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Abstract

The guessing game introduced by Riis [Electron. J. Combin. 2007] is a variant
of the “guessing your own hats” game and can be played on any simple directed
graph G on n vertices. For each digraph G, it is proved that there exists a unique
guessing number gn(G) associated to the guessing game played on G. When we con-
sider the directed edge to be bidirected, in other words, the graph G is undirected,
Christofides and Markström [Electron. J. Combin. 2011] introduced a method to
bound the value of the guessing number from below using the fractional clique
cover number κf (G). In particular they showed gn(G) > |V (G)| − κf (G). More-
over, it is pointed out that equality holds in this bound if the underlying undirected
graph G falls into one of the following categories: perfect graphs, cycle graphs or
their complement. In this paper, we show that there are triangle-free graphs that
have guessing numbers which do not meet the fractional clique cover bound. In par-
ticular, the famous triangle-free Higman–Sims graph has guessing number at least
77 and at most 78, while the bound given by fractional clique cover is 50.

1 Introduction

The motivation of developing guessing games [17] comes from the study of a specific class
of problems in network coding [3], namely multiple unicast network coding. A multiple
unicast network is a communication network in which each sender has a unique receiver
that wishes to obtain messages from it. Such a network can be represented by a directed
acyclic graph where senders, receivers and routers are vertices in the graph and channels
are directed edges between vertices. Furthermore, we simplify the problem by require
that each channel only allows one message to pass through it at a time. If we merge each
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vertex representing a sender with a vertex which represent its corresponding receiver in
the directed acyclic graph, we will obtain an auxiliary digraph in which we no longer have
the distinction between senders, receivers, or routers. We can define a guessing game to
play on this auxiliary digraph; the rules of our guessing game will allow us to translate
strategies on the auxiliary graph into coding functions on the simplified multiple unicast
network and vice versa. The guessing number is a measure of the performance of the
optimal strategy for a guessing game; its precise definition will be given in Section 2.

It is worth noting that guessing games were the main ingredients in Riis’ proof of the
invalidity of two conjectures raised by Valiant [19] in circuit complexity in which he asked
about the optimal Boolean circuit for a Boolean function. (See [17].)

Our paper deals with the guessing game played on a special type of directed graph
in which each directed edge is bidirected, i.e. our graphs are undirected. In particular,
we show that there are triangle-free undirected graphs where the guessing numbers of
these graphs can not be computed using the fractional clique cover method developed by
Christofides and Markström in [8]. This also gives counterexamples to their conjecture
about the optimal guessing strategy based on fractional clique cover in [8]. (The first
counterexample to Christofides and Markström’s conjecture was illustrated in [4] but the
graph is not triangle-free.)

Our paper is organised as as follows. Firstly, we introduce the rules of guessing games
played on undirected graphs in Section 2. Then in Section 3 we prove the existence of the
asymptotic guessing numbers. In Section 4 the fractional clique cover strategy from [8] is
formally defined. Our main results appear in Section 5. Sections 2, 3, 4 already appeared
in [11], [8], and [4] but we reproduce them here in order to make this paper self-contained.

2 Definitions

An undirected graph G = (V,E), or graph for short, consists of a set V (G) of vertices
and a set E(G) of undirected edges. An undirected edge e ∈ E(G), or edge for short, is
an unordered pair (u, v) of vertices, which we also denote by uv or vu, with u and v are
elements of V (G). We say vertices u and v are adjacent if uv is an edge. Similarly, we say
two edges are adjacent if they share a common vertex. Given a graph G, we will denote
its adjacency matrix by A. We also denote the identity matrix by I, and it will be clear
from the context that I and A have the same order.

The guessing game is defined to be played on simple graphs, i.e. graphs not containing
loops (edges of the form uu for u a vertex) or multiple edges (two or more edges with
the same vertices). Thus, two edges are adjacent if and only if they share exactly one
common vertex.

Given a graph G and a vertex v ∈ V (G), the neighbourhood of v is Γ(v) = {u : uv ∈
E(G)}.

