1(T ), σ2(T )), which maps to Ns1+s2 .

3 Properties of linear recurrences

We first recall some basic facts about linear recurrences. This can be seen as analogous to
the theory of linear differential equations.

A sequence {ak(x)}∞k=0 of functions are said to satisfy a linear recurrence of length r if
there are functions c1(x), . . . , cr(x) such that

ak(x) + c1(x)ak−1(x) + · · ·+ cr(x)ak−r(x) ≡ 0 (4)

for all integers k > r. The polynomial (in t)

χ(t) = tk + c1(x)tk−1 + · · ·+ cr−1(x)t+ cr(x)

is called the characteristic polynomial of the recursion. If the characteristic polynomial
factors as (t− ρ1)m1 · · · (t− ρr)mr , where all ρi(x) are distinct, then one can express ak(x)
as

ak(x) =
r∑
l=1

(ρl(x))k
ml−1∑
j=0

glj(x)kj (5)

for some functions gli(x), that only depend on the initial conditions, that is, the functions
a0(x) to ar−1(x). In the other direction, any sequence of functions which are of the form
given in Eq. (5) satisfy a linear recurrence with χ(t) as characteristic polynomial. Notice
that the ci are elementary symmetric polynomials in the ρi, with some signs.

From now on, we are only concerned about sequences where the ak(x) and ρj(x) are
polynomials, which implies that the ci(x) are polynomials and the gli(x) are rational
functions. Let ak(x) and bk(x) be sequences of polynomials with characteristic polynomials
given by ∏i(t− ρi(x))pi and ∏i(t− ρi(x))qi respectively, where some of the pi or qi may
be zero. Then, as sequences for k = 0, 1, . . . ,

• h(x)ak(x) satisfy the same linear recurrence as ak(x), where h(x) is any polynomial,

• ak(x) + bk(x) satisfy a linear recurrence with characteristic polynomial given by∏
i

(t− ρi(x))max(pi,qi)

In particular, if both ak(x) and bk(x) have characteristic polynomials with simple
roots, then so does ak(x) + bk(x).
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• ak(x) · bk(x) satisfy a linear recurrence with characteristic polynomial given by∏
i,j

pi>1, qj>1

(t− ρi(x)ρj(x))pi+qj−1.

Example:

ak(x) = (1 + k3)(5x)k, bk(x) = (2 + k2 − k4)(2x− 1)k

satisfy linear recurrences with characteristic polynomials (t−5x)4 and (t− (2x−1))5

respectively. The product, ak(x)bk(x) = (1 + k3)(2 + k2 − k4)(10x2 − 5x)k satisfies a
linear recurrence with characteristic polynomial (t− (10x2 − 5x))8.
However, if ρi1(x)ρj1(x) = ρi2(x)ρj2(x) for some (i1, j1) 6= (i2, j2), some roots of the
characteristic equation can be removed — the statement in full generality is left as
an exercise. We will only need the following special case: if pi and qi are at most 1,
that is, the characteristic polynomials have simple roots, then ak(x) · bk(x) also has
a characteristic polynomial with simple roots.
Proof: Using Eq. (5) we may write

ak(x) =
r∑
i=1

gi(x)ρi(x)k and bk(x) =
s∑
j=1

hj(x)θj(x)k,

where ρi and θj are the roots of the respective characteristic polynomials. The
product akbk is now of the form∑

16i6r
16j6s

gi(x)hj(x) (ρi(x)θj(x))k ,

where the coefficients gi(x)hj(x) are independent of k. Hence {ak(x)bk(x)}∞k=0 also
satisfies a linear recurrence with a characteristic polynomials with simple roots.

• ask(x) with s a fixed positive integer satisfy a linear recurrence with characteristic
polynomial given by ∏

i

(t− ρi(x)s)pi .

The proofs for these statements follow from writing ak(x) and bk(x) in the form Eq. (5)
and examining the expressions above. Note that if ak(x) and bk(x) have characteristic
polynomials with simple roots, then so does h(x) · ak(x), ak(x) + bk(x), ak(x) · bk(x) and
ask(x).

Finally, the definition of a sequence satisfying a linear recurrence in Eq. (4) does
not provide an easy method to check for a linear recurrence if the ci are unknown. A
useful shortcut might then be the following observation: a sequence {ak(x)}∞k=0 satisfies a
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linear recurrence of length r if and only if the following r × r-determinant vanishes for all
k > r − 1: ∣∣∣∣∣∣∣∣∣∣∣

ak ak−1 . . . ak−r+1
ak+1 ak . . . ak−r+2
...

...
. . .

...
ak+r−1 ak+r−2 . . . ak

∣∣∣∣∣∣∣∣∣∣∣
.

This classical trick can be found in e.g. [Lyn57].

3.1 Tableaux and linear recurrences

Lemma 3. Let T be a weakly column-closed family of fillings and T = (C1, . . . , Cl) is
a fixed filling in T , where no adjacent columns are equal. Let σ : T → Nn be a linear
combinatorial statistic such that

σ(a1C1, . . . , alCl) = a1S1 + a2S2 + · · ·+ alSl.

Define the sequence of polynomials (which depend on T )

Fk(z) =
∑
ai>1

a1+a2+···+al=k

zσ(a1C1,...,alCl) and F0(z) = (−1)l+1. (6)

Then {Fk(z)}∞k=0 satisfy a linear recurrence, with characteristic polynomial

(t− zS1)(t− zS2) · · · (t− zSl). (7)

Proof. Note that the definition of Fk(z) implies that Fk(z) ≡ 0 whenever 1 6 k < l,
and that Fl(x) = zS1+···+Sl . These are l conditions, so it remains to show that the linear
recurrence given implicitly by Eq. (7) and these l initial values defines a sequence that
agrees with the definition in Eq. (6).

