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Abstract

A classical result of MacMahon states that inversion number and major index
have the same distribution over permutations of a given multiset. In this work, we
prove a strengthening of MacMahon’s theorem originally conjectured by Haglund.
Our result can be seen as an equidistribution theorem over the ordered partitions of
a multiset into sets, which we call ordered multiset partitions. Our proof is bijective
and involves a new generalization of Carlitz’s insertion method. This generalization
leads to a new extension of Macdonald polynomials for hook shapes. We use our
main theorem to show that these polynomials are symmetric and we give their Schur
expansion.

Keywords: inversion number; ordered multiset partitions; permutation statistics;
insertion method; major index; Macdonald polynomials

1 Introduction

Given a composition α of length n (i.e. a vector of positive integers of length n), we let Sα

be the set of all permutations of the multiset {iαi : 1 6 i 6 n}. We begin by establishing
some classical sets and statistics associated to permutations. For a permutation σ ∈ Sα,
written in one-line notation, the descent and ascent sets of σ are

Des(σ) = {i : σi > σi+1} Asc(σ) = {i : σi < σi+1}
∗Partially supported by NDSEG and NSF fellowships.
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The inversions of σ are the pairs

Inv(σ) = {(i, j) : 1 6 i < j 6 n, σi > σj}.

It will be convenient to refine the set of inversions in the following manner:

Invi,� = {(i, j) : i < j 6 n, σi > σj} Inv�,j = {(i, j) : 1 6 i < j, σi > σj}.

These are the elements of Inv(σ) whose first (resp. second) coordinate is i (resp. j). These
sets allow us to define several statistics on Sα:

des(σ) = |Des(σ)| asc(σ) = |Asc(σ)| inv(σ) = | Inv(σ)| maj(σ) =
∑

i∈Des(σ)

i.

These statistics are known as the descent number, ascent number, inversion number, and
major index of σ, respectively. We will also make use of two refinements of inversion
number:

invi,�(σ) = | Invi,�(σ)| inv�,j(σ) = | Inv�,j(σ)|.

Given a statistic stat on Sα, the distribution of stat over Sα is the polynomial

Dstat
α (q) =

∑
σ∈Sα

qstat(σ).

When α = 1n, we will simply write Dstat
n (q). Two statistics, say stat on Obj and stat′ on

Obj′, are said to be equidistributed if their distributions are equal. One particularly nice
way to prove equidistribution is to give a bijection f : Obj→ Obj′ such that stat′(f(σ)) =
stat(σ) for every σ ∈ Obj. Our main result will be a bijection of this form.

In [8], MacMahon showed that inversion number and major index are equidistributed
over Sα, and that

Dinv
α (q) = Dmaj

α (q) =

[
|α|

α1, α2, . . . , αn

]
q

=
[|α|]q!

[α1]q![α2]q! . . . [αn]q!

where we use the standard q-analogs

[n]q! = [n]q[n− 1]q . . . [1]q [n]q =
1− qn

1− q
.

MacMahon’s proof was not bijective; the first bijective proof of this fact was given in
[5]. A second proof, essentially due to Carlitz [2], is sometimes known as the insertion
method. We review Carlitz’s insertion method in Section 2. Part of our main result1 can
be viewed as a bijective proof of the identity

∑
σ∈Sα

qmaj(σ)

des(σ)∏
i=1

(
1 + z/qi

)
=
∑
σ∈Sα

qinv(σ)
∏

j∈Des(σ)

(
1 + z/qinv

�,j +1
)

(1)

1To state our main result in full we will need more notation, which we will define later.
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for any composition α. Setting z = 0 recovers MacMahon’s theorem. The case α = 1n

was proved in [9]. In order to provide our bijective proof, we rephrase this statement as
an equidistribution result on ordered multiset partitions in Section 3. In Section 4, we
generalize Carlitz’s insertion method to ordered multiset partitions in order to complete
our proof. Finally, in Section 5 we show how our result can be used to define 4-variable
analogues of Macdonald polynomials for hook shapes. We show that these polynomials
are symmetric and we give their expansion into the Schur function basis.

2 Carlitz’s insertion method

2.1 The insertion method for Sn

One consequence of MacMahon’s equidistribution theorem is a pair of recursions for the
distributions of the inversion number and the major index over Sn:

Dinv
n (q) = [n]qD

inv
n−1(q) Dmaj

n (q) = [n]qD
maj
n−1(q). (2)

On the other hand, these two statements imply MacMahon’s result. Carlitz’s insertion
method gives bijective proofs of these statements which can be combined to build a
recursive bijection ψn : Sn → Sn such that maj(ψ(σ)) = inv(σ). We say that ψn maps
the inversion number to the major index. We outline Carlitz’s insertion method below.

To prove the left statement in (2), one simply considers all the possible ways to insert
n into a permutation in Sn−1 to create a permutation in Sn. It is clear that, for σ ∈ Sn−1,
inserting n after the first i elements of σ creates n − i − 1 new inversions and does not
affect the previously existing inversions. For example, for σ = 5167324 ∈ S7, we can
“label” these positions with subscripts that give the number of new inversions created by
inserting an 8 at that position:

756156473322140.

This proves the inversion side of (2). The key to the insertion method is that something
similar is true for the major index. In particular, we can label the spaces between elements
of σ ∈ Sn−1, along with the left and right ends, according to the following scheme:

1. Label the position after σn−1 with a zero.

2. Label the descents of σ right to left with 1, 2, . . . , des(σ).

3. Label the position before σ1 with des(σ) + 1.

4. Label the ascents of σ from left to right with des(σ) + 2, . . . , n− 1.

For example, σ = 5167324 receives the following labels in this setting:

453156672312740

the electronic journal of combinatorics 23(1) (2016), #P1.5 3



n σ Change in inv ψn(σ)
5 52143 24153
4 2143 4 223411430

3 213 1 2211330

2 21 0 22110

1 1 1 110

Figure 1: We compute ψ5(52143).