An important class of guessing strategies introduced in Section 4 involve cliques, i.e.
subgraphs of G in which every pair of vertices are joined by an undirected edge.

Given two graphs G and H, the tensor product or categorical product G × H of G
and H is a graph with vertex set V (G×H) which is the Cartesian product of V (G) and
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V (H); and an edge e = ((u, v), (u′, v′)) ∈ E(G ×H) if uu′ is an edge in G and vv′ is an
edge in H. A special case where H is K◦t a complete graph of order t with a loop at each
vertex, i.e. |V (H)| = t and E(H) is the set of all unordered pairs (u, v) with u, v ∈ V (G),
we will call G ×H the t-uniform blowup of G, and denote as G(t). We can also see the
t-uniform blowup as a graph formed by replacing each vertex v in G with a class of t
vertices v1, . . . , vt with uivj ∈ E(G(t)) if and only if uv ∈ E(G).

Given a graph G = (V,E) of order n, and a positive integer s greater than 1, we play
a guessing game (G, s) as follows:

A (G, s) game consists of n players with each player corresponding to one of the
vertices of G. Throughout this paper, we use vertex v ∈ V (G) to indicate the player
who is assigned to vertex v. Each player is informed about its corresponding vertex, its
neighbourhood Γ(v), and the natural number s. The players can use this information to
decide a strategy beforehand, but all communication are forbidden as soon as the game
is started.

Once the game starts each player v ∈ V (G) is assigned a value av from alphabet set
As = {0, 1, . . . , s − 1} uniformly and independently at random. The value av is hidden
from the player v. Instead, each player v is provided a list containing its neighbourhood
Γ(v) and the value assigned to each of its vertices. The player is required to deduce its own
assigned value using just this information. Each player must announce its guessed value
only once. A game is won if every player deduces the assigned value correctly, and the
game is lost otherwise. We are interested in the question about the maximal probability
of winning when we play a guessing game (G, s).

To illustrate the nature of this problem, let us play guessing games (C5, s) with s =
2, 3, 4 and C5 the cycle graph of order 5. This is example 3.2 in [8]. Naively each player
should guess randomly as none of the provided information directly relates to its assigned
value, hence the winning probability of this strategy is s−5. We name this naive strategy
Random. The interesting property of guessing game is that we are almost always able to
outperform the Random strategy.

For s = 2, a possible strategy for the game (C5, 2) is as follows: each player v guesses
0 if all of its neighbours are assigned 1, and guesses 1 for the rest cases. The game is won
if the assigned values to players belong to one of the following cases:
{11010, 10110, 10101, 01101, 01011}. Hence, the winning probability with this strategy is
5
25

= 5
32

, and indeed this is the highest possible winning probability for the guessing game
(C5, 2) [8].

For s = 3, using computer search, Christofides and Markström [8] were able to show
that the best possible winning probability for (C5, 3) is 12

35
= 12

243
with a complicated

guessing strategy which is highly non-symmetric in the sense that the vertices all use a
different guessing functions.

For s = 4, it is shown in [16] that an optimal strategy involves the so-called frac-
tional clique cover strategy which we will introduce in Section 4. The winning probability
corresponds to this strategy is 2∗42

45
= 4−2.5.

In the examples above, guessing strategies are pure strategies, i.e. each player deduces
its guessing value by using a deterministic function whose inputs are the values of its
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neighbours. We can also play a mixed strategy in which the players randomly select a
strategy to follow from a set of pure strategies. The winning probability of a mixed strat-
egy is the expected winning probability computed by averaging the winning probabilities
of the chosen pure strategies using the probabilities that they are selected. Hence, playing
with mixed strategy will gain us no advantage when computing maximal winning prob-
abilities as the maximal winning probability with a mixed strategy cannot surpass the
winning probability provided by the best pure strategies. Therefore we only be concerned
with pure strategies throughout this paper.

