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Abstract

Let G be a properly face 2-coloured (say black and white) piecewise-linear trian-
gulation of the sphere with vertex set V . Consider the abelian group AW generated
by the set V , with relations r+c+s = 0 for all white triangles with vertices r, c and
s. The group AB can be defined similarly, using black triangles. These groups are
related in the following manner AW ∼= AB ∼= Z⊕ Z⊕ C where C is a finite abelian
group.

The finite torsion subgroup C is referred to as the canonical group of the triangu-
lation. Let mt be the maximal order of C over all properly face 2-coloured spherical
triangulations with t triangles of each colour. By relating such a triangulation to
certain directed Eulerian spherical embeddings of digraphs whose abelian sand-pile
groups are isomorphic to the triangulation’s canonical group we provide improved
upper and lower bounds for lim supt→∞(mt)

1/t.

Keywords: Face 2-coloured spherical triangulation; directed Eulerian spherical
embedding; canonical group; abelian sand-pile group; latin bitrade.

1 Introduction

Let G be a graph. We will denote the vertex set of G by V (G) and the edge set of G by
E(G). Suppose that there exists a face 2-coloured, black and white say, triangulation of
the sphere, i.e. a spherical triangulation, G which has G as its underlying graph. Denote
the set of white faces by W and the set of black faces by B. As the faces are properly
face 2-coloured, G is Eulerian and, by a well known result of Heawood [16], regardless of
whether or not G is simple, G has a proper vertex 3-colouring. If G is simple, then the
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rotation at every vertex is a cycle, i.e. the triangulation is piecewise-linear. See Figure 1
for an illustration of a face 2-coloured spherical triangulation where the underlying graph
is simple.
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s2
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s4

c0

c1

c2
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c4

r1

r2

r3

Figure 1: A face 2-coloured spherical triangulation. A vertex, r0, has been placed at
infinity.

Define AW to be the abelian group with generating set V (G), subject to the relations
{r+c+s = 0 : r, c, s are the vertices of a white face of G}. Define AB similarly but using
the black faces. In [2] Blackburn and the current author proved that

AW ∼= AB ∼= Z⊕ Z⊕ C

where C is a finite abelian group. In the same paper the question of the growth rate of
the maximal order of C, in the terminology established in [15] the canonical group of the
face 2-coloured spherical triangulation, was raised. More precisely:

Question (Blackburn & McCourt, [2]). Let mt be the maximal order of the canonical
group over all properly face 2-coloured spherical triangulations whose underlying graphs
are simple and have t faces of each colour. What is the value of lim supt→∞ (mt)

1/t?

In [2] a lower bound of 1.201 was obtained. Earlier work of Cavenagh and Wanless [8]
provided an upper bound of 61/3 < 1.818 and of Drápal and Kepka [12] of e1/e < 1.445.
More recently Grubman and Wanless [15] improved the lower bound to 51231/30 > 1.329.
In Section 3 we will provide an improved upper bound of 61/5 < 1.431 and in Section 4
an improved lower bound of (27/2)1/8 > 1.384.

In order to establish these new bounds we will make use of a connection between
canonical groups of face 2-coloured spherical triangulations and abelian sand-pile groups
of the digraphs underlying directed Eulerian spherical embeddings. In Section 2 we will
discuss the background for both of these groups as well as further motivation for addressing
the above question.
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2 Background and motivation

2.1 Spherical latin bitrades

Let R, C and S be (finite) sets. A partial latin square, P say, is an |R| × |C| array with
rows indexed by R and columns indexed by C whose cells are either empty or contain an
element (a symbol) of S such that each s ∈ S occurs at most once in each row and at
most once in each column.

We can think of a partial latin square, P , as a subset of R× C × S; where, the triple
(r, c, s) ∈ P if and only if the cell with row r and column c in the array contains symbol
s. Hence, we will make use of the following equivalent definition. A partial latin square
is a nonempty subset P ⊂ R × C × S such that if (r1, c1, s1) and (r2, c2, s2) are distinct
triples of P , then at most one of r1 = r2, c1 = c2 and s1 = s2 holds.

Two partial latin squares are said to be isotopic if they are equal up to a relabelling
of their sets of rows, columns and symbols. A partial latin square P is said to embed in
an abelian group A if there exist injective maps f1 : R → A, f2 : C → A and f3 : S → A
such that f1(r) + f2(c) = f3(s) for all (r, c, s) ∈ P . In other words P is isotopic to a
partial latin square contained in the Cayley table of A. An abelian group A is said to be
a minimal abelian representation for the partial latin square P if P embeds in A and, for
all embeddings of P in A, the isotopic copy of P in the Cayley table of A generates A.

From here on we specify that for any partial latin square we consider, P say,

(i) the sets R, C and S are pairwise disjoint; and

(ii) for all x ∈ R ∪ C ∪ S there exists a (r, c, s) ∈ P such that x ∈ {r, c, s} (that is, we
exclude, from R ∪ C ∪ S, any rows, columns or symbols that do not occur in any
triple of P ).