These labels give the change in major index that comes from inserting n at that position;
one proof of this fact can be found in [7]. This completes the proof of (2) and also gives a
bijection that takes the inversion number to the major index. We include an example of
this bijection in Figure 1. To compute ψ5(52143), we remove the 5 and count the number
of inversions lost by removing 5. In this case, we have lost 4 inversions. We record this
number in the third column and the resulting permutation in the σ column. We repeat
this process until we have reached n = 1 and filled the first three columns of the table. To
recursively build our new permutation, we place the major index labels at the positions
between entries of the current permutation. We insert the new largest entry at the label
that appears in the “Change in inv” column. We have emphasized the selected labels in
Figure 1.

2.2 The insertion method on Sα

It is natural to hope that this proof can be extended to permutations that may contain
multiple copies of the same number. That is, we would like to give insertion proofs that

Dinv
α (q) =

[
|α|
αn

]
q

Dinv
α−(q) Dmaj

α (q) =

[
|α|
αn

]
q

Dmaj
α− (q). (3)

where α− = (α1, α2, . . . , αn−1). Such proofs would imply MacMahon’s equidistribution
theorem and provide a bijection between inversion number and major index.

The inversion side cooperates nicely. As before, inserting an n to the right of i elements
of σ ∈ Sα increases the inversion number by |α−| − i. Hence this insertion can create
between 0 and |α−| inversions. Furthermore, the position of a new n has no effect on the
number of inversions added by other n’s; in other words, each insertion is independent of
the other insertions. This allows us to compute Dinv

α (q) from Dinv
α−(q):

Dinv
α (q) = Dinv

α−(q)

|α−|∏
i=0

1

1− qkx

∣∣∣∣∣∣
xαn

=

[
|α|
αn

]
q

Dinv
α−(q).

To prove the major index side of (3), we essentially recreate the bijection constructed
in [4, 3]. Let

((
S
k

))
denote the family of k-element multisets containing elements drawn
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from the set S. We would like to establish a bijection

φmaj
α : Sα− ×

((
[0, |α−|]
αn

))
→ Sα

such that

maj
(
φmaj
α (σ,B)

)
= maj(σ) +

∑
b∈B

b.

Such a map would provide a combinatorial proof of the major index side of (3). Before
inserting any n’s, we label σ ∈ Sα− in a manner reminiscent of Section 2.1:

1. Label the position after σ|α−| with a zero.

2. Label the descents of σ right to left with 1, 2, . . . , des(σ).

3. Label the position before σ1 with des(σ) + 1.

4. Label the non-descents of σ from left to right with des(σ) + 2, . . . , |α−|.

Write B = {b1 > b2 > . . . > bαn}. We insert an n into the position labeled b1. Then we
go through the labeling process again, stopping once we have used the label b1. We insert
an n into the position labeled b2. We repeat this process until we have processed each
element of B. We omit the proof that this map satisfies the desired properties, which can
be found in [4, 3]. Instead, we will work through an example.

Let α = {2, 1, 3, 2}, σ = 323113 ∈ Sα− , and B = {52}. We note that maj(σ) = 4. We
begin by labeling σ according to the labeling associated with the major index.

3322431151630.

We place a 4 at the label 5 to get 3231413. We relabel this permutation, stopping when
we use the label 5.

43325321 411 30

Then we insert a 4 at the position labeled 5 to get 32431413. As desired,

maj(32431413) = 14 = maj(σ) +
∑
b∈B

b = 4 + 5 + 5.

Just as before, these insertion maps can be combined to yield a bijection ψα : Sα → Sα

that takes inversion number to major index. We illustrate ψα with the example in Figure
2. As in Section 2.1, we fill the first three columns of the table from top to bottom by
removing all copies of the largest element and recording the multiset of inversions lost
during each removal, which we call B. Then we fill the fourth column by using the labeling
associated with the major index to repeatedly insert a new element at the position that
received the largest remaining label in B.
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α σ B ψA(σ)
{1, 2, 1, 3} 2443214 4432124

4 4332211 20

4332211 20

{1, 2, 1} 2321 {3, 3, 0} 332211420

{1, 2} 212 {2} 2211320

2110

{1} 1 {1, 0} 110

Figure 2: An example of the map ψα for α = {1, 2, 1, 3}.

3 Ordered set and multiset partitions

3.1 Definitions

The ordered set partitions of order n with k blocks are partitions of the set {1, 2, . . . , n}
into k subsets (called blocks) with some order on the blocks. We write this set as OPn,k.
For example, 13|45|2 ∈ OP5,3, where we have listed each block as an increasing sequence
and we have used bars to separate blocks. It is not difficult to see that OPn,n = Sn, so
ordered set partitions are a natural extension of permutations.

More generally, given a composition α of length n, the ordered multiset partitions
OPα,k are the partitions of the multiset A(α) = {iαi : 1 6 i 6 n} into k ordered sets,
which we still call blocks. For example, 24|134|2 ∈ OP(1,2,1,2),3. Note that, although we
are dealing with the elements of a multiset, each block is still a set.

So far, we have written each block of an ordered set or multiset partition in increasing
order from left to right. We will often wish to use the opposite notation, i.e. we will
write each block in decreasing order from left to right. Furthermore, we will use stars
as subscripts to “connect” elements in the same block instead of bars to separate blocks.
For example, the ordered multiset partition 24|134|2 is written as 4∗2 4∗3∗1 2 in this new
notation. We will refer to an ordered multiset partition written this way as a descent-
starred permutation, since every permutation of the given multiset with some (but maybe
not all) of its descents “starred” corresponds to an ordered multiset permutation in this
fashion. More formally, we define the descent-starred permutations of A(α) with k stars
as follows:

S>
α,k = {(σ, S) : σ ∈ SA, S ⊆ Des(σ), |S| = k}.