Let (G, s) be a guessing game played on the graph G with alphabet set
As = {0, 1, . . . , s− 1} with s is a positive integer greater than 1. Each strategy for player

v is a function fv : A
|Γ(v)|
s → As which takes the possible values of the neighbours of v

and maps them to the guessing value of v. A strategy F for (G, s) is a |V (G)|−tuple of
deterministic functions (fv)v∈V (G) where fv corresponds to a strategy for player v. We
denote Win(G, s,F) for the event that the game (G, s) is won by using strategy F . We
are interested in constructing a strategy F which maximises P[Win(G, s,F)].

For each strategy F , we denote gn(G, s,F) for the value |V (G)|+logs P[Win(G, s,F)]
which is the guessing number with respected to F . We define the guessing number gn(G, s)
to be

gn(G, s) = |V (G)|+ logs

(
max
F

P[Win(G, s,F)]
)
.

We can see that:

max
F

P[Win(G, s,F)] =
sgn(G,s)

s|V (G)| .

The guessing number gn(G, s) is a measure of how much better an optimal strategy
outperforms the random strategy Random when playing (G, s).

3 The asymptotic guessing number

In our examples of guessing games (C5, s)s=2,3,4, the guessing numbers gn(C5, s) depend
on s, and in this case the sequence {gn(C5, s)}s=2,3,... is not a monotone sequence of s.
In general case for guessing games (G, s), it is extremely difficult to determine the exact
value of gn(G, s) for each value of s. Therefore, we rather interested in evaluating the
value of gn(G, s) when s tends to infinity, and we call it the asymptotic guessing number
gn(G):

gn(G) = lim
s→∞

gn(G, s).

It is proved in [8] and [11] that this limit exists. The following arguments are due to
Christofides and Markström [8]. Their strategy is to prove that the sequence

{gn(G, s)}s={2,3,...}

for a general graph G is an almost monotonically increasing sequence with respect to
the size s of the alphabet As, and this sequence is bounded above by the obvious bound
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|V (G)| (in fact in their paper [8], the upper bound of this sequence is |V (G)|−α(G) where
α(G) is the independence number of the graph G).

We start with the following lemma.

Lemma 3.1. Let G be an undirected graph, and s, t integers with s > 2 and t > 1. We
have

t gn(G, s) 6 gn(G(t), s) (1)

gn(G(t), s) = t gn(G, st) (2)

Proof. The graph G(t) contains t vertex disjoint copies of G. Given a strategy F played
on (G, s), we construct a strategy F(t) of (G(t), s) by playing F on each of the t disjoint
copies of G in G(t). This gives us

(max
F

P[Win(G, s,F)])t 6 max
F

P[Win(G(t), s,F)]

and the inequality (1) follows immediately.
To prove (2) holds, we show that there is an one-to-one correspondence between strate-

gies played on (G(t), s) and strategies played on (G, st), with the property that given a
strategy F(t) played on (G(t), s) its corresponding strategy F played on (G, st) give the
same winning probabilities. Hence, we have

max
F

P[Win(G(t), s,F)] = max
F

P[Win(G, st,F)].

and the result follows from the definition of guessing number.
We note that each member a of the alphabet of size st can be uniquely represented as

a t-tuple {a1, . . . , at} with ais are in base s.
Given a strategy F on (G, st), we construct a corresponding strategy F(t) to be played

on (G(t), s) as follow:

For each player v in (G, st), its guessing function is fv : A
|Γ(v)|
st → Ast . The map

fv induces a unique corresponding map f[v1,...,vt] : (At
s)
|Γ(v)|t → At

s due to the one-to-one
correspondence between elements of Ast and As

t. Therefore, if a player v in (G, st) follows
a strategy fv, the vertex class of t players [v1, . . . , vt] in (G(t), s) simulate playing as v by
agreeing to use f[v1,...,vt] as guessing function for each member in the class. The output of
f[v1,...,vt] can be considered as the guess of each member vi about the overall value assigned
to the whole class [v1, . . . , vt]. This guessing function is well defined since each vi receives
precisely the same input. Moreover, the guessing output produced by each member vi of
the class will be the same. Each member can decompose the value of the guess for the
vertex class into t values from As and uses this information as the individual guesses for
each one of them. Hence we have converted a guessing strategy F of (G, st) to a guessing
strategy F(t) of (G(t), s). We can also see that

P[Win(G, st,F)] = P[Win(G(t), s,F(t))].