Any tableau of the form (a1C1, . . . , alCl) where ai > 1 and a1 + a2 + · · ·+ al > l, must
have some ai > 2. Thus, this tableau can be constructed from some (a1C1, . . . , (ai −
1)Ci, . . . , alCl) by duplicating column Ci. However, there might be several ways to do this.
Via an inclusion-exclusion argument, it is straightforward to show that

Fk+l(z)− (zS1 + · · ·+ zSl)Fk+l−1(z) + · · ·+ (−1)l(zS1 · · · zSl)Fk(z) ≡ 0 (8)

for all k > 0. Note that the coefficients are the elementary symmetric polynomials,
evaluated at zS1 , . . . , zSl , so factoring the characteristic polynomial gives exactly the
expression in (7). Note that the case k = 0 in Eq. (8) together with the l conditions
implies that F0(z) must be equal to (−1)l+1 since for k = 0, Eq. (8) reduces to

zS1+···+Sl + (−1)l(zS1 · · · zSl)F0(z) ≡ 0.
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Lemma 4. Let T be a weakly column-closed family of fillings and let the T (a) ∈ T be the
fillings parametrized by integer vectors a = (a11, . . . , a1,l1 , . . . , am,lm) as

T (a) = T1 ‖ (a11C11, . . . , a1l1C1l1) ‖ T2 ‖ (a21C21, . . . , a2l2C2l2) ‖ · · ·
‖ Tm ‖ (am1Cm1, . . . , am,lmCm,lm) ‖ Tm+1

where each Ti is some fixed (possibly empty) filling and no adjacent columns in each
(Ci1, . . . , Cili) are equal. Furthermore, let σ : T → Nn be an affine combinatorial statistic
such that

σ(T (a)) = A+ a11S11 + · · ·+ am,lmSm,lm .

Let α = (α1, . . . , αm) be a fixed integer composition and define the polynomial

Gα(z) =
∑
aij>1

ai1+ai2+···+aili=αi

zσ(T (a)) and G0(z) = −(−1)l1+l2+···+lmzA

where the sum is over all vectors a such that aij > 1, 1 6 i 6 m, 1 6 j 6 αi and
ai1 + · · ·+ aili = αi. Then

Gkα(z) = zA
m∏
i=1

F i
kαi

(z) where F i
k(z) =

∑
ci>1

c1+···+cli=k

zc1Si1+···+cliSili , F0(z) = −(−1)li . (9)

Proof. This follows by simply substituting the definition of F i
k(z) in the product and

recognizing the expression for σ.

Note that the integer composition α should not be confused with some shape of a
tableau. The composition α rather serves as the number of columns there are in each of the
m “blocks” of columns in T (a). The functions Gkα(x) can now be seen as the generating
functions of σ, as the block sizes grows linearly with k, and each block i consists of column
fillings with columns from {Ci1, . . . , Cili}, each present at least once.

However, note that if all Ti are empty fillings (no columns), then Gkα(x) can be seen
as generating function for fillings of shape kD for some fixed diagram D as in Fig. 1. In
the proof of Proposition 6, the relation between α and D is explained in more detail.

α1 α2 α3

Figure 1: The role of α. Here, all Ti are empty.

the electronic journal of combinatorics 23(1) (2016), #P1.47 8



Corollary 5. The sequence {Gkα(z)}∞k=0 satisfies a linear recurrence with characteristic
polynomial given by ∏

16j16l1
16j26l2

...
16jm6lm

(
t− zα1S1j1 zα2S2j2 · · · zαmSm,jm

)
. (10)

Furthermore, if σ is linear, then Eq. (10) can be expressed as∏
16j16l1
16j26l2

...
16jm6lm

(
t− zσ(α1C1j1 ,α2C2j2 ,...,αmCm,jm )

)
. (11)

Multiple roots can be disregarded if {Si1, . . . , Sili} are all distinct for every i.

Proof. Each F i
k(z) in Eq. (9) can be seen as generated by a linear statistic σ′(T ) = σ(T )−A.

It follows from Lemma 3 that for each i, the sequence {F i
k(z)}∞k=0 satisfies a linear recurrence

with characteristic polynomial given by

(t− zSi1)(t− zSi2) · · · (t− zSili ), 1 6 i 6 m.

Using the last property of linear recurrences given in the beginning of Section 3, we have
that {F i

kαi
(z)}∞k=0 also satisfies a linear recurrence, now with characteristic polynomial

(t− zαiSi1)(t− zαiSi2) · · · (t− zαiSili ), 1 6 i 6 m. (12)

Since Gkα(z) is a product of the F i
k(z), we repeatedly use the third property in Section 3

to obtain a characteristic polynomial {Gkα(z)}∞k=0. The factor zA does not depend on k,
so it does not affect the characteristic polynomial. To be more precise, the roots of the
characteristic polynomial for Gkα(z) are given by all ways of selecting one root for each i
from Eq. (12). This procedure gives the expression in Eq. (10).

Eq. (11) follows from linearity of σ together with the definition of σ. Note that the value
of σ(α1C1j1 , α2C2j2 , . . . , αmCm,jm) is defined via linearity of σ, the tableau we evaluate σ
on might not be in T (if some αi = 0) unless this family is strictly column closed.

The final statement regarding simple roots follows from the proof of the third item in
Section 3.