The set S corresponds to the entries of σ which are followed by stars. Then there is a
straightforward bijection OPα,k ↔ S>

α,|α|−k; given an ordered multiset partition, we write
its blocks in decreasing order from left to right, add stars between adjacent elements that
share a block, and remove the bars.

the electronic journal of combinatorics 23(1) (2016), #P1.5 6



3.2 Statistics

We will study the following four statistics on ordered multiset partitions. All four of them
appear in connection with a certain operator in the theory of diagonal harmonics which we
call the Garsia-Haiman delta operator. Two of them (inv and maj) are directly involved
with the statement (1) given in the introduction. For any statistic stat on OPα,k, we will
use the notation

Dstat
α,k (q) =

∑
π∈OPα,k

qstat(π).

First, given π ∈ OPα,k, inv(π) counts the number of pairs a > b such that a’s block is
strictly to the left of b’s block in π and b is minimal in its block in π. We call these pairs
inversions. For example, 15|23|4 has two inversions, between the 5 and the 2 and the 5
and the 4.

For any π ∈ OPα,k, we number π’s blocks π1, π2, . . . , πk from left to right. Let πhi be
the hth smallest element in πi, beginning at h = 1. We say that entries of the form πhi
have height h. Then the diagonal inversions of π, written Dinv(π), are the triples

{(h, i, j) : 1 6 i < j 6 k, πhi > πhj } ∪ {(h, i, j) : 1 6 i < j 6 k, πhi < πh+1
j }.

The triples of the first type are primary diagonal inversions, and the triples of the second
type are secondary diagonal inversions. We set dinv(π) to be the cardinality of Dinv(π).
For example, consider the ordered multiset permutation 24|134|2. It is helpful to “stack”
the elements in each block vertically, obtaining the diagram

4

4 3

2 1 2

The primary diagonal inversions are (1, 1, 2) (between the leftmost 2 and the 1 in the first
row) and (2, 1, 2) (between the 4 and the 3 in the second row) and the only secondary
diagonal inversion is (1, 1, 2) (between the leftmost 2 in the first row and the 3 in the
second row), for a total of three diagonal inversions.

To define the major index of π, we consider the permutation σ = σ(π) obtained by
writing each block of π in decreasing order. Then we recursively form a word w by setting
w0 = 0 and wi = wi−1 + χ(σi is minimal in its block in π) for each i > 0. Then we set

maj(π) =
∑

i: σi>σi+1

wi.

Using the ordered multiset permutation π = 24|134|2 again, we obtain σ = 424312 and
w = 0011123, beginning with w0 = 0. The descents of σ occur at positions 1, 3, and 4, so
maj(π) = w1 + w3 + w4 = 0 + 1 + 1 = 2.

There is an alternate definition of the major index which we will use in some of our
proofs. It is clear from the definition above that for any π ∈ OPn,n, the major index
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defined here is equivalent to the major index defined on permutations in Section 1. Now
we consider what happens to maj(π) if we decide to insert a star after a descent at position
d. We note that wi decreases by 1 for each i > d. Therefore the major index of π has
decreased by 1 for each descent weakly to the right of position d. Therefore, if (σ, S) is
the descent-starred permutation representation of π, we can write

maj(π) = maj(σ)−
∑
i∈S

|Des(σ) ∩ {i, i+ 1, . . .}|. (4)

This shows that

Dmaj
α,k (q) =

∏
σ∈Sα

qmaj(σ)

des(σ)∏
i=1

(
1 + z/qi

)∣∣∣∣∣∣
z|α|−k

.

Finally, we define the minimum major index of π as follows. We begin by writing the
elements of πk in increasing order from left to right. Then, recursively for i = k − 1 to
1, we choose r to be the largest element in πi that is less than or equal to the leftmost
element in πi+1, as previously recorded. If there is no such r, we write πi in increasing
order. If there is such an r, beginning with πi in increasing order, we cycle its elements
until r is the rightmost element in πi. We write down πi in this order. We continue
this process until we have processed each block of π. For example, consider the ordered
multiset permutation π = 13|23|14|234. Processing the blocks of π from right to left, we
obtain 312341234. We consider the result as a permutation, which we denote τ = τ(π),
and define

minimaj(π) =
∑

i: τi>τi+1

i

i.e. the major index of the permutation τ . The name minimaj comes from the fact that
minimaj(π) is equal to the minimum major index achieved by any permutation that can
be obtained by permuting elements within the blocks of π.

4 Equidistribution on ordered multiset partitions

In this section, we prove the following equidistribution theorem for ordered multiset par-
titions.

Theorem 4.0.1. For any composition α,

Dinv
α,k(q) = Dmaj

α,k (q) = Ddinv
α,k (q).