Clearly the map F 7→ F(t) defined above is an injection from the set of all guessing
strategies can be played on (G, st) to the set of all guessing strategies can be played on
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(G(t), s). We use a similar argument to show that given a guessing strategy F(t) to be
played on (G(t), s) there is a corresponding guessing strategy F of (G, st).

The unique correspondence between fv : A
|Γ(v)|
st → Ast and f[v1,...,vt] : (At

s)
|Γ(v)|t → At

s

described above allows each player v in (G, st) to pretend to be t players in the class
[v1, . . . , vt] in (G(t), s). The strategy F(t) of (G(t), s) can then be used and the guesses
for each vertex class [v1, . . . , vt] can be reconstructed into a guess for the original player
v in (G, st). This completes the proof.

Using these results about the guessing number of the t-uniform blowup of graphs we
now show that the guessing number is almost monotonically increasing with respect to
the size of the alphabet.

Lemma 3.2. Given a graph G, positive integer s, and real number ε > 0, there exists
t0(G, s, ε) > 0 such that for all integers t > t0

gn(G, t) > gn(G, s)− ε.

Proof. To prove the statement holds, it is sufficient to show that

gn(G, t) >
blogs tc
logs t

gn(G, s) (3)

holds for all t > s since the right hand side of (3) tends to gn(G, s) as t increases.
Let k = blogs tc. On the set of all guessing strategies of (G, t), we consider only

strategies F = (fv)v∈V (G) such that fv is a map A
Γ(v)
t → {0, 1, . . . , sk − 1} for every

v ∈ V (G). The maps fvs are well defined as t > sk. We have

max
F

P[Win(G, t,F)] > P[av < sk for all v ∈ V (G)] max
F

P[Win(G, sk,F)].

Hence

tgn(G,t)

t|V (G)| >

(
sk

t

)|V (G)|
sk gn(G,sk)

sk|V (G)| . (4)

Rearranging (4), we have

gn(G, t) >
k

logs t
gn(G, sk). (5)

Lemma 3.1 shows that gn(G, sk) > gn(G, s) which, together with (5), completes the proof
of (3).

Theorem 3.3. For any graph G, gn(G) = lims→∞ gn(G, s) exists.

Proof. The sequence {maxs6n gn(G, s)}n={2,3,...} is an increasing sequence, and by defi-
nition gn(G, s) 6 |V (G)| for all s, therefore the limit limn→∞maxs6n gn(G, s) =: gn(G)
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exists. We note that gn(G, s) 6 gn(G) for all s. It is sufficient to show that gn(G, s)
converges to gn(G) from below.

Given ε > 0 there exists s0(ε) such that gn(G, s0(ε)) > gn(G)− ε (by the definition of
gn(G)). Lemma 3.2 proves that there exists t0(ε) satisfying the condition for all t > t0(ε),
gn(G, t) > gn(G, s0(ε))− ε; this implies gn(G, t) > gn(G)− 2ε, proving the convergence.

Remark 3.4. A consequence of Lemma 3.2 is that for any s the guessing number gn(G, s)
is a lower bound for gn(G). By definition of guessing number gn(G, s), we have

gn(G, s) > |V (G)|+ logs P[Win(G, s,F)].

for any strategy F on (G, s). Therefore, any strategy on any alphabet size provides us a
lower-bound for the asymptotic guessing number.

4 Lower bounds using the fractional clique cover

The remark in the previous section tells us that we can provide a lower bound for the
asymptotic guessing number using any guessing strategy on an alphabet of any size.
Christofides and Markström [8] used this fact to provide a simple lower-bound for guess-
ing number gn(G) by constructing a general guessing strategy for graphs G called the
fractional clique cover strategy.

Given a graph G, we denote K(G) for the set of all cliques in G, and denote K(G, v)
for the set of all cliques in G containing vertex v. A fractional clique cover of G is a
weighting w : K(G)→ [0, 1] such that∑

k∈K(G,v)

w(k) > 1.

for all v ∈ V (G). We denote κf (G) for the minimum value of
∑

k∈K(G) w(k) over all choices

of fractional clique covers w. (Note for any graph G, we have the identity: κf (G) = χf (Gc)
where χf (Gc) is the fractional chromatic number of the graph’s complement.)