So far, we have only treated generating functions of subsets of tableaux where the
columns are from a specified subset and each column appears at least once. We will now
treat the case where only the family of fillings and the diagram shape define the generating
function. To do that, it is natural to restrict ourself to a special type of families of fillings.

A family T is said to be partially ordered if every filling T ∈ T satisfies the following
two properties:
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• if two columns in T are identical, then all columns in between are also identical to
these two.

• if two columns C1 and C2 are different and C1 appears to somewhere the left C2,
then C1 never appears to the right of C2 in some other filling T ′ ∈ T .

This is basically stating that the columns satisfies a partial order, with the relation “C1
appears to the left of C2 in some filling”. For example, fillings such that every row is
weakly decreasing (or increasing) are partially ordered.

Being column-closed and partially ordered are two different concepts — the first
property only regards identical columns, while the second property tells something about
the relationship between different columns in the fillings in T .

Proposition 6. Let T be a partially ordered and weakly column-closed family of fillings
and let σ be an affine statistic defined on T . Let D be a fixed diagram and define the
polynomials HD(z) as

HD(z) =
∑

T∈T (D,n)
zσ(T )

where T (D,n) is the set of all fillings in T with shape D and for every box (i, j) in
such a filling, we have 1 6 T (i, j) 6 n. Then {HkD(z)}∞k=1 satisfies a linear recurrence.
Furthermore, if σ is linear, then the characteristic polynomial of the recurrence is given by∏

T

(
t− zσ(T )

)
(13)

where T runs over all tableaux of shape D such that any adjacent columns of same shape in
T are identical, and each T can be obtained from some T (kD, n) by deleting some columns.
Note that T might not itself be an element in T . However, if T is strictly column closed,
then each such T is in T (D,n).

Proof. Note that every column in kD has the same shape as some column in D. Since
we may only fill boxes with entries from [n], there is a finite number of columns that can
appear in T (kD, n). Furthermore, since T is partially ordered, there is a finite number
of lists of columns, (C1, C2, . . . , Cl), such that all Ci are different and Ci never appears
to the right of Cj in some filling in T , whenever i < j. Thus, for every k, every filling in
T (kD, n) can be obtained in a unique way from such a list, by duplicating some columns
in that list. Hence, HkD(z) can be expressed as a finite sum over such lists (C1, C2, . . . , Cl),
where each term corresponds to fillings T of shape kD where each column in T is in the
list and every column in the list appears at least once in T .

More specifically, let the diagram D be the concatenation D = (α1s1, α2s2, . . . , αmsm)
where the si are column shapes and si 6= si+1, and we use the same notation as for filled
columns. Then every filling in T (kD, n) can be obtained in a unique way as

(a11C11, . . . , a1l1C1l1) ‖ (a21C21, . . . , a2l2C2l2) ‖ · · · ‖ (am1Cm1, . . . , am,lmCm,lm)
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where each Cij has shape si and ai1 + · · ·+ ai,li = αi. Hence, HkD(x, t) can be expressed
as a sum over polynomials of the same form as Gkα in Lemma 4. Corollary 5 tells us that
each Gkα satisfy a linear recurrence, so the sum of such sequences must too. This proves
the first statement in the proposition.

The second statement follows from Corollary 5 and observing that the Sij in Eq. (10) can
be replaced by σ(Cij), since σ is linear. The observation that it is enough to only consider
tableaux where adjacent columns of same shape have identical fillings is a consequence of
the combinatorial interpretation of the F i

kαi
(z) in Lemma 4: a block of size kαi must have

αi copies of some column if k is sufficiently large and now a similar inclusion-exclusion
reasoning apply as in Lemma 3.

Corollary 7. Let (σ, τ) be an affine statistic, such that the restriction to σ is linear and
σ(C1) 6= σ(C2)⇒ C1 6= C2 for any pair of columns that appear in a filling in T . Then the
characteristic polynomial in (13) can be taken to have only simple roots.

Proof. In the proposition above, HkD(z) is expressed as a finite sum of polynomials of type
Gkα in Lemma 4. Thus, if all these Gkα have simple roots in their respective characteristic
polynomial, so does the sum. This is the second property in the overview of linear
recurrences in Section 3.

Furthermore, each Gkα is expressed as a product of even simpler polynomials, as
in Eq. (9). Again, it suffices to show that each of these F i

kα in such a product has a
characteristic polynomial with simple roots.

Going back to Lemma 3 and (7), we see that the property σ(C1) 6= σ(C2)⇒ C1 6= C2
implies that the values of the Si in (7) are all distinct. This proves that the characteristic
polynomial has simple roots.

We end this section with a simple example illustrating Proposition 6.

Example 8. Consider the shape
D = .

The column-closed family T we consider consists of all fillings with columns 1
1 , 1

2 , 2
2 ,

1 and 2 such that both rows are weakly increasing. The statistic in our example is
zσ(T ) = xw(T )yone(T ), where one(T ) counts the number of columns of type 1

1 . The possible
fillings for D is then

1 1
1
x3

1y

,
1 2
1
x2

1x2y

,
1 1
2
x2

1x2

,
1 2
2
x1x2

2

,
2 2
2
x3

2

with the corresponding value of zσ(T ) written below. Hence,

HD(x, y) = x3
1y + x2

1x2y + x2
1x2 + x1x

2
2 + x3

2

and H2D(x, y) are given by a similar sum over all fillings of the diagram with shape

2D = .
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Note that σ is a linear statistic, so Proposition 6 gives that {HkD(x, y)}∞k=0 satisfies a
linear recurrence with characteristic polynomial∏

T∈T (D,2)
(t− xw(T )yone(T )) = (t− x3

1y)(t− x2
1x2y)(t− x2

1x2)(t− x1x
2
2)(t− x3

2).