The reader may have noticed that Dminimaj
α,k (q) is not included in the list of equidis-

tributed polynomials; that is because we have not proved this case at this point. We
describe the unique difficulties of this case in Subsection 4.4.

the electronic journal of combinatorics 23(1) (2016), #P1.5 8



Our proof of Theorem 4.0.1 is bijective and employs a generalization of Carlitz’s in-
sertion method from permutations to ordered multiset partitions. We describe “insertion
maps” for inv, dinv, and maj in Subsections 4.1, 4.2, and 4.3, respectively. These maps
will be of the form

φinv
α,k,` : OPα−,` ×

(
[0, `− 1]

αn − k + `

)
×
((

[0, `]

k − `

))
→ OPα,k

φmaj
α,k,` : OPα−,` ×

(
[0, `− 1]

αn − k + `

)
×
((

[0, `]

k − `

))
→ OPα,k

φdinv
α,k,` : OPα−,` ×

(
[0, `− 1]

αn − k + `

)
×
((

[0, `]

k − `

))
→ OPα,k

where, for any composition α of length n, α− is the composition obtained by removing
the rightmost entry in α. For a set S,

(
S
k

)
is defined to be the collection of all subsets of

S of size k. Similarly,
((
S
k

))
is the collection of all multisets of size k whose elements are

taken (possibly more than once) from S. By “insertion maps,” we mean that they satisfy
the properties

inv
(
φinv
α,k,`(π, U,B)

)
= inv(π) +

∑
u∈U

u+
∑
b∈B

b

maj
(
φmaj
α,k,`(π, U,B)

)
= maj(π) +

∑
u∈U

u+
∑
b∈B

b

dinv
(
φdinv
α,k,`(π, U,B)

)
= dinv(π) +

∑
u∈U

u+
∑
b∈B

b.

When k = |α| these maps will reduce to the insertion processes defined in Subsection 2.2.
We will use these maps to construct a bijective proof of Theorem 4.0.1. Subsection 4.5
contains more information about the shared distribution of the polynomials in Theorem
4.0.1.

Finally, it is natural to wonder if our results can be transferred to ordered partitions
of a multiset into multisets instead of sets. For example, 113|23|1 is one such object. At
this point, we have not managed to accomplish this task; in particular, both maj and
minimaj seem to behave differently in this setting.

4.1 Insertion for inv

Recall that we need to define a map of the form

φinv
α,k,` : OPα−,` ×

(
[0, `− 1]

αn − k + `

)
×
((

[0, `]

k − `

))
→ OPα,k.

We can think of the set U ∈
(

[0,`−1]
αn−k+`

)
as providing the increases in inv that come from

adding a new n without creating a new block, and the multiset B ∈
((

[0,`]
k−`

))
as providing
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the increases in the statistic that come from adding a new n while creating a new block.
These maps will cooperate with our inversion statistic in the following manner:

inv
(
φinv
α,k,`(π, U,B)

)
= inv(π) +

∑
u∈U

u+
∑
b∈B

b (5)

Given π ∈ OPα−,`, we label each block of π from right to left with the numbers
0, 1, . . . , `− 1. We repeatedly remove the largest element from the multiset U ∪B, taking
the element from U if the largest elements are equal. Call this element i. If i came from
U , we place an n in the block that received the label i. If i came from B and is equal
to `, we place an n as a new block to the left of the block that received the label i. If
i came from B and is less than `, we place an n as a new block just to the right of the
block labeled i. The resulting ordered multiset partition is φinv(π, U,B).

For example, say α = {1, 2, 2, 3}, k = 6, and ` = 5. We consider π = 3|1|2|2|13 ∈
OPα−,5, U = {2, 0}, and B = {3}. Then U ∪ B = {3, 2, 0}. We label π as follows, with
the labels written as subscripts at the end of each block:

34|13|22|21|130

The largest element in U ∪ B is 3 and it comes from B, so we insert a 4 at the position
labeled 3 as a new block to the right of the block labeled with the 3.

34|13|4|22|21|130

Now the largest remaining element of U ∪B is 2 and it comes from U , so we put a 4 into
the block labeled 2.

34|13|4|242|21|130

Finally, we insert a 4 into the block labeled 0 to obtain φinv(π, U,B).

34|13|4|242|21|1340

We can check that (5) holds here.

10 = inv (3|1|4|42|2|431)

= inv (3|1|2|2|31) +
∑
u∈U

u+
∑
b∈B

b

= 5 + (2 + 0) + 3.

Lemma 4.1.1 (Insertion for inv). For any composition α of length n and positive integers
` 6 k, φinv

α,k,` is well-defined and injective. The image of φinv
α,k,` is the ordered multiset

partitions π ∈ OPα,k with exactly k − ` singleton blocks containing n. Furthermore, for

any π ∈ OPα,`, U ∈
(

[0,`−1]
αn−k+`

)
, and B ∈

((
[0,`]
k−`

))
,

inv
(
φinv
α,k,`(π, U,B)

)
= inv(π) +

∑
u∈U

u+
∑
b∈B

b.
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Proof. The only way φinv
α,k,` could not be well-defined is if we tried to insert two n’s into

the same block. Since U is a set, this does not occur. The statement about the image of
φinv
α,k,` follows from the definition. Furthermore, the insertion map is clearly bijective, and

any function that bijects onto its image is an injection.
We will prove that whenever we remove the largest element i from U∪B and introduce

a new n to our ordered multiset partition as described in the insertion map, we introduce i
new inversions to the ordered multiset partition. Specifically, we create inversions between
this new n and the minimal elements of the i labeled blocks of π that are to the right
of the block that received label i. Since n is the largest entry, we do not create any new
inversions that end at n. Finally, we note that we do not destroy any inversions that
existed before we inserted this new n.

4.2 Insertion for maj

To define φmaj
α,k,`, we will view π ∈ OPα−,` as a descent-starred multiset permutation

(σ, S). We will label the unstarred positions of σ as in Section 1. Specifically, we label
the unstarred descents from right to left, then the non-descents from left to right, using
increasing labels 0, 1, . . . , `. Let U+ = {u+ 1 : u ∈ U}. We repeatedly remove the largest
element i from U+∪B, taking i from B if the largest elements are equal. Then we proceed
through the following algorithm:

1. Insert an n at the position labeled i.

2. Move each star to the right of the new n one descent to the left.

3. If i came from U+, star the rightmost descent.

4. Relabel as before, stopping at the label i if i came from B and i− 1 if i came from
U+.

When we have used each element of U+ ∪B, the result is φmaj
α,k,`((σ, S), U,B).