We say a fractional clique cover is regular if its weighting w : K(G)→ [0, 1] satisfies∑
k∈K(G,v)

w(k) = 1,

for all v ∈ V (G).
We will only consider regular fractional clique covers from now on, as they are more

convenient for our purpose of constructing guessing game strategies. In fact, even though
we only focus on this smaller class of fractional clique cover, we do not lose any information
about the value of κf (G) as it can be proved that

κf (G) = min
w regular

∑
k∈K(G)

w(k).
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To prove the above identity holds, we need to show that

κf (G) 6 min
w regular

∑
k∈K(G)

w(k)

and
κf (G) > min

w regular

∑
k∈K(G)

w(k)

The first inequality comes from the definition of κf (G). To show the second inequality
holds, we prove that given an optimal fractional clique cover w we can make it into a
regular fractional cover wr with a property that

∑
k∈K(G,v) w(k) =

∑
k∈K(G,v) wr(k). This

is done by moving weights from larger cliques to smaller ones.
Let k ∈ K(G, v) be a clique containing v. We denote k′ = k\{v} be the subclique

obtained by removing vertex v. If we reduce the weight w(k) and increase the weight
w(k′) by the same amount then the sum

∑
k∈K(G,v) w(k) is reduced but all other sums

remain constant. Hence, the result follows.
The result of Christofides and Markström states the following:

Theorem 4.1. If G is an undirected graph then

gn(G) > |V (G)| − κf (G),

and for some positive integer s > 2, there is a guessing strategy F on (G, s) such that

|V (G)| − κf (G) = |V (G)|+ logs P[Win(G, s,F)].

Remark 4.2. In [8] it was proved that the above lower bound is actually an equality for
various families of undirected graphs including perfect graphs, odd cycles and comple-
ments of odd cycles. This led to a conjecture that the inequality is actually an equality,
but this conjecture was proved to be false in [5]. The counter-example is a graph on 10
vertices which contains many cliques of size 3.

5 Triangle-free graphs with large guessing number

In view of the last remark, a natural question is: if we forbid the appearance of triangles
in an undirected graph, then is the fractional clique cover the best guessing strategy for
our undirected graphs? In other words,

Conjecture 5.1. If G is an undirected triangle-free graph then

gn(G) = |V (G)| − κf (G).

A useful bound on κf (G) which we will make use of is given by the following lemma.
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Lemma 5.2. For any undirected graph G

κf (G) >
|V (G)|
ω(G)

,

where ω(G) is the number of vertices in a maximum clique in G.

Proof. Let w be an optimal regular fractional clique cover. Since
∑

k∈K(G,v) w(k) = 1

holds for all v ∈ V (G), summing both sides over v gives us,∑
k∈K(G)

w(k)|V (k)| = |V (G)|,

where |V (k)| is the number of vertices in clique k. The result trivially follows from
observing ∑

k∈K(G)

w(k)|V (k)| 6
∑

k∈K(G)

w(k)ω(G) = κf (G)ω(G).

Corollary 5.3. For triangle-free graph G, the κf (G) > |V (G)|/2.

We will show in this section that there are triangle-free graphs for which the asymptotic
guessing gn(G) of G is strictly greater than |V (G)|/2. Combining this with Corollary 5.3,
we will prove that the answer to the Conjecture 5.1 is negative. Before illustrating our
results, we need to introduce the following definition:

Definition 5.4. Given graph G = (V,E) of order n, we say a square matrix M of order
n with entries selected from a finite field Fq of q elements with rows and columns indexed
by vertices i ∈ V (G) represents G over Fq if the diagonal entries of M are non-zero and
the non-diagonal entries mij are 0 whenever ij 6∈ E(G).