Let P be a partial latin square with rows R, columns C and symbols S. Define AP to
be the abelian group with generating set R∪C ∪S, subject to the relations r+ c+ s = 0
for each (r, c, s) ∈ P . The motivation for this definition is that if P embeds in an abelian
group, then it embeds in AP and, in particular, any minimal abelian representation A of
P is a quotient of the finite torsion subgroup of AP , see [2] and [12] for details.

Given a partial latin square P with rows R, columns C and symbols S, the six possible
partial latin squares obtainable from P by permuting the roles of R, C and S are said to be
conjugate partial latin squares. Note that, if P and Q are conjugate partial latin squares,
then AP ∼= AQ. The support graph of P is the graph with vertex set R ∪ C ∪ S and an
edge between vertices x and y if and only if there exists a z such that {x, y, z} = {r, c, s}
for some (r, c, s) ∈ P . Observe that conjugate partial latin squares have the same support
graph.

A latin bitrade is an ordered pair (W,B) of partial latin squares such that for each
triple (ri, cj, sk) ∈ W (respectively B) there exist unique ri′ 6= ri, cj′ 6= cj and sk′ 6= sk
such that

{(ri′ , cj, sk), (ri, cj′ , sk), (ri, cj, sk′)} ⊆ B (respectively W).
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W :

c0 c1 c2 c3 c4

r0 s0 s1 s2 s3

r1 s2 s3 s4 s1

r2 s3 s0

r3 s1 s4

B :

c0 c1 c2 c3 c4

r0 s2 s3 s1 s0

r1 s3 s1 s2 s4

r2 s0 s3

r3 s4 s1

Figure 2: A pair of partial latin squares that together form a latin bitrade.

This condition along with the definition of a partial latin square implies that W ∩B = ∅.
The arrays in Figure 2 correspond to a pair of partial latin squares which form a latin
bitrade (W,B). Note that, in this example, the two partial latin squares, W and B, are
not isotopic.

Observe that the pair (W,B) is a latin bitrade if and only if the pair (B,W ) is a
latin bitrade. Also note that the partial latin squares forming a latin bitrade (W,B)
correspond to two disjoint decompositions into copies of K3 of the edge set of the same
vertex 3-coloured simple support graph whose vertex colour classes correspond to the sets
R, C and S.

Suppose that G is a properly face 2-coloured spherical triangulation with underlying
simple graph G, face colour classes W and B, and a proper vertex 3-colouring with vertex
colour classes R, C and S. Then the faces of W (respectively B) correspond to a partial
latin square with rows R, columns C and symbols S (by fixing the roles of R, C and S we
are arbitrarily picking one of the six conjugate partial latin squares possible). As W and
B are decompositions of the same simple graph and, provided |W | > 1, no face occurs
in both W and B, the pair (W,B) is a latin bitrade. For example, the face 2-coloured
spherical triangulation illustrated in Figure 1 corresponds to the latin bitrade (W,B) in
Figure 2, the white faces corresponding to the entries in W and the grey faces the entries
in B.

In general the partial latin squares forming a bitrade do not necessarily embed in an
abelian group, see [8]. However, the partial latin squares forming a bitrade (W,B) arising
from a face 2-coloured spherical triangulation both embed in abelian groups, and hence
W embeds in AW and B embeds in AB, [8] and [11]; answering a question from [10]. In
[8] Cavenagh and Wanless conjectured that AW ∼= AB; this was proved in a more general
setting, where the underlying graphs of the triangulations are not necessarily simple, in
[2] as discussed in Section 1.

2.2 Directed Eulerian spherical embeddings and abelian sand-pile groups

Let G be a graph; we will denote the degree of a vertex v ∈ V (G) by degG(v) and the
maximum degree over all vertices of G by ∆(G). Let G be an embedding of G in the
sphere. We arbitrarily fix an orientation for the vertices, and denote the rotation at a
vertex v ∈ V (G) by ρ(v). Suppose ρ(v) = (u0, u1, . . . , udegG(v)−1) for some v ∈ V (G); if G
is a triangulation and G is a simple graph, then G contains a cycle on the set of vertices
{u0, u1, . . . , udegG(v)−1} where, interpreting udegG(v) as u0, the edges are between ui and
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ui+1. In a slight abuse of notation we will denote this cycle as ρ(v).
Let D be a, not necessarily simple, digraph. Label the vertices of D as v1, v2, . . . , vn.

The adjacency matrix A = [aij] of D is the n × n matrix where the entry aij equals the
number of arcs from vertex vi to vertex vj. The asymmetric Laplacian of D is the n× n
matrix L(D) = B − A where B is the diagonal matrix whose entry bii is the out-degree
of vi.

A digraph D is Eulerian if the out-degree at each vertex of D equals its in-degree. In
this case, for each v ∈ V (D) we will refer to out-degree and in-degree of v simply as the
degree of v and denote it by degD(v).

Let D be a connected Eulerian digraph with vertex set V (D) = {v1, v2, . . . , vn};
fix an i, where 1 6 i 6 n. A reduced asymmetric Laplacian, L′(D), for D is ob-
tained by removing row i and column i from L(D). As D is connected and Eule-
rian, the group Zn−1/Zn−1L′(D) is invariant of the choice of i, see [17, Lemma 4.12].
Hence, the abelian sandpile group of the Eulerian digraph D is defined to be the group
S(D) = Zn−1/Zn−1L′(D) where L′(D) is the reduced asymmetric Laplacian obtained by
removing row and column n of L(D). (An equivalent definition of S(D) is the finite
torsion subgroup of Zn/ZnL(D).)