For example, let us again consider α = {1, 2, 2, 3}, k = 6, and ` = 5 with (σ, S) =
3 1 2 2 3∗1 ∈ OPα−,5, U = {2, 0}, and B = {3}. Then U+∪B = {3, 3, 1}. We label (σ, S)
as follows.

2311324253∗10.

We insert a 4 at the position labeled 3 and then move all stars to the right of that
position one spot to their left. Since we took 3 from B, we do not star the rightmost
descent, resulting in 3 1 4∗2 2 3 1. We re-label to obtain the following.

3321 4∗2 2 3110

Again we choose the position labeled 3. This time we star the rightmost descent after
shifting stars because 3 came from U+, yielding 4 3∗1 4 2 2 3∗1. Finally we label this
element

423∗1 412 2 3∗10.
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We insert a 4 at the position labeled 1, shift stars, and star the rightmost descent to get
4 3∗1 4 4∗2 2 3∗1. We check that this new permutation has the desired major index.

10 = maj (4 3∗1 4 4∗2 2 3∗1) = 1 + 1 + 3 + 5

= maj (3 1 2 2 3∗1) +
∑
u∈U

u+
∑
b∈B

b

= (1 + 4) + (2 + 0) + 3.

Now we prove that this process satisfies the necessary properties.

Lemma 4.2.1 (Insertion for maj). For any composition α of length n and positive integers
` 6 k, φmaj

α,k,` is well-defined and injective. Furthermore, for any π ∈ OPα−,`, U ∈
(

[0,`−1]
αn−k+`

)
,

and B ∈
((

[0,`]
k−`

))
,

maj
(
φmaj
α,k,`(π, U,B)

)
= maj(π) +

∑
u∈U

u+
∑
b∈B

b.

Proof. To show that φmaj
α,k,` is injective, we describe its inverse. Given some descent-starred

multiset permutation (τ, T ), we first check if the rightmost descent of (τ, T ) is starred. If
it is, we remove the star and prepare to add an element to U . Otherwise, we prepare to
add an element to B. We scan τ for the rightmost n which is either at the right end of τ
or between two entries such that the entry to the left of n is greater than the entry to the
right of n. If there is no such n, we choose the leftmost n in τ . We move all stars that are
weakly to the right of this n’s position one descent to their right and then remove n. Say
that, at this point, we have decreased the original major index of (τ, T ) by i. We add i to
either U or B, as decided above. Then we repeat this process until we have removed all
n’s. It is important to note that the inverse does not depend on knowledge of `; therefore,
each ρ ∈ OPα,k is in the image of φmaj

α,k,` for a unique value of `.
In the remainder of the proof, we show that the map cooperates with the statistic

maj as proposed in the lemma. We consider the labeling of the descent-starred multiset
permutation (σ, S) equivalent to π at any step during the insertion process. Say i is
currently the largest element of U+ ∪B.

Assume first that the position labeled i is a descent. We use d to denote the number
of starred descents to the right of this position. By the insertion method discussed in
Subsection 2.2, inserting n into the position labeled i increases maj(σ) by i+ d. Further-
more, we have not created a new descent, so the number of descents weakly to the right
of any starred position has remained the same. Therefore, by the alternate definition of
maj(π) in (4), we have increased maj(π) by i+ d after Step 1.

For Step 2, we move all stars to the right of the position labeled i one descent to their
left. Since position i contains an unstarred descent, this is always possible. Furthermore,
each of these d stars have picked up an additional descent that is weakly to their right.
Using (4) again, we see that the change in maj(π) after Step 2 is i+ d− d = i.

Finally, we need to consider if i came from U+ or B. If i came from U+, we star the
rightmost descent. This subtracts 1 from maj(π). In either case, we have increased the
major index of π by the amount equal to the element from U or B corresponding to i.
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By the insertion process from Subsection 2.2, we can relabel the resulting descent-
starred permutation and repeat the process as long as we bound the labels as described in
Step 4. Then, by the same argument as we used above, the insertion process will modify
the major index as described in the statement of the lemma.

Now we consider where the argument must change when the position labeled i is not
a descent. We still use d to denote the number of starred descents to the right of position
i, and we set c to be the number of starred descent to this position’s left. Since every
starred descent occurs before the position labeled i in the labeling order for maj(σ), Step 1
increases maj(π) by i+ c+d. For Step 2, the position labeled i still contains an unstarred
descent, so we can still move the stars as described. As before, this means that each of the
d stars to the right of the position labeled i adds a descent to its right, contributing −d to
maj(π). Furthermore, inserting n at a non-descent creates a new descent, so each of the
c stars to the left of the position labeled i has added a descent to its right, contributing
−c to maj(π). Therefore the total increase of maj(π) is i+ c+ d− c− d = i. Steps 3 and
4 do not depend on whether we are inserting at a descent or a non-descent.

These two insertion maps work together to provide a bijection ψα,k : OPα,k → OPα,k
that takes inversion number to major index. The bijection is described recursively as
follows.

1. Given an ordered multiset partition ρ ∈ OPα,k, choose ` such that ρ has k − `
singleton blocks containing n.

2. Set (π, U,B) to be the inverse of ρ under φinv
α,k,`.

3. Recursively send π to π′ = ψα−,`(π).

4. Set ψα,k(ρ) = φmaj
α,k,`(π

′, U,B).

Finally, in order to begin the recursion, we declare that ψ1m,m is the identity map. We
work through an example of this bijection in Figure 3.

Proposition 4.2.1. For any composition α and positive integer k, ψα,k is a bijection with
the property

maj(ψα,k(ρ)) = inv(ρ)

for any ρ ∈ OPα,k.