Let M be a representing matrix of G over Fq. We can form a guessing strategy for
(G, q) by asking each player i to adapt an assumption that the assigned values of itself
and every player in its neighbourhood are taken from Fq and satisfy a linear equation

miixi +
∑
j∈Γ(i)

mijxj = 0

where xi, xjs are assigned values of players i, js, and coefficients mii and mij are the
(i, i)-th and (i, j)-th entries of M . Then the value of xi produced by this strategy is

xi = m−1
ii

∑
j∈Γ(i)

mijxj,

which is well-defined since mi 6= 0 by assumption.
The guessing game (G, q) is won by adopting strategy M if the assigned values X =(

x1 x2 · · · xn
)>

give a solution of a system of linear equations MX = 0 defined over
Fq.

gn(G, q,M) = logq |{X ∈ Fn
q |MX = 0}| = n− rkFq(M) (6)
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We note that MX = 0 always has a trivial solution X = 0 hence logq |{X ∈ Fn
q |MX = 0}|

is well defined.
The value n− rkFq(M) is a valid lower-bound of gn(G), i.e.

gn(G) > gn(G, q,M) = n− rkFq(M).

It is clear that we can disprove Conjecture 5.1 by constructing a triangle-free graph that
has a representation matrix M with rkFq(M) < |V (G)|/2 over some finite field Fq.

Definition 5.5. A Steiner system S(t, k, n) is a family of k-element subsets of the set
{1, 2, . . . , n} =: [n] with the property that each t-element subset of [n] contained in exactly
one element of S(t, k, n). Elements of S(t, k, n) are called blocks, and elements of [n] are
referred to as points.

For more information about Steiner systems, and the particular system used here, we
refer to [6, Chapter 1].

The following proposition plays a crucial role in our construction:

Proposition 5.6. The Steiner system S(3, 6, 22) has the following properties:

(a) S(3, 6, 22) contains 77 blocks.

(b) Any two blocks in S(3, 6, 22) intersect in zero or two points.

(c) No three blocks in S(3, 6, 22) are disjoint.

(d) Each point is contained in exactly 21 blocks.

Proof. (a) We simply count the number of blocks containing a fixed set of points. Given
two points i, j in [n], there are 20 choices of the third point k ∈ [n]\{i, j} to form a group
of 3 points. By definition, any 3 points of [n] belongs to exactly one block, hence there
are exactly 20 blocks containing both two fixed points i and j.

Let B and C be two blocks containing both i and j. We have B ∩ C = {i, j} and
there are 4 points in B other than i and j, so there are 20/4 = 5 blocks that contain both
i and j.

Now we fix one point i in [n]. There are 21 pairs of [n] containing i and if x is a block
that contains i then it also contains 5 pairs of [n] containing i, hence each point i of [n]
belongs to 21 · 5/5 = 21 blocks.

We repeat our argument for zero point of [n] and we derive that there are 22·21/6 = 77
blocks of S(3, 6, 22).

(b) We see in the first part that each point in S(3, 6, 22) belongs to 21 different blocks.
If we fix a point p, then there are 21 points q 6= p, and each of these points belongs to
5 blocks that containing p. The system of 21 blocks on 21 points satisfies the following
properties:

(i) For every two distinct points q, l 6= p, there is exactly one block that contains both
points (by definition of S(3, 6, 22)).
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(ii) Let B be a block in the set of 21 blocks containing p. For each point q 6= p in B,
there are exactly 5 blocks contains q including B (from (i)). Moreover, it is clear
that for any two distinct points q, l which are different from p, the set of blocks
containing q and the set of blocks containing l share B as their unique common
element. Since B is arbitrarily, this shows that for any two blocks B and C in the
set of 21 blocks containing a fixed point p, B and C intersect at exactly one point
beside p.

(iii) Let B be a block that contains the fixed point p. We choose other 3 points q, k,
l in B and a point h that does not belong to B. The set of four points {q, k, l, h}
obviously cannot be contained in one single block of the 21 blocks having p as their
element.

Hence these 21 blocks on 21 points form a projective plane where each block is a line
in this plane. A corollary is that any two blocks that contain a fixed point p must also
contain another point q. This proves that any two blocks in S(3, 6, 22) either intersect in
zero or two points.