Let D be a digraph and let v ∈ V (D). An arborescence diverging from v is a directed
sub-tree of D in which all the arcs are directed away from v. If D is connected and Eule-
rian, and hence strongly connected, then the number of spanning arborescences diverging
from a vertex v does not depend on v, see [23, Theorem VI.23]; this number is known as
the tree number of D and we will denote it by T (D). By the Matrix-Tree Theorem, [23,
Theorem VI.28], T (D) equals the determinant of L′(D); which in turn equals the order
of the abelian sand-pile group S(D), see [17, Lemma 2.8]. A recent and comprehensive
survey of results on abelian sand-pile groups of digraphs is given in [17].

In [19] Ribó Mor uses a probabilistic argument via Suen’s Inequality, [21], to establish
an upper bound on the order of the abelian sand-pile group in an undirected planar graph
in terms of the number of vertices. In the same thesis Ribó Mor establishes a tighter
bound using non-probabilistic techniques. This bound has subsequently been improved
on in [5].

Consider an embedding of a connected Eulerian digraph. If each face of the embedding
is a directed cycle, equivalently the arc rotation at each vertex alternates between incoming
and outgoing arcs, the embedding is called a directed Eulerian embedding, see [4]. If the
embedding is in the sphere we call it a directed Eulerian spherical embedding. Directed
Eulerian spherical embeddings are also referred to in the literature as plane alternating
dimaps. They were first studied by Tutte in [22] and a history of their study is given in
[13]. Bonnington, Hartsfield and Širáň [4] have provided Kuratowski type theorems for
directed Eulerian spherical embeddings and, in [13], Farr developed a theory of minors
for such embeddings. Directed Eulerian embeddings in surfaces of arbitrary genus have
also been studied, see [3] and [9].

In the following Subsection we will discuss a connection between the canonical groups
of face 2-coloured spherical triangulations and the abelian sand-pile groups of the underly-
ing digraphs of directed Eulerian spherical embeddings. For a directed Eulerian spherical
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embedding D we will denote the underlying digraph’s abelian sandpile group by S(D)
and its tree number by T (D).

2.3 Canonical groups and abelian sand-pile groups

Let G be a face 2-coloured spherical triangulation with a proper vertex 3-colouring where
the vertex colour classes are R, C and S. Let I ∈ {R,C, S}; we will construct a directed
Eulerian spherical embedding DI(G) (or simply DI) with vertex set I. The underlying
digraph will potentially have, for any pair of distinct vertices u and v, multiple arcs from
u to v. Let {I0, I1, I2} = {R,C, S}. Consider a vertex i ∈ I0, then the rotation at i is
ρ(i) = (u1, v1, u2, v2, . . . , u 1

2
degG(i), v 1

2
degG(i)), where, without loss of generality, uj ∈ I1 and

vj ∈ I2 for all 1 6 j 6 1
2

degG(i) and the edge ej between uj and vj in the rotation is
contained in a black face. Then in DI there are 1

2
degG(i) outgoing arcs aj with initial

vertex i, one for each black face, and the terminal vertex for arc aj is the vertex in I
contained in the white face containing edge ej. Clearly, the graph DI inherits a spherical
embedding from G in which the arc rotation at each vertex alternates between incoming
and outgoing arcs, so DI is Eulerian. Moreover as the sphere is connected the graph
underlying DI is connected, and as DI is Eulerian it is strongly connected. Hence DI

can be considered to be a directed Eulerian spherical embedding. Figure 3 illustrates
the directed Eulerian spherical embedding DR (the arcs of which are shown as dashed)
obtained from a face 2-coloured spherical triangulation.

r1 r2

r3r4

c0

c1

c2

c3

s0

s1
s2

s3

s4

Figure 3: A face 2-coloured spherical triangulation together with corresponding directed
Eulerian spherical embedding DR. The vertex colour classes are R = {r0, r1, r2, r3, r4},
where vertex r0 has been placed at infinity; C = {c0, c1, c2, c3}; and S = {s0, s1, s2, s3, s4}.

The above construction and the following result (Lemma 1) were established by Tutte
[22] (strictly speaking they were established for the dual of G); we reprove Lemma 1 as the
construction described in the proof will be continually revisited throughout this paper.
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Lemma 1 (Tutte, [22]). Given a directed Eulerian spherical embedding D, there exists a
face 2-coloured spherical triangulation G with a vertex 3-colouring given by the vertex sets
R, C and S, such that for some I ∈ {R,C, S}, DI(G) ∼= D.

Proof. In short, we reverse the construction above.
Denote the faces of D as f1, f2, . . . fk. Insert a new vertex zi into each face fi for all

1 6 i 6 k. Consider an arc of D, a say, that has x as its initial vertex and y as its
terminal vertex. Then on one side of a there is a new vertex u and on the other a new
vertex w. Replace a with two triangular faces; a black face with vertex set {x, u, w} and
a white face with vertex set {y, u, w}. As D is a directed Eulerian spherical embedding
this results in a face 2-colourable spherical triangulation.