There are no multiple roots that can be omitted — all roots are simple in our example.

4 Augmented fillings

This section introduces the diagram fillings that are responsible for key polynomials, De-
mazure atoms and Hall–Littlewood polynomials. We follow the terminology in [HLMvW11,
Mas09], with a few minor modifications.

Let β = (β1, . . . , βn) be a list of n different positive integers and let α = (α1, . . . , αn)
be a weak integer composition, that is, a vector with non-negative integer entries. An
augmented filling of shape α and basement β is a filling of a Young diagram of shape
(α1, . . . , αn) with positive integers, augmented with a zeroth column filled from top to
bottom with β1, . . . , βn.

Definition 9. Let T be an augmented filling. Two boxes a, b, are attacking if T (a) = T (b)
and the boxes are either in the same column, or they are in adjacent columns, with the
rightmost box in a row strictly below the other box.

a
...

b
or

a
...

b

A filling is non-attacking if there are no attacking pairs of boxes.

Definition 10. Let T be an augmented filling with weakly decreasing rows. A coinversion
triple of type A is an arrangement of boxes, a, b, c, located such that a is immediately to
the left of b, and c is somewhere below b in the same column, and the row containing a
and b is at least as long as the row containing c and T (a) > T (c) > T (b).

Similarly, a coinversion triple of type B is an arrangement of boxes, a, b, c, located
such that a is immediately to the left of b, and c is somewhere above a in the same
column, and the row containing a and b is strictly longer than the row containing c and
T (a) > T (c) > T (b).

Type A:
a b

...

c
Type B:

c
...

a b
(14)

Warning! This definition is slightly different from what is stated in [HLMvW11].
However, the definitions coincides whenever the rows in the filling are weakly decreasing
and we are only concerned with that special case.

Definition 11. A semi-standard augmented filling, (ssaf) of shape α and basement β
is an augmented filling of shape α and basement β with weakly decreasing rows and no
coinversion triples (every triple is an inversion triple).
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Note that this definition implies that there are no attacking boxes in an ssaf. In
particular, two entries in the same column must be different in order to be non-attacking.

Example 12. Here is an example of a semi-standard augmented filling, with basement
(1, 3, 2, 5, 4).

1
3 3 1 1
2 2
5 5 5 5
4 4 4 3 2

We can for example check the underlined entries for the type B coinversion triple condition
— since 4 6 1 6 3 is not true, they do not form such a triple. It is left as an exercise to
check that no other triples are coinversion triples.

Lemma 13. The family of semi-standard augmented fillings is a weakly column-closed
and partially ordered family.

Proof. It suffices to show that duplication of a column in a ssaf T does not introduce
any coinversion triples and it is enough to check that there are no coinversion triples in
adjacent and identical columns.

Assume that a, b, c form a coinversion triple, as in Eq. (14) (either type). Since the
columns are identical, T (a) = T (b) which implies T (a) = T (c) = T (b). However, this
is means that two boxes in the same column are identical, so they are attacking. This
contradicts the fact that the filling is a ssaf.

Let ssaf(β, α) be the set of all semi-standard augmented fillings with basement β
and shape α. Note that ssaf(β, α) is a finite set. Given an augmented filling T , let
w(T ) = (w1, . . . , wn) where wi counts the number of boxes with content i not including
the basement. The generalized Demazure atoms are defined as

Aβ,α(x) =
∑

T∈ssaf(β,α)
xw(T ). (15)

The special case when βi = i corresponds to the ordinary Demazure atoms, introduced by
Lascoux and Schützenberger in [LS90] under the name standard bases.

Let nawf(α) denote the set of all non-attacking augmented fillings of shape α with
weakly decreasing rows and basement given by βi = i. The non-symmetric, integral form
Hall–Littlewood polynomials, Eα(x1, . . . , xn), may be defined as

Eα(x; t) =
∑

T∈nawf(α)
xw(T )tcoinv(T )(1− t)dn(T ) (16)

where coinv(T ) is the number of coinversion triples in T and dn(T ) is the number of pairs
of adjacent boxes, (i, j) and (i, j + 1), such that T (i, j) 6= T (i, j + 1) (different neighbors).
This formula was first given in [HLMvW11]. It is straightforward to show that the nawf
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form a weakly column-closed and partially ordered family. They show that the ordinary
Hall–Littlewood polynomials Pµ(x; t) can be expressed as

Pµ(x; t) =
∑
γ

µ=λ(γ)

Eγ(x; t) (17)

where λ(γ) is the unique integer partition that is obtained from the weak integer composition
γ by sorting the parts in decreasing order.

Lemma 14. The statistics dn and coinv are affine statistics.

Proof. It follows immediately from the definition of dn that if dn(C1, . . . , Cl) = A, then
dn(m1C1, . . . ,mlCl) = A for all mi > 1, so this is affine. The fact that coinv is affine is
also quite straightforward and is left as an exercise to the reader.

Using Proposition 6, Lemma 13 and Corollary 7, we have the following result:

Corollary 15. The sequences Aβ,kα(x) and Ekα(x; t) for k = 1, 2, . . . satisfy linear
recurrences with simple roots.

Note that Eq. (17) implies that the ordinary Hall–Littlewood P polynomials satisfy a
linear recurrence. These are usually (see [Mac95]) defined as

Pλ(x; t) =
∏
i>0

mλ(i)∏
j=1

1− t
1− tj

 ∑
σ∈Sn

σ

xλ1
1 · · ·xλnn

∏
i<j

xi − txj
xi − xj

 , (18)

where λ = (λ1, . . . , λn), some parts might be zero, mλ(i) denotes the number of parts of λ
equal to i, and σ acts on the indices of the variables.