(c) We fix a block B ∈ S(3, 6, 22). There are 16 points that are not in B. Moreover, for
every two distinct pairs of points of B, the set of blocks containing one pair and the set of
blocks containing the other pair share B as their unique common element. Therefore, there
are exactly 60 blocks having non-empty intersection with B. This leaves 16 blocks that
have empty intersection with B. From (b) we know that any two blocks must intersect
in zero or two points, this makes the 16 points and 16 blocks a symmetric balanced
incomplete block design (BIBD) (16, 6, 2). It follows from the property of symmetric
BIBD that any two blocks intersect in 2 points.

(d) This is already proved in part (a).

Theorem 5.7. There exists an undirected triangle-free graph G on 100 vertices with
gn(G) > 77.

Proof. We define the vertex set of the graph G to be 22 points plus 77 blocks of the Steiner
system S(3, 6, 22) plus an extra point {∞}. We define an edge between two vertices u
and v if one of the following conditions is satisfied:

• u is {∞}, and v is a point.

• u is a point and v is a block which contains u as an element.

• u and v are blocks of S(3, 6, 22) and u ∩ v = ∅.

According to the previous proposition, the graph obtained form our construction is
triangle-free. It remains to show that there is a matrix representing G with rank less than
50 over some finite field Fq.

The chosen matrix is A+ I where A is the adjacency matrix of G and I is the identity
matrix of order 100. The rank of the matrix A + I is 23 over the finite field F3 (see the
next lemma).
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In this graph, the size of the maximal independent set is 22 (and the independent sets
of size 22 are the vertex neighbourhoods), hence the guessing number of this graph is at
most 78.

The constructed graph is in fact the Higman–Sims graph [12], which is a strongly
regular triangle-free graph with parameters (100, 22, 6). The Higman-Sims graph was
first introduced by Dale Mesner in his 1956 PhD thesis [15]; see [14] for a historical
account.

Proposition 5.8. If A is the adjacency matrix of the Higman–Sims graph, then the rank
of A+ I over F3 is 23.

Proof. Let rv be the row of B = A+ I corresponding to vertex v. We write the vertex set
as {∞}∪X ∪ Y , where X and Y are the neighbours and non-neighbours of ∞. Consider
the 22 vectors rx for x ∈ X. Since the graph is triangle-free, the restriction of rx to the
coordinates in X has a one in position x and zeros elsewhere; so these 22 vectors are
linearly independent. Take the 23rd vector to be the all-1 vector j. Note that j is not
in the span of the first 22. For if it were, it would have to be their sum (looking at the
restriction to X. But the sum of the rx has coordinate 22 ≡ 1 mod 3 at ∞, 1 at each
point of X, and 6 ≡ 0 mod 3 at each point of Y ; that is, it is r∞. So our 23 vectors are
linearly independent. Also, they are all contained in the row space of B. (This is clear
for the rx; also the sum of all the vectors rv is 2j, since all column sums of B are 23 ≡ 2
mod 3, so j is also in the row space.

We claim that they span the row space. It is clear that their span contains all rx for
x ∈ X, and we just showed that it contains r∞. Take a vertex y ∈ Y . Consider the sum
of the vectors rx for the 16 vertices x ∈ X which are not joined to y. This has coordinate
16 ≡ 1 mod 3 at ∞, 0 at points of X joined to y, and 1 at points of X not joined to y.
The coordinate at y is zero. If y′ is joined to y, then the six neighbours of y′ in X are a
subset of the 16 points not joined to y, so the coefficient at y′ is 6 ≡ 0 mod 3. If y′ is
not joined to y, then y′ is joined to two neighbours of y in X and to four non-neighbours,
so the coefficient at y′ is 4 ≡ 1 mod 3. Thus the sum of our sixteen vectors is j − ry,
showing that ry lies in the span of our 23 chosen vectors.

Notice incidentally that B2 = 2B, so that the minimum polynomial of B is the product
of distinct linear factors, so B is diagonalisable.