We now list some observations on Lemma 1 and the above construction.

Observation 1. Let G be a face 2-coloured spherical triangulation with underlying graph G
and proper vertex 3-colouring where the colour classes are R, C and S. Let I ∈ {R,C, S}.

(i) If v ∈ I, then degDI
(v) = 1

2
degG(v).

(ii) A face f of size k in DI corresponds to a vertex in G with degree 2k.

(iii) Let {I, J,K} = {R,C, S}. A face f of size d in DI corresponds to a face of size
d in, without loss of generality, DJ and a vertex of (out-)degree d in DK. While a
vertex of (out-)degree d in DI corresponds to a face of size d in DJ and a face of
size d in DK.

The following lemma is implicit in [2].

Lemma 2. Suppose that G is a face 2-coloured spherical triangulation with a vertex 3-
colouring where the vertex colour classes are R, C and S. Then S(DR) ∼= S(DC) ∼=
S(DS) ∼= C, where C is the canonical group of G.

Proof. The discussion in [2, Section 4] proves that C ∼= S(DR). It is clear from the
definition of AW that permuting the roles of R, C and S yields vertex 3-coloured face
2-coloured triangulations of the sphere with isomorphic canonical groups. Hence S(DR) ∼=
S(DC) ∼= S(DS) ∼= C.

As mentioned earlier, the above constructions (of DI , DJ and DK from a face 2-
coloured spherical triangulation G and of a face 2-coloured spherical triangulation from
an directed Eulerian spherical embedding) were first studied by Tutte in [22], where he
proved that T (DI) = T (DJ) = T (DK); this result is known as Tutte’s Trinity Theorem,
see [1]. Note that Tutte’s Trinity Theorem is a direct corollary of Lemma 2.

In the following sections we will focus on bounding the number of spanning arbores-
cences in the directed Eulerian spherical embedding DI , where I ∈ {R,C, S}, obtained
from a face 2-coloured spherical triangulation G whose underlying graph G is simple.

Given a directed Eulerian spherical embedding D we will refer to the graph that
underlies the digraph underlying D simply as the graph underlying D.
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Proposition 3. Let G be a face 2-coloured spherical triangulation with a vertex 3-colouring
with vertex sets R, C and S. Suppose that the graph underlying G is simple and contains
at least four vertices. Then the graphs underlying DR, DC and DS have no loops, no
cut-vertices and no 2-edge-cuts.

Proof. We prove the contrapositive. Let G be the graph underlying G and let I ∈
{R,C, S}.

Suppose that the graph underlying DI contains a cut-vertex, i say. Then the vertex
in G that corresponds to the face of DI that contains i twice in its facial walk has two
edges between itself and i. See Figure 4 for an illustration of this case.

i i

Figure 4: When the graph underlying DI contains a cut-vertex. The directed Eulerian
spherical embedding DI is shown on the left; and the relevant faces of G are shown on the
right (the vertex constructed from the face of DI that contains vertex i twice has been
placed at infinity).

x f1

f2

x

Figure 5: When the graph underlying DI has no cut-vertices but does contain a loop.
The directed Eulerian spherical embedding DI is shown on the left; and the relevant faces
of G are shown on the right (the vertex corresponding to f2 has been placed at infinity).

Next suppose that DI contains a loop but no cut-vertices. Let x be a vertex of DI

that is incident with a loop, ` say. As DI has no cut-vertices ` is in a face f1 of size one
and a second face f2 of size greater than or equal to one. If f2 also has size one, then G
has three vertices, a contradiction. So f2 has size at least two, and hence, in G, there are
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two edges between x and the vertex corresponding to f2. See Figure 5 for an illustration
of this case.

So suppose that the graph underlying DI contains a 2-edge-cut. Denote the arcs that
the edges of the 2-edge-cut underlie by a1 and a2. Then DI contains two distinct faces,
f1 and f2 say, that both contain a1 and a2 in their facial walks. Thus, in G there are
two edges between the two vertices that correspond to f1 and f2. See Figure 6 for an
illustration of this case.

f1

f2

a1

a2

a1

a2

Figure 6: When the graph underlying DI contains a 2-edge-cut. The directed Eulerian
spherical embedding DI is shown on the left; and the relevant faces of G are shown on
the right (the vertex corresponding to f2 has been placed at infinity).

Proposition 4. Suppose that D is a directed Eulerian spherical embedding with underlying
graph H. Further suppose that H has no loops, no cut-vertices and no 2-edge-cuts. Then
the graph underlying the face 2-coloured spherical triangulation constructed from D as in
the proof of Lemma 1 is simple.

Proof. We prove the contrapositive. Let G be a face 2-coloured spherical triangulation
with a proper vertex 3-colouring with colour classes I, J and K. Denote the underlying
graph of G by G. Suppose that G has two distinct edges, say e1 and e2 that both have
the same two end vertices; without loss of generality, let these end vertices be i0 ∈ I and
j0 ∈ J . We claim that i0 is a cut-vertex or is incident with a loop in the graph underlying
DI , j0 is a cut-vertex or is incident with a loop in the graph underlying DJ and that the
graph underlying DK has a 2-edge-cut.