Proof. We will work by induction on n, the length of α. If n = 1, Then the multiset is
{1α1} and k must be equal to α1. In this case OPα,k only has 1 element, which has α1

parts all equal to 1. This element clearly has inv = maj = 0. We defined ψα,k so that it is
the identity in this case, which clearly is a bijection and satisfies maj(ψα,k(π)) = inv(π)
for the unique π ∈ OPα,k.

If n > 1, take any element ρ ∈ OPα,k. We choose `, π, π′, U , and B as instructed in
the definition of ψα,k. The images of φinv

α,k,` for ` = 1 to k partition OPα,k into the subsets
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α k π U B ψA,k(π)
{3, 1, 2, 1} 3 134|1|3|12 3∗2∗1 1 4 3 1
{3, 1, 2} 2 13|1|3|12 {4} ∅ 23∗2∗13143110

12∗121 3∗10

{3, 1} 1 1|1|12 {2} {1} 12∗121310

{3} 0 1|1|1 {0} ∅ 1121310

Figure 3: An example of the map ψA,k(π).

consisting of elements which have k− ` singleton n blocks. (Since we assume each αi > 0,
an element cannot consist entirely of singleton n blocks.) We also noted while proving
Lemma 4.2.1 that each ρ ∈ OPα,k is in the image of φmaj

α,k,` for a unique value of `. Since
each of these insertion maps is invertible, ψα,k is a bijection.

Finally, we use Lemmas 4.1.1 and 4.2.1 along with the inductive hypothesis to compute

maj(ψα,k(ρ)) = maj(π′) +
∑
u∈U

u+
∑
b∈B

b = inv(π) +
∑
u∈U

u+
∑
b∈B

b = inv(ρ).

We work through an example of the map ψA,k(π) in Figure 3. We repeatedly remove
all of the largest elements (and their stars) from the starred permutation and recording
the number of inversions lost in the U and B columns. Starred elements contribute to
the U column and unstarred elements contribute to the B column. Once we have reached
the final row, we use this information to build the ψα,k((σ, S)) column from bottom to
top. We use the elements of U+∪M to select the positions at which to insert new largest
elements. This insertion follows the procedure laid out in the definition of φmaj.

There are a number of other consequences of our proof. For example, the right-to-left
minima of a permutation σ are the entries σi such that, for all j > i, σi < σj. In [9],
Remmel and the author proved that the α = 1n case of ψα,k preserves the right-to-left
minima of σ, where (σ, S) is the descent-starred permutation representation of an ordered
partition of α. The same is true for general ψα,k.

Corollary 4.2.1. For any element of π ∈ OPα,k considered as a descent-starred permu-
tation (σ, S), consider its image ψα,k(π) as the descent-starred permutation (τ, T ). Then
σ and τ have the same right-to-left minima. In particular, σn = τn.

The crux of the proof is that the insertion algorithms only change the last element of
σ when 0 is an element of the multiset B.

4.3 Insertion for dinv

In order to prove that dinv is equidistributed with inv and maj, we define an insertion
map for dinv

φdinv
α,k,` : OPα−,` ×

(
[0, `− 1]

αn − k + `

)
×
((

[0, `]

k − `

))
→ OPα,k.
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Given π ∈ OPα−,`, we will use two different labelings to insert the n’s into π. We label
the positions between the blocks, as well as the positions at either end of π, with the
labels 0, 1, . . . , ` from right to left. We will call these the gap labels.

We will label the ` blocks of π with the labels 0, 1, . . . , `−1. Set h to be the maximum
size of any block in π. Say that π has exactly ci blocks with size equal to i. To obtain the
block labels of π, we begin by labeling the blocks of size h from left to right with labels
0, 1, . . . , ch−1. Then we label the blocks of size h−1 with labels ch, ch+1, . . . , ch+ch−1−1
from left to right. We continue this process until all blocks have received a label. For
example, if π = 124|2|13|134|1, the block labels of π are 0|3|2|1|4.

With these labels in hand, we define φdinv
α,k,`(π, U,B) by inserting an n into each block

that receives a block label u ∈ U and into each gap that receives a gap label b ∈ B. For
example, if π = 124|2|13|134|1, U = {0, 3} and B = {1, 1, 2}, then α = {4, 2, 2, 2, 5},
k = 8, ` = 5, and

φdinv
α,k,`(π, U,B) = 1245|25|13|5|134|5|5|1.

As usual, the key is to prove that this map cooperates with the statistic dinv.

Lemma 4.3.1 (Insertion for dinv). For any composition α of length n and positive integers
` 6 k, φdinv

α,k,` is well-defined and injective. The image of φdinv
α,k,` is the ordered multiset

partitions π ∈ OPα,k with exactly k − ` singleton blocks containing n. Furthermore, for

any π ∈ OPα,`, U ∈
(

[0,`−1]
αn−k+`

)
, and B ∈

((
[0,`]
k−`

))
,

dinv
(
φdinv
α,k,`(π, U,B)

)
= dinv(π) +

∑
u∈U

u+
∑
b∈B

b.

Proof. It is clear that inserting an n at a gap labeled b creates b new diagonal inversions,
one with each block to the right of the gap, and does not affect any other diagonal
inversions.

Now say we insert an n into a block πi labeled u. Say that πi had size s before we
added an n. After inserting an n, it has size s + 1 with an n at height s + 1. We claim
that we have created one new diagonal inversion for each block of size greater than s and
for each block of size s that is to the left of πi. First, consider a block πj with |πj| > s.
If j > i, then (s + 1, i, j) is a new primary diagonal inversion; if j < i, then (s, j, i) is a
new secondary diagonal inversion. There are no other new diagonal inversions between πi
and πj. Now we consider πj with j < i and |πj| = s. There is a new secondary diagonal
inversion (s, j, i). By the definition of our insertion map, there are exactly u such blocks,
so we have created u new diagonal inversions.