We also found other strongly regular triangle-free graphs which have guessing number
larger than the lower bound given by fractional clique cover. See [6, Chapter 8] for further
details about these graphs.

Proposition 5.9. The following triangle-free graphs on n vertices have their guessing
number larger than n/2:

(a) The Clebsch graph on 16 vertices has 10 6 gn(G) 6 11.

(b) The Hoffman–Singleton graph on 50 vertices has 29 6 gn(G) 6 35.

(c) The Gewirtz graph on 56 vertices has 36 6 gn(G) 6 40.
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(d) The M22 graph on 77 vertices has 55 6 gn(G) 6 56.

(e) The Higman-Sims graph on 100 vertices has 77 6 gn(G) 6 78.

Proof. The upper bound for the guessing number derived for these graphs is gn(G) 6
|V (G)| − α(G) where α(G) is the independence number [17]. The independence numbers
of the Clebsch graph, the Hoffman–Singleton graph, and the Gewirtz graph are 5, 15, and
16, respectively [1]. The independence number of the M22 graph is 21, as shown below.

(a) The Clebsch graph is a triangle-free strongly regular graph whose parametersare
(16, 5, 2) which is constructed as follows: We start with a finite set S = {1, 2, 3, 4, 5}. The
set V contains all subsets of size 1, and 2 of S, and V also contains an extra single point
set {∗}. We form the (16, 5, 2) graph with vertex set V and an edge between two vertices
u and v if one of the following conditions is satisfied:

• u is {∞}, and v is a subset of S with cardinal 1.

• u is a subset of S with cardinal 1, v is a subset of S with cardinal 2, and u is a
subset of v.

• u and v are subsets of S with cardinal 2, and u intersect v is empty.

We have the rank of the matrix A + I is 6 over finite field F2. A basis of A + I is
{j} ∩ {rv|v ∈ Γ(∞)}, where rv is the row of A+ I corresponding to vertex v and j is the
all–1 vector.

(b) The Hoffman-Singleton graph which is triangle-free strongly regular with pa-
rameters (50, 7, 1) has one way of construction as follows: We take five 5-cycles Ch

and their complements Cc
i , and we join vertex j of Ch to vertex hi + j mod 5 of Cc

i .
This construction is due to Conway. The rank of the matrix A + 3I over finite field
F5 is 211. A basis for this matrix over F5 is recorded in the file Basis.txt which can
be downloaded from http://www.combinatorics.org/ojs/index.php/eljc/article/

view/v23i1p48/data. This file also includes a description for coordinates of each row in
A+ 3I over F5 with respect to the given basis.

(c) The Gewirtz graph with parameters (56, 10, 2) can be constructed from the Steiner
system S(3, 6, 22) by fixing an element and let the vertices be the 56 blocks not containing
that element. Two vertices are adjacent if the intersection of their corresponding blocks
is empty. The rank of the matrix A + I over finite field F3 is 20. A basis for this matrix
over F3 is recorded in the file Basis.txt.

(d) The triangle-free strongly regular graph M22 with parameters (77, 16, 4) which can
be constructed by let the 77 blocks of S(3, 6, 22) be the vertices of the graph, and an edge
uv between two vertices u and v if u and v are disjoint as blocks. Note that this is the
induced subgraph of the Higman–Sims graph on the set of non-neighbours of ∞.

To see that its independence number is 21, note that the vertices other than ∞ non-
adjacent to a vertex in X in the Higman–Sims graph form an independent set of size 21;

1Brouwer and Van Eijl derived the same result for A+ 3I over F5 [2, pages 340, 341] using eigenvalue
method.
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and there is no larger independent set, since all independent sets of size 22 in the Higman–
Sims graph are vertex neighbourhoods.

The rank of A+ I over finite field F3 is 22. A basis for this matrix over F3 is recorded
in the file Basis.txt.

(e) Theorem 5.7.

Remark 5.10. For a more extensive list of computations of ranks of matrices A+kI over
Fq for q = 2, 3, 5, 7 see EBasis.zip at https://www.eecs.qmul.ac.uk/~smriis/ or http:
//www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p48/data.
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