The edges e1 and e2 (including their vertices) form a closed curve L in the sphere.
Thus, we can consider two regions (both homeomorphic to the unit disc), the interior of
L and the exterior. Denote the set of vertices in the interior along with the vertices i0
and j0 as A. (As G is a triangulation |A| > 3.)

First we show that i0 is either a cut-vertex or is incident with a loop in the graph
underlying DI (the argument for j0 and DJ is similar).

Suppose that (A\{i0, j0})∩I and I \A are both non-empty. As DI is connected there
exists a vertex i ∈ A ∩ I that has an in- or out-neighbour, in the digraph underlying DI
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that is not contained in A. As L disconnects the sphere, i must be in a triangular face (of
G) that contains either e1 or e2. Thus, i = i0 and is therefore a cut-vertex in the digraph
underlying DI .

So, without loss of generality, suppose that (A \ {i0, j0}) ∩ I = ∅. Then there exists a
k0 ∈ K ∩ A such that there is a black face b with vertices {i0, j0, k0} and a white face w
with vertices {i0, j0, k0} such that b and w share the same edges between i0 and k0, and
between j0 and k0. Thus i0 is incident with a loop in DI .

Finally, we show that the graph underlying DK has a two-edge-cut. Consider the
faces in DK that correspond to the vertices i0 and j0 in G, denote them by fi0 and fj0
respectively. There exist (not necessarily distinct) vertices k1, k2, k3, k4 ∈ K such that
in G:

• the black face containing e1 has vertex set {i0, j0, k1};

• the white face containing e1 has vertex set {i0, j0, k2};

• the black face containing e2 has vertex set {i0, j0, k3}; and

• the white face containing e2 has vertex set {i0, j0, k4}.

In the graph underlying DK there is an arc, a1, from k1 to k2 and an arc, a2, from k3 to
k4; moreover both these arcs are contained in the facial walk of both fi0 and fj0 . As the
removal of L disconnects the sphere, the removal of arcs a1 and a2 disconnects the graph
underlying DK . See Figure 7 for an illustration of this case.

i0

j0

k1 k2 k3 k4

Figure 7: The directed Eulerian spherical embedding DK when the graph underlying G is
not simple. The relevant faces of G are superimposed (edges of G are shown dashed with
e1 and e2 also in bold; and relevant vertices of G that are not in K are shown as squares).

In Section 3, by considering all face 2-coloured spherical triangulations (whose un-
derlying graphs are simple) that have a fixed number of faces in each colour class, we
establish the improved upper bound. In Section 4 we provide a construction for face
2-coloured spherical triangulations for which the associated directed Eulerian spherical
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embeddings DI , where I ∈ {R,C, S}, have underlying digraphs with many spanning ar-
borescences, obtaining a lower bound. Before doing so we will discuss the construction of
face 2-coloured spherical triangulations that yield specific canonical groups.

2.4 Constructing abelian groups

The following proposition appears in [8]. We provide a new proof of the result using
directed Eulerian spherical embeddings.

Proposition 5 (Cavenagh & Wanless [8]). Let m > 2. There exists a face 2-coloured
spherical triangulation, whose underlying graph is simple, with canonical group C ∼= Zm.

Proof. Let D be a directed Eulerian spherical embedding with two vertices, v0 and v1

say, and 2m arcs, m from v0 to v1 and m from v1 to v0 where the edge rotation at each

vertex alternates between incoming and outgoing arcs. Then L(D) =

[
m −m
−m m

]
and

L′(D) = [m], so S(D) ∼= Zm.
By Lemma 1, there exists a face 2-coloured spherical triangulation, with a vertex 3-

colouring given by the sets R, C and S where D = DI for some I ∈ {R,C, S}. As m > 2,
by Proposition 4, the graph underlying the triangulation is simple.

Recursive applications of the following elementary lemma will be used to prove Propo-
sition 7.

Lemma 6. Given two connected Eulerian digraphs D1 and D2 with disjoint vertex sets
the graph D obtained by identifying a vertex in D1 with a vertex in D2 has an abelian
sand-pile group isomorphic to S(D1)⊕ S(D2).

Proof. Let v1 ∈ V (D) and v2 ∈ V (D2) be the vertices identified to form D and denote the
identified vertex as v. As D1 and D2 are connected and Eulerian, D is also connected and
Eulerian. Let L′(D1) (respectively L′(D2), L′(D)) be the reduced asymmetric Laplacian
obtained by removing the row and column corresponding to v1 in L(D1) (respectively v2

in D2 and v in D). Then by applying, possibly trivial, row and column permutations to
L′(D) the matrix [

L′(D1) 0
0 L′(D2)

]
can be obtained. Hence, S(D) ∼= S(D1)⊕ S(D2).

Proposition 7. Consider an arbitrary finite abelian group Zm1 ⊕ · · · ⊕ Zmk
. Then there

exists a face 2-coloured spherical triangulation with canonical group isomorphic to Zm1 ⊕
· · · ⊕ Zmk

.