Finally, we note that, since two n’s cannot form a diagonal inversion, each insertion
of an n does not affect previous or subsequent insertions.

It follows from Lemma 4.3.1 that Ddinv
α,k (q) = Dinv

α,k(q) = Dmaj
α,k (q). We can form a

bijection between any pair of these statistics by using the definition of ψα,k as a template.
Furthermore, any such bijection preserves right-to-left minima.
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4.4 The statistic minimaj

Data computed in Sage suggests that minimaj shares the distribution of inv, maj, and
dinv; unfortunately, we cannot prove this with the techniques currently available to us.
However, data yields the following conjectures as to how this statistic relates to the
previous statistics. Given an ordered set partition π ∈ OPn, we say the shape of π,
written shape(π), is the composition whose ith block is equal to the size of πi, the ith
block in π from left to right.

Conjecture 4.4.1. For any composition β of length n,∑
π∈OPn

shape(π)=β

qinv(π) =
∑
π∈OPn

shape(π)=β

qminimaj(π).

Also, for any composition α

Dminimaj
α,k (q) = Dinv

α,k(q) = Dmaj
α,k (q) = Ddinv

α,k (q).

Note that neither statement directly implies the other.

In personal communication, Brendon Rhoades has notified the author that he is cur-
rently preparing a proof of both parts of this conjecture.

4.5 The Mahonian distribution on OPα,k

In this subsection, we describe the distribution shared by the statistics inv, maj, and dinv
on OPα,k. Define the Mahonian distribution on OPα,k to be the polynomial

Dα,k(q) = Dinv
α,k(q) = Dmaj

α,k (q) = Ddinv
α,k (q).

We know from MacMahon’s theorem that Dα,|α|(q) =
[ |α|
α1,...,αn

]
q
. In general, we can only

give a recursive description of Dα,k(q). Applying standard q-binomial identities to the
insertion maps given above, we see

Dα,k(q) =
k∑
l=1

q(
αn−k+`

2 )
[

`

αn − k + `

]
q

[
k

`

]
q

Dα−,`(q) (6)

with initial condition

D(α1),k(q) = χ(k = α1). (7)

We can cancel terms of (6) to obtain the identity

Dα,k(q) =
k∑
l=1

q(
αn−k+`

2 )
[

k

αn − k + `, k − αn, k − `

]
q

Dα−,`(q). (8)
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We can obtain another expression for this polynomial in the special case α1 = . . . =
αn = r. Before we can state this expression, we must define a q-analog of the (generalized)
Stirling numbers of the second kind. The q = 1 case of these polynomials appear in [1],
Equations (20) and (21). We define these polynomials recursively by

S
(r)
n,k(q) =

k∑
i=1

q(
r−k+i

2 )
[

i

r − k + i

]
q

[r]q!

[k − i]q!
S
(r)
n−1,i(q) (9)

S
(r)
1,k(q) = χ(k = r). (10)

Note that, at r = 1, the recursion simplifies to the q-Stirling numbers Sn,k(q).

Proposition 4.5.1. When α = rn,

Dα,k(q) =
[k]q!

([r]q!)
nS

(r)
n,k(q).

When r = 1, this formula reduces to the formula

Dn,k(q) = [k]q!Sn,k(q)

obtained in [9].

Proof. We work by induction on n. When n = 1, the right-hand side of Proposition 4.5.1
equals

[k]q!

([r]q!)
S
(r)
1,k(q) = χ(k = r)

which is equal to the left-hand side by (7).
If n > 1, we use the induction hypothesis with the recursion (8) to compute

Dα,k(q) =
k∑
`=1

q(
r−k+`

2 )
[

k

r − k + `, k − r, k − `

]
q

(
[`]q!

([r]q)
n−1S

(r)
n−1,`(q)

)

=
[k]q!

([r]q!)
n−1

k∑
`=1

q(
r−k+`

2 ) [`]q!

[r − k + `]q![k − r]q![k − `]q!
S
(r)
n−1,`(q)

=
[k]q!

([r]q!)
n

k∑
`=1

q(
r−k+`

2 )
[

`

r − k + `

]
q

[r]q!

[k − `]q!
S
(r)
n−1,`(q)

=
[k]q!

([r]q!)
nS

(r)
n,k(q)

by (9) with i = `.

It would be interesting to give a more combinatorial proof of Proposition 4.5.1, espe-
cially one that would shed light on why each of the three terms [k]q!, ([r]q!)

n, and S
(r)
n,k(q)

appears.
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5 Extending Macdonald polynomials

In this section, we apply our inv and maj statistics to the combinatorial definition of
Macdonald polynomials for hook shapes, as given (for any shape) in [6]. This yields
functions whose coefficients are four-variable polynomials instead of the usual two-variable
polynomial coefficients. Our main theorem allows us to prove that these polynomials are
symmetric and to expand them into Schur functions.

For convenience, for any statistic stat, let

stat[a,b](σ) = stat(σaσa+1 . . . σb).

We will also need two new statistics, one on permutations and one on descent-starred
permutations:

rlmaj(σ) =
∑

i∈Des(σ)

(n− i)

rlmaj((σ, S)) = rlmaj(σ)−
∑
i∈S

|Des(σ) ∩ [1, i]|.

We set H̃n,m(x; q, t, u, v) equal to∑
σ∈{1,2,...}n

qinv[m+1,n](σ)tmaj[1,m](σ)xσ

×
∏

i∈Des(σ)∩[m+1,n]

(
1 + u/qinv

�,i
[m+1,n]

(σ)+1
) |Des(σ)∩[1,m]|∏

j=1

(
1 + v/tj

)
.