Observe that from this definition, it is quite clear that {Pkλ(x; t)}∞k=1 satisfies a linear
recurrence, since for a fixed σ in (18), the expression is of the form g(x; t)σ(x)λ where g is
independent under λ 7→ kλ. Now compare with Eq. (5) above.

4.1 Key tableaux and key polynomials

Let α = (α1, . . . , αn) be a weak integer composition. To any such composition, construct
a composition with unique entries, β, and a partition λ as follows: Create an augmented
Young diagram with shape α and fill the zeroth column with the numbers 1, . . . , n
decreasingly from top to bottom. Remove all rows for which αi = 0 and sort the remaining
rows according to the number of boxes, in a decreasing manner. If two rows have the same
number of boxes, preserve the relative order1. The resulting diagram has the shape of a
partition, λ, which we denote λ(α), and the zeroth column will be our basement β(α). It
is easy to show that this process can be reversed, that is, to any pair (β, λ), there is a
corresponding α. Finally, note that β(kα) = β(α) (multiplying α with a positive constant
preserves the relative order of the parts) and λ(kα) = kλ(α) for non-negative integers k.

1Although, in this paper, this convention will not be important.
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This correspondence is illustrated in Eq. (19), for α = (0, 2, 3, 4, 2, 0, 1) and the tuple
β = (4, 5, 6, 3, 1), λ = (4, 3, 2, 2, 1).

7
6
5
4
3
2
1

←→

4
5
6
3
1

(19)

The key polynomials generalize the Schur polynomials and are indexed by integer
compositions. They can be defined as

Kα(x) =
∑

T∈ssaf(β(α),λ(α))
xw(T ). (20)

Note that the key polynomials are a subset of the generalized Demazure atoms. This
motivates the definition of a key tableau as a semi-standard augmented filling of partition
shape, and we let ktab(β, λ) = ssaf(β, λ) to emphasize that this subset is of special
interest. Note that we only need to be concerned about coinversion triples of type A since
we are dealing with partition shapes.

Given a column (β1, . . . , βn) and a set of entries {c1, . . . , cn}, there is at most one way
to arrange the entries c1, . . . , cn in a column next to β such that the result fulfills all
properties of a key tableau. First of all, if there is such an arrangement, the rows must be
decreasing. This implies that for some enumeration of the ci, we must have that βi > ci
for all i, by having βi to the left of ci in the filling.

Secondly, the lack of coinversion triples in a key tableau implies that the order of the
entries in the second column is unique; if (a, b, c) is a coinversion triple of type A, then
switch the entries in box b and c to create an inversion triple. This defines a total order
among the elements in the second column, so there can be at most one filling where the
second column (as a set) consists of the entries c1, . . . , cn.

The following lemma shows that under the obvious condition that if βi 6 ci for all i,
then the ci can be arranged in such a way that the columns form a proper key tableau
with basement β. We prove a stronger statement:

Lemma 16. Let T be a Young diagram of partition shape 1 + λ = (1 + λ1, 1 + λ2, . . . ),
filled with positive integers in such a way that each row is weakly decreasing, each column
contains unique entries and the first column is given by β. Then each column in T can be
sorted in a unique way such that the result is a key tableau of with shape λ and basement
β.

Proof. We do the proof in several steps. The first case we cover is the case when all parts
in λ have the same size, that is, all columns of T have the same height. It is easy to see
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that in this case, we only need to show the statement for two columns. Thus, assume
(β1, . . . , βn) and (c1, . . . , cn) are given, with βi > ci for all i.

We now perform the following sorting procedure on the second column. Let ci be the
largest entry in the second column such that β1 > ci, and transpose c1 and ci. Since ci > c1,
the rows are still weakly decreasing after this transposition. Note that β1 and ci cannot
be involved in a coinversion triple later on: if there is some cj such that β1 > cj > ci, then
the maximality of the choice of ci is violated.

We now proceed recursively on the remaining entries of the two columns, (β2, . . . , βn)
and (c2, . . . , cn) where we have performed a transposition in the second column.

To handle tableaux with more than two columns, simply apply the permutation that
takes the original column c to the result on all subsequent columns. The result will now
still be a tableau with weakly decreasing rows, but the first two columns do not contain
any inversion triples. Proceed with the same method on column 2 and 3, then 3 and 4,
and so on.

Note that if c1 < c2 < · · · < cr 6 βi for all i, and cr < cj for all j > r, then the second
column after the above procedure will end in the sequence cr, cr−1, . . . , c1, reading from
top to bottom. Thus, to turn an arbitrarily shaped tableau T into a key tableau, we first
augment each column with negative integers such that all columns have the same height,
and a new entry on row i will get the value −i. After performing the sorting procedure,
the above observation implies that we can remove all boxes with negative entries from the
result and recover a key tableau with the same shape as T .

Note that Lemma 16 implies that if T is a key tableau, then one can remove any
column from it, reorder the entries in each column and obtain another key tableau. In
some sense, key tableaux behave similarly to a strictly column-closed family of tableaux.

Example 17. Here we illustrate the sorting procedure described in Lemma 16. We start
with the tableau T which is then augmented with negative integers.

T =

8 5 4 1
4 3 2 2
6 6 5
7 4

−→

8 5 4 1
4 3 2 2
6 6 5 −3

7 4 −4 −4

.

The second column is then sorted and the entries in the other columns are permuted in
the same fashion. Two more steps are performed to sort the remaining two columns.