Proof. Using Proposition 5, construct directed spherical digraphs Di for 1 6 i 6 k where
S(Di) = Zmi

. Take any spherical embedding of a tree with k edges, labelled e1, . . . , ek,
and replace edge ei with the digraph underlying Di, for each 1 6 i 6 k. It is easy
to see that this can be done so that the resulting embedded digraph, D, is a directed
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Eulerian spherical embedding. The underlying digraph can also be obtained by recursive
applications of Lemma 6 and hence has an abelian sand-pile group isomorphic to Zm1 ⊕
· · · ⊕ Zmk

. Therefore, by Lemma 1, there exists a face 2-coloured triangulation that has
Zm1 ⊕ · · · ⊕ Zmk

as its canonical group.

Figure 8 illustrates the construction used in the proof of Proposition 7 in the case
where the canonical group of the face 2-coloured triangulation is isomorphic to Z2 ⊕ Z2.

r0

r1
r2

Figure 8: A face 2-coloured spherical triangulation whose canonical group is isomorphic to
Z2⊕Z2. A vertex has been placed at infinity and the digraph DR, where R = {r0, r1, r2},
is shown with dashed arcs.

Let A = Zm1 ⊕· · ·⊕Zmk−1
where, without loss of generality, mi > 1 for 1 6 i 6 k− 1.

The construction in the proof of Proposition 7 yields a triangulation G with a proper vertex
3-colouring given by R, C and S such that D ∼= DR(G). Hence a set T of nonisomorphic
trees on k vertices yields at least |T |/3 nonisomorphic face 2-coloured triangulations all
of which have canonical groups isomorphic to A. (Otter [20] showed that the number of
nonisomorphic trees on k vertices is asymptotically 0.4399237(2.95576)kk−3/2.)

In [8] Cavenagh and Wanless posed the question: which abelian groups arise as the
canonical group of a properly face 2-coloured spherical triangulation whose underlying
graph is simple? Proposition 7 does not answer this question, as, by Proposition 3,
the triangulations constructed whose canonical groups are not cyclic all have underlying
graphs which are not simple.

3 Improving the upper bound

In this section the underlying graphs of all the face 2-coloured spherical triangulations
considered are simple. Moreover, as we are concerned with the behaviour of mt as t→∞,
where t is the number of faces of one colour class, in the following discussion, we take
t > 4. Hence every vertex in any triangulation considered is contained in at least four
faces, and no two distinct faces share the same three vertices.

Similarly to the approach taken by Ribó Mor in [19], the improved upper bound for
lim supt→∞ (mt)

1/t is obtained using a probabilistic argument based on Suen’s Inequality.
However, the results in [19] are concerned with the growth of the number of spanning trees
in terms of the number of vertices in the graph, rather than the number of arcs. A vital
component of Ribó Mor’s argument is the addition of edges to a planar graph to obtain
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a triangulation. The beginning of our argument follows that of [19] (in setting up the use
of a refinement of Suen’s Inequality); however, as we are interested in the growth rate as
the number of arcs increases, the remainder necessarily follows a different approach.

Let {Xi}i∈I be a finite family of Bernoulli random variables each with success proba-
bility pi; i.e. P(Xi) = pi. A simple graph Γ where V (Γ) = I is called a dependency graph
for {Xi}i∈I if when two disjoint subsets of I, A and B say, are mutually independent,
there is no edge between any vertex in A and any vertex in B. In particular two distinct
variables Xi and Xj are independent unless there is an edge between i and j. For ease of
notation, when discussing a dependency graph, if there exists an edge between vertices i
and j, we write i ∼ j. We will make use of the following refinement to Suen’s Inequality
(note that in our case both Suen’s Inequality and that presented in Theorem 8 yield the
same bound).

Theorem 8 (Janson [18]). Let {Xi}i∈I be a finite family of Bernoulli random variables,
where Xi has success probability pi, and having a dependency graph Γ. Let S =

∑
i∈I Xi;

µ = E(S) =
∑

i∈I pi; ∆ = 1
2

∑
i∈I
∑

j∈I,i∼j E(XiXj); and δ = maxi∈I
∑

k∼i pk. Then

P(S = 0) 6 exp
(
−µ+ ∆e2δ

)
.

Let G be a properly face 2-coloured triangulation with a simple underlying graph and
t faces of each colour such that the order of its canonical group is maximum over all such
triangulations. Denote the underlying graph of G by G. Fix a vertex i0 of DI(G) (for the
remainder of this section we will write DI for DI(G)). Let R be a random selection of
arcs selected in the following manner. For each vertex in V (DI) \ {i0} = I \ {i0} select,
uniformly at random, one of its incoming arcs.

Then, denoting the subgraph of DI induced by the arcs of R as DI [R], we have

T (DI) = P (DI [R] is a spanning arborescence rooted at i0)
∏

i∈I\{i0}

degDI
(i).

Equivalently

T (DI) = P(DI [R] does not contain a directed cycle)
∏

i∈I\{i0}

degDI
(i).