We will refer to these polynomials as starred Macdonald polynomials of hook shape. These
polynomials can be thought of as a sum over all descent-starred multiset permutations
(σ, S) in the Young diagram for the shape (n −m, 1m) where we calculate our maj and
inv statistics down the column and across the row, respectively. When u = v = 0, we
obtain the (modified) Macdonald polynomial for the shape (n−m, 1m), as proven in [6].
Here is an example filling for n = 8 and m = 3.

2

5∗

3

6∗ 1 7 4 8

The numbers followed by stars are the starred descents. The weight of this filling would be
q2t. This is because the descent-starred permutation 6∗1748 corresponds to the ordered
set partition 16|7|4|8, which has 2 inversions, both ending at the 4; furthermore, the
descent-starred permutation 25∗36 has major index equal to 1.

Our main result in this section allows us to transfer many important properties of
the Macdonald polynomials to the starred Macdonald polynomials of hook shape. The
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u = v = 0 case of this result was originally proved in [11]. The result requires some
definitions on standard Young tableaux. The descent set of a standard Young tableau T
(in French notation) is the set of all i such that i+ 1 is strictly north (and weakly west)
of i in T . Then, for any standard Young tableau T with n entries,

maj(T ) =
∑

i∈Des(T )

i rlmaj(T ) =
∑

i∈Des(T )

(n− i).

For example, here is a standard Young tableau with descent set {2, 5}.

3 4 6

1 2 5 7

Theorem 5.0.1. The starred Macdonald polynomials of hook shape are symmetric. Fur-
thermore, for λ ` n the coefficient of the Schur function sλ(x) in

H̃n,m(x; q, t, u, v) is equal to∑
T∈SYT(λ)

qrlmaj[m+1,n](T )tmaj[1,m](T )

×
|Des(T )∩[m+1,n]|∏

i=1

(
1 + uq−i

) |Des(T )∩[1,m]|∏
j=1

(
1 + vt−j

)
.

Proof. We begin with a descent-starred multiset permutation (σ, S). Then we apply the
bijection

γ = complement ◦ reverse ◦ ψβ,` ◦ reverse ◦ complement

to the descent-starred multiset permutation (σm+1 . . . σn, S ∩ [m+ 1, n]) for suitable β, `.
Since preserves the rightmost letter, γ preserves σk+1 and sends the inv of (σm+1 . . . σn, S∩
[m+1, n]) to the rlmaj of the resulting descent-starred multiset permutation. Hence, H̃n,m

equals ∑
σ∈{1,2,...}n

xσqrlmaj[k+1,n](σ)tmaj[1,k](σ) (11)

×
|Des(σ)∩[k+1,n]|∏

i=1

(
1 + u/qi

) |Des(σ)∩[1,k]|∏
j=1

(
1 + v/tj

)
. (12)

For any composition α, the coefficient of xα in this expression is just the sum over σ
that are permutations of the multiset {1α1 , 2α2 , . . .}. We would like to show that the

coefficients of xα and xα
(r)

are equal, where α(r) is obtained from α by switching αr and
αr+1. To do this, we apply a procedure known as r-pairing to the permutation τ . We
illustrate r-pairing via the example in Figure 4. To perform r-pairing on a sequence, we
begin by temporarily ignoring all entries not equal to r or r+1. Then we pair off adjacent
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24231243331324123321

2 23 2 333 32 2332

2 2 333 23

2 2 33 3

3 3 22 2

3 3 223 22

3 33 2 223 32 2232

34331242231324122321

Figure 4: An example of r-pairing with r = 2.

occurrences of r + 1 and r, ignoring previously paired entries and iterating this pairing
procedure. When there are no more such pairs, we replace each un-paired occurrence of r
with an r+1 and vice versa. Finally, we re-insert the entries we had temporarily removed
in their initial positions. We provide an example above with r = 2.

For our purposes, it is enough to know that r-pairing replaces σ with a permutation
of the multiset {1α1 , . . . , rαr+1 , (r + 1)αr , . . . , }, and that this permutation has the same

descent set as σ. Therefore r-pairing does not alter any of the expressions in (11), so H̃n,m

is symmetric.
Furthermore, if we apply the Robinson-Schensted-Knuth correspondence [10] to each

permutation σ involved in the coefficient of xλ for a partition λ, we see that the coefficient
of xλ in H̃n,m is

Kλ,(n−m,1m)

∑
T∈SYT(λ)

qrlmaj[m+1,n](T )tmaj[1,m](T )

×
|Des(T )∩[m+1,n]|∏

i=1

(
1 + u/qi

) |Des(T )∩[1,m]|∏
j=1

(
1 + v/tj

)
.

Here Kλ,(n−m,1m) is the Kostka number. Translating from the coefficient of xλ to the
coefficient of sλ(x) exactly consists of removing this Kostka number, so the theorem
follows.

One consequence of Theorem 5.0.1 is the identity

H̃n,m(x; q, t, u, v) = H̃n,n−m(x; t, q, v, u). (13)

This parallels the well-known identity

H̃µ(x; q, t) = H̃µ′(x; t, q) (14)
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for Macdonald polynomials. For Macdonald polynomials of hook shape, there is a direct
bijective proof of (14). We would like to find a similar bijective proof of (13).

In future work, we hope to define and explored starred Macdonald polynomials for
non-hook shapes. The full combinatorial formulation of Macdonald polynomials in [6]
essentially allows one to either star horizontally or vertically, giving analogs of Macdonald
polynomials with three-variable polynomials for coefficients. At this point, we have been
unable to define a four-variable generalization in the non-hook case that retains desirable
properties such as symmetry. It would also be interesting to develop connections between
these polynomials and Garsia-Haiman modules.
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Corrigendum – added September 17, 2019

p. 6 – The first two entries in the σ column of Figure 2 should read 2443124 and 2312,
respectively.
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