8 6 5 −3

4 4 −4 −4

6 5 4 1
7 3 2 2

3rd column−→

8 6 5 −3

4 4 4 1
6 5 2 2
7 3 −4 −4

4th column−→

8 6 5 2
4 4 4 1
6 5 2 −3

7 3 −4 −4

Removing the boxes with negative entries now yield a proper key tableaux with the same
shape and basement as T .
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Remark 18. Note that Lemma 16 does not generalize to arbitrary semi-standard aug-
mented fillings. For example, it is impossible to remove the first column in Example 12
and reorder the entries in the remaining non-basement columns into a valid SSAF — the
1s always appear in some attacking configuration.

4.2 Key polynomial recurrence

We are now ready to state one of the main result of this paper.

Theorem 19. The sequence of polynomials {Kkα(x)}∞k=1 satisfies a linear recurrence with∏
T

(t− xT )

as characteristic polynomial, where the product is taken over all key tableaux of shape α
such that columns of equal height have the same filling and multiple roots in the product
are ignored.

Proof. This follows almost immediately from Proposition 6, except that ktab is not a
strictly column-closed family. However, Lemma 16 implies that the tableaux that appear
in the product Eq. (13), can be rearranged to key tableaux, while preserving the weight of
the tableau.

4.3 A final note on linear statistics

Suppose there is strong evidence that a family of polynomials are generated by a combina-
torial statistic on fillings. That is,

pD(x) =
∑
T∈D

xσ(T )

for some unknown statistic σ, but there are other means of producing the pD(x).
As a concrete example, let σ : T → N and suppose pD(s) = s2 + s is (conjecturally)

given as the sum is over the two fillings

1 1
1

2 2
2 . (21)

Furthermore, suppose that p2D(s) = s4 + s3 + s2 is given as the sum is over the three
fillings

1 1 1 1
1 1

2 2 1 1
2 2

2 2 2 2
2 2 . (22)

Now, we cannot say which monomial corresponds to which filling. However, suppose
that σ has the property that it is linear with respect to k-duplication of every column,
meaning that σ(kT ) = kσ(T ), where kT is the filling with k copies of every column in T .
Then the 2-duplication of the fillings in (21), which are the first and last filling in (22),
must produce the polynomial s4 + s2. We can then deduce that the middle filling in (22)
is responsible for s3 in p2D(s).
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As illustrated, linearity of a combinatorial statistic can imply exact values of the statistic
on some of the fillings. This information can the be used to guess a combinatorial description
of σ. For example, the classical charge statistic (on SSYTs) that is responsible for
generating the Koskta–Foulkes polynomials (see [LS78]) has the property that charge(kT ) =
k charge(T ) for positive integers k.

5 The polytope side

In this section, we show that the integer point transform of polytopes with the integer
decomposition property, (IDP), satisfy a linear recurrence. In particular, this can be used
to give an alternate proof of Theorem 19.

An integral polytope is the convex hull of a finite set of integer points in Rd. The
k-dilation of a polytope P is defined as kP = {kx : x ∈ P} where k is a non-negative
integer, and it is easy to see that this is an integral polytope if P is. Furthermore, a
polytope P is said to have the integer decomposition property if for every integer k > 1,
every lattice point x ∈ kP ∩ Zd can be expressed as x = x1 + · · ·+ xk with xi ∈ P ∩ Zd.
Note that only integral polytopes can have the integer decomposition property and that
every face of a polytope with IDP is also a polytope with the IDP.

Examples of polytopes with IDP include all lattice polygons in the plane and order
polytopes defined in [Sta01].

The following proposition shows that certain polynomials obtained from polytopes
satisfy a linear recurrence. The argument is very similar to that in Lemma 3.

Proposition 20. Let P be an integrally closed polytope in Rd and let pk(z) be the polyno-
mial defined as

pk(z) =
∑

x∈kP∩Zd
zx. (23)

Then the sequence pj(z) for j = 0, 1, . . . satisfies a linear recurrence with characteristic
polynomial given by ∏

x∈P∩Zd
(t− zx).

Proof. Since P has the IDP, one can easily show that every lattice point in kP can be
expressed as a sum of a lattice point in (k − 1)P plus a lattice point in P . Therefore

pk(z)−
 ∑

x∈P∩Zd
zx

 pk−1(t)

is a polynomial with only negative coefficients corresponding to points in kP that are
expressible in more than one way as x + y with x in (k− 1)P ∩Zd and y in P ∩Zd. Hence

pk(z)−
 ∑

x∈P∩Zd
zx

 pk−1(z) +
 ∑

x 6=y∈P∩Zd
zx · zy

 pk−2(z)

the electronic journal of combinatorics 23(1) (2016), #P1.47 18



is again a polynomial with positive coefficient corresponding to lattice points in kP
expressible in at least three different ways. Repeating this argument using the principle of
inclusion-exclusion then yield the desired formula.

The polynomial defined in Eq. (23) for k = 1 is commonly known as the integer-point
transform of P .

The intersection of two faces of a polytope is also a face (of possibly lower dimension)
of the polytope. This enables us to generalize Proposition 20 slightly:

Corollary 21. Let P be a polytope with the integer decomposition property and let
F1, . . . , Fl be fixed faces of P. Let H = ∪iFi and define the sequence of polynomials

pk,H(z) =
∑

x∈kH∩Zd
zx. (24)

Then the sequence pj,H(z) for j = 0, 1, . . . satisfies a linear recurrence with characteristic
polynomial given by ∏

x∈H∩Zd
(t− zx).