We can now use Theorem 8 to provide an upper bound for the probability that DI [R]
does not contain a directed cycle (as R contains exactly one incoming arc for each vertex
not equal to i0, if the underlying graph contains a cycle, it must be directed).

Let DI−i0 denote the set of all directed cycles in DI that do not contain the vertex i0.
For each γ ∈ DI−i0 , define:

Xγ =

{
1 γ is a subgraph of DI [R]; and
0 otherwise.

From the definition of R the arcs of γ are independent events and an arc from a vertex
u to a vertex v, where there is an arc from u to v in γ, occurs in R with probability
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1/(degDI
(v)). Hence, Xγ is a Bernoulli random variable taking the value 1 with probability

pγ =
1∏

v∈V (γ) degDI
(v)

.

Observe that S =
∑

γ∈DI
Xγ counts the number of cycles in DI [R], and P(S = 0) measures

the probability that no cycle exists in DI [R].
Define a graph Γ on the vertex set DI−i0 , with an edge between the vertices in Γ

corresponding to the cycles α and β of DI if and only if α and β share a vertex in
DI . Note that two cycles in DI [R] can never share a vertex. Thus, α ∼ β implies that
E(XαXβ) = 0, and hence, the value of ∆ from Theorem 8 is zero.

Applying Theorem 8, with µ =
∑

γ∈DI−i0
pγ, we have:

T (DI) 6 exp (−µ)
∏

i∈I\{i0}

degDI
(i). (1)

Let DI denote the set of all directed cycles in DI and Di0 denote the set of all directed
cycles in DI that contain i0 (so, DI−i0 = DI \ Di0). Then, by Inequality (1) we have:

T (DI) 6 exp

− ∑
γ∈DI\Di0

pγ

 ∏
i∈I\{i0}

degDI
(i)

= exp

−
∑
γ∈DI

pγ −
∑
γ∈Di0

pγ

+
∑
i∈I

ln(degDI
(i))− ln(degDI

(i0))

 .
Denote the set of faces in DI by FI and the set of faces that contain i0 by Fi0 ; and, in

a slight abuse of notation, the vertex set of a face f by V (f) and its boundary cycle by
γ(f). As the triangulation is of a simple graph it is piecewise linear. It follows that the
facial walk of any face in F is a cycle, and so FI ⊆ DI .

As Fi0 ⊆ Di0 ⊆ DI and Fi0 ⊆ FI ,∑
γ∈DI

pγ −
∑
γ∈Di0

pγ >
∑

γ(f)∈FI

pγ(f) −
∑

γ(f)∈Fi0

pγ(f).

Hence,

T (DI) 6 exp

∑
i∈I

ln(degDI
(i))−

∑
γ(f)∈FI

pγ(f) −

ln(degDI
(i0))−

∑
γ(f)∈Fi0

pγ(f)

 .
We will denote the minimum out-degree in DI by δ(DI).

Lemma 9. Suppose that δ(DI) > 3, or δ(DI) = 2 and |I| > 4. Then

T (DI) < exp

∑
i∈I

ln(degDI
(i))−

∑
γ(f)∈FI

pγ(f)

 .
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Proof. First, suppose that DI contains a vertex of (out-)degree greater than two. Choose
i0 to be such a vertex. Then i0 is in 2 degDI

(i0) faces and, for any of these faces, f say,
pγ(f) 6 1/(δ(DI) degDI

(i0)). Hence, as degDI
(i0) > 3,∑

γ(f)∈Fi0

pγ(f) 6 2 degDI
(i0)

1

δ(DI) degDI
(i0)

6 1 < ln(degDI
(i0)).

So, we may assume that every vertex in DI has (out-)degree two. If there exists a
vertex in four faces of size two, then |I| = 2. If there exists a vertex in three faces of
size two, then it must occur in four faces of size two, and hence |I| = 2. If there exists a
vertex for which every face containing this vertex has size greater than two, then choose
such a vertex to be i0, and ∑

γ(f)∈Fi0

pγ(f) 6 4
1

23
=

1

2
< ln(2).

Thus, we may assume that every vertex in DI is in either exactly one or exactly two
faces of size two. Assume that every vertex is in two faces of size two. Then, as |I| > 4,
the other two faces have size at least four. So,∑

γ(f)∈Fi0

pγ(f) 6 2
1

22
+ 2

1

24
< ln(2).

So assume that there exists a vertex in exactly one face of size two, choose this vertex to
be i0. Then ∑

γ(f)∈Fi0

pγ(f) 6
1

22
+ 3

1

23
< ln(2).

As we are interested in the growth rate of T (DI) as the number of arcs increases, from
here on we assume our triangulation has at least eight faces in each colour class (hence,
T (DI) has at least eight arcs). Hence, the conditions in Lemma 9 are met.