Proof. Let F be a face of P with IDP and define

pk,F (z) =
∑

x∈kF∩Zd
zx. (25)

Proposition 20 implies that {pk,F (z)}∞k=0 satisfies a liner recurrence with a characteristic
polynomial ∏x∈F∩Zd(t− zx). Using the notation in Eq. (24), note that

pk,F1∪F2(z) = pk,F1(z) + pk,F2(z)− pk,F1∩F2(z)

by applying inclusion-exclusion. The right-hand side is a sum of polynomials of the form
Eq. (25), where each term fulfills a linear recursion. We can therefore conclude that
pk,F1∪F2(z) satisfies a linear recursion with characteristic polynomial ∏x∈(F1∪F2)∩Zd(t− zx).

The generalization from two faces to l faces follows from the exact same type of
argument.

In [KST10], it was proven that key polynomials (Demazure characters) can be expressed
as (a certain specialization of) the integer point transform of a union of faces of a Gelfand–
Tsetlin polytope. Such polytopes are known to have the integer decomposition property,
see e.g. [Ale14], so Corollary 21 implies a weaker version of Theorem 19. Note that the
linear recurrences allow us to define K0α(x) and it follows from the polyhedral complex
interpretation that this always evaluates to 1 (there is exactly one lattice point in the
union of faces with dilation 0, namely the origin). It would be interesting to see a direct
proof of this fact without using the polytope interpretation.

After extensive computer experimentation, it is hard not to ask the following question:

Question 22. Does the polynomial k 7→ Kkα(1n) always have non-negative coefficients?
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The case when α is a partition corresponds to a Schur polynomial and it is known that

sλ(1n) =
∏

16i<j6n

λi − λj + j − i
j − i

where n is the number of variables. This gives a positive answer to the question in this
case.

6 The operator side

Some families of polynomials, such as the Schubert and key polynomials can be defined
via divided difference operators. Let si denote the transposition (i, i + 1) and let such
transpositions act on Z[x1, . . . , ] by permuting the indices of the variables. Define the
divided difference operators

∂i = 1− si
xi − xi+1

, πi = ∂ixi.

Given a permutation ω ∈ Sn, it can be expressed as a product of transpositions, ω =
si1 · · · sil . When the length l is minimal, we say that i1i2 . . . il is a reduced word of ω.
Then, let ∂π = ∂i1 · · · ∂il and πω = πi1 · · · πil . It can be shown that these operators does
not depend on the choice of the reduced word.

The key polynomials may now be defined [RS95] as Kα(x) = πu(α)x
λ(α), where λ(α)

is the partition obtained by sorting the parts of α in decreasing order and u(α) is a
permutation that sorts α into a partition shape. That this indeed is equivalent to the
definition above was proved in [Mas09]. We will now give yet another proof that the
key polynomials satisfy linear recurrences. First, note that xkλ is a geometric series as
k = 0, 1, . . . and thus satisfy a linear recurrence with characteristic polynomial t − xλ.
Now note that if {fk(x)}∞k=0 satisfy a linear recurrence, then so does {∂ifk(x)}∞k=0 and
{πifk(x)}∞k=0. The result is now a consequence of induction.

The Schubert polynomials, Sω(x), indexed by permutations in Sn, are defined in a
similar fashion,

Sω(x) = ∂(w−1w0)x
n−1
1 xn−2

2 · · ·x1
n−1

where ω0 is the longest permutation in Sn, namely (n, n− 1, . . . , 1) in one-line notation.
Using a similar reasoning as for the key polynomials, one can produce sequences of Schubert
polynomials that satisfy linear recurrences.

7 Appendix: Some families of column-closed fillings

In this section, we review some common families of column-closed fillings, related combina-
torial statistics, and generating functions over subsets of such families. Some statements
here are well-known or very easy to show, so we present them without proof. Proposition 6
implies that all the polynomials we define below satisfy linear recurrences.
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7.1 Flagged skew semi-standard Young tableaux

Let λ and µ be partitions with at most l parts, such that λ ⊇ µ. Let ssyt(λ/µ, n) be the
set of fillings of Dλ/µ with entries in [n], such that each row is weakly increasing and each
column is strictly increasing. Then for every l and n, the families⋃

λ⊇µ
ssyt(λ/µ, n) and

⋃
λ

ssyt(λ, n)

are strictly column-closed families, where the unions are taken over shapes with at most l
rows. On any filling T with entries in [n], we define the statistic w(T ) : T → Nn such that
if w(T ) = (w1, . . . , wn), then wi is the number of boxes in T filled with i. It is evident
that w is a linear statistic.

Finally, the skew Schur polynomials in n variables, indexed by skew partition shapes
λ/µ, are defined as

sλ/µ(x) =
∑

T∈ssyt(λ/µ,n)
xw(T ).

Even more general, let λ ⊇ µ be a shape with at most l rows and let a and b be increasing
sequences of integers of length l, such that ai 6 bi for all i. Let ssyt(λ/µ, a, b, n) ⊆
ssyt(λ/µ, n) be the subset of fillings T , such that ai 6 T (i, j) 6 bi for every box
(i, j) ∈ Dλ/µ. Then for each n, ⋃

λ⊇µ
ssyt(λ/µ, a, b, n)

is a strictly column-closed family, where the union is taken over all λ ⊇ µ with at most l
rows. The row-flagged Schur polynomials, sλ/µ,a,b(x) in n variables are defined as

sλ/µ,a,b(x) =
∑

T∈ssyt(λ/µ,a,b,n)
xw(T ),

see e.g. [Wac85] as a reference. Proposition 6 now implies that {skλ/kµ,a,b(x)}∞k=0 satisfies
a linear recurrence, with characteristic polynomial (removing multiple roots)∏

T∈ssyt(λ/µ,a,b,n)
(t− xw(T )).

7.2 Symplectic fillings

The following definition is taken from [Kin76] and these polynomials are related to
representations of Sp(2n). The symplectic Schur polynomials, spλ(x), in the variables
x±1

1 , x±1
2 , . . . , x±1

n are defined via fillings of the Young diagram λ using the alphabet
1 < 1 < 2 < 2 < · · · < n < n such that rows are weakly increasing, columns are strictly
increasing, and entries in row i are greater than or equal to i. Then, for a partition λ with
at most n parts,

spλ(x) =
∑

T∈spyt(λ)
xw(T )x−w(T )

the electronic journal of combinatorics 23(1) (2016), #P1.47 21



where w(T ) is the weight only counting unbarred entries and w(T ) only counts the barred
entries. It is quite clear that the symplectic Young tableaux form a strictly column-closed
family, and that the statistics w and w are linear. Consequently, {spkλ}∞k=1 satisfies a
linear recurrence for every fixed partition λ.

7.3 Set-valued tableaux and reverse plane partitions

The Grothendieck polynomials2 Gλ(x) can be defined (see [Buc02]) as

Gλ(x) =
∑

T∈svt(λ)
(−1)|T |−|λ|xw(T )

where the sum is taken over set-valued Young tableaux. These are defined as fillings of a
diagram of shape λ, but now each box contains a set of natural numbers. For two such
sets A, B we have A < B if maxA < minB and similar for A 6 B. With this notation,
svt(λ) is the set of all set-valued tableaux (subsets of [n]) such that rows are weakly
increasing, and columns are strictly increasing. Here, the ith component of w(T ) is now
the total number of sets where i appears, and |T | is the sum over all cardinalities of the
sets in the boxes. Note that the lowest-degree part of Gλ(x) is the usual Schur polynomial
sλ(x).

There is also an operator definition of the more general Grothendieck polynomials
which are indexed by permutations and similar to the Schubert polynomials and introduced
by Lascoux and Schützenberger in 1982.

To show that Gλ(x) satisfy a linear recurrence, one needs to use the more general
version of Lemma 4, since the family of set-valued Young tableaux is not a weakly column-
closed family; only columns where each set is a singleton can be duplicated. However, we
note that the family is partially ordered and that every tableau T ∈ svt(kλ) contains
duplicate columns for every k sufficiently large.

Proposition 23. The sequence Gkλ(x), k = 1, 2, . . . , satisfies a linear recurrence.

Proof. Let T be the set of fillings in ∪ksvt(kλ). As in Proposition 6, since T is partially
ordered, there is a finite set of fillings in T where all columns are different. Thus, Gkλ(x)
can be written as a finite sum over lists of columns (C1, . . . , Cl) where the Ci are the
columns that appear in the filling at least once. Thus, we have the refinement

Gkλ(x) =
∑

C=(C1,...,Cl)
Gk,C(x) (26)

where C corresponds to the Ti and Cij in Lemma 4, and Gk,C(x) are polynomials of the
type Gkα in Eq. (9).

Note that any column containing a box with a set of cardinality at least two can
only appear once in a filling, and can therefore only contribute to the constant factor
corresponding to zA in Eq. (9). In other words, the only columns that affect the linear

2These are called the stable Grothendieck polynomials.
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recurrence are columns with singleton sets, i.e. columns that appear in ordinary semi-
standard Young tableaux of shape λ. Therefore, Corollary 5 implies that Gkλ(x) satisfies
a linear recurrence with characteristic polynomial∏

T∈ssyt(λ,n)
(t− xw(T )),

where multiple roots can be ignored according to Corollary 7.

The fact that the Grothendieck polynomials satisfy linear recurrences can also be
proved using a divided difference operator definition, similar to the Schubert polynomials.

Lam and Pylyavskyy [LP07] proved that the dual stable Grothendieck polynomials,
gλ(x) in n variables can be defined as

gλ(x) =
∑

T∈rpp(λ,n)
xev(T )

where rpp(λ, n) is the set of reverse plane partitions of shape λ, that is, fillings of λ with
numbers in [n] such that rows and columns are weakly decreasing. The statistic ev(T )i is
the total number of columns where i appears. From the definition of ev, it is clear that it
is a linear statistic — it is obvious that ev(T1 ‖ T2)i = ev(T1)i + ev(T2)i.

Furthermore, the family of reverse plane partitions is partially ordered since rows in
such fillings are weakly decreasing. It is also strictly column-closed since removing any
column preserves the property of rows and columns being decreasing. Consequently, we
get a linear recurrence in this case for gkλ(x), with characteristic polynomial∏

T∈rpp(λ,n)
(t− xev(T )).

Since the value of ev(C) does not uniquely determine the column C in general, we
cannot apply Corollary 7. Thus we might need some multiple roots in this characteristic
polynomial.

7.4 A note on Jack and Macdonald polynomials

A consequence of satisfying a linear recurrence is that the sequence of polynomials must
satisfy a linear recurrence under every specialization of the variables. In particular, if we
pick a specialization such that all roots of the characteristic polynomial become equal to
1, then the resulting sequence is a polynomial. For example, k 7→ Kkα(1n) is a polynomial
in k.

This observation allows us to deduce that the Jack polynomials Jλ(x, a) do not satisfy
a linear recurrence for general values of a, since the sequences Jkλ(1n, a) are not of the
form given in Eq. (5). This observation holds for both standard normalizations of Jack
polynomials.

It follows that there are no linear recursions for Macdonald polynomials either, since
the Jack polynomials are a specialization of the Macdonald polynomials.
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