By Tutte’s Trinity Theorem (or as a corollary of Lemma 2), T (DR) = T (DC) =
T (DS); so, by Lemma 9,

T (DI)
3 = T (DR)T (DC)T (DS)

< exp

[(∑
r∈R

ln(degDR
(r)) +

∑
c∈C

ln(degDC
(c)) +

∑
s∈S

ln(degDS
(s))

)

−

(∑
γ∈FR

pγ +
∑
γ∈FC

pγ +
∑
γ∈FS

pγ

)]
.
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Let V = R ∪ C ∪ S, then

3 ln T (DI) <
∑
v∈V

ln

(
1

2
degG(v)

)
−

(∑
f∈FR

1∏
r∈V (f) degDR

(r)

+
∑
f∈FC

1∏
c∈V (f) degDC

(c)
+
∑
f∈FS

1∏
s∈V (f) degDS

(s)

)
.

Let {I0, I1, I2} = {R,C, S}. Consider a vertex i ∈ I0, then the rotation at i is

ρ(i) = (u1, v1, u2, v2, . . . , u 1
2

degG(i), v 1
2

degG(i)),

where, without loss of generality, uj ∈ I1 and vj ∈ I2 for all 1 6 j 6 1
2

degG(i).
Note that i corresponds to the face with facial walk (u1, u2, . . . , u 1

2
degG(i)) in DI1 and

the face with facial walk (v 1
2

degG(i), v 1
2

degG(i)−1, . . . , v2, v1) in DI2 . So, defining ρ1(i) =

{u1, u2, . . . , u 1
2

degG(i)} and ρ2(i) = {v1, v2, . . . , v 1
2

degG(i)} we have the following upper

bound for 3 ln(T (DI)).

∑
v∈V

ln

(
1

2
degG(v)

)
−
∑
v∈V

(
1∏

j∈ρ1(v)
1
2

degG(j)
+

1∏
j∈ρ2(v)

1
2

degG(j)

)
(2)

Let n denote the order of G and let nk denote the number of degree k vertices in G.
Then arguing from the upper bound for 3 ln(T (DI)) given by (2) we prove the following
theorem.

Theorem 10. Let mt be the maximal order of the canonical group of all properly face
2-coloured spherical triangulations whose underlying graphs are simple and have t faces of
each colour. Then

lim sup
t→∞

(mt)
1/t < 61/5.

Proof. Let G and G be defined as in the above discussion. Define a function g : V → Z
by

g : v 7→


2, if all the neighbours of v have degree 6 6;
1, if all the neighbours of v in precisely one of the two

colour classes in ρ(v) have degree 6 6; and
0, otherwise.

Let N4 = {v ∈ V (G) : degG(v) = 4} and N6 = {v ∈ V (G) : degG(v) = 6}. Further let
0 6 α 6 2 and 0 6 β 6 2 be such that αn4 =

∑
v∈N4

g(v) and βn6 =
∑

v∈N6
g(v).

Rewriting the upper bound (2) in terms of the values n2i, where 2 6 i 6 ∆(G)/2, and
bounding the second summation in terms of α and β we have

3 ln(T (DI)) <

∆(G)/2∑
i=2

ln(i)n2i

− αn4

32
− βn6

33
. (3)
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As G is a spherical triangulation, the average degree of a vertex in G is 6− 12/n. So, for
each vertex of degree 2i > 6 we can associate (2i − 6)/2 degree four vertices. Hence we

have that n4 = 6 +
∑∆(G)/2

i=4 (i− 3)n2i. Thus 3 ln(T (DI)) is less than

6 ln(2) + ln(3)n6 +

∆(G)/2∑
i=4

(ln(i) + (i− 3) ln(2))n2i

− αn4

9
− βn6

27
.

Let L be the set of edges of G incident with a vertex of degree greater than six and a
vertex of degree four or six. Note that |L| 6

∑∆(G)/2
i=4 (2i)n2i. Consider a vertex, u say, of

degree four or six. If g(u) = 0, then there must be at least two edges in L incident with
u and if g(u) = 1, there is at least one edge in L incident with u. Thus,

3αn4 + βn6 > 3 (2n4 −min{2n4, |L|}) + 2n6 − (|L| −min{2n4, |L|})
= 6n4 + 2n6 − |L| − 2 min{2n4, |L|}.

Recall that |L| 6
∑∆(G)/2

i=4 (2i)n2i and that 2n4 = 12 +
∑∆(G)/2

i=4 2(i− 3)n2i. Hence,

3αn4 + βn6 > 6n4 + 2n6 −
∆(G)/2∑
i=4

(2i)n2i − 4n4

> 2n6 +

∆(G)/2∑
i=4

(2(i− 3)n2i − (2i)n2i)

= 2n6 − 6

∆(G)/2∑
i=4

n2i = 2n6 − 6(n− n6 − n4).

Therefore,

3 ln(T (DI)) < 6 ln(2) + ln(3)n6 +

∆(G)/2∑
i=4

(ln(i) + (i− 3) ln(2))n2i

− A

27
,

where

A =

{
8n6 + 6n4 − 6n, if 8n6 + 6n4 > 6n; and

0, otherwise.

In
∑∆(G)/2

i=4 (ln(i) + (i− 3) ln(2))n2i the coefficient ln(i) + (i− 3) ln(2) corresponds to
the contribution of i − 2 vertices (one of degree 2i and i − 3 of degree four). Hence, the
sum corresponds to the contribution of all the vertices of degree not equal to six. As
3
2

ln(2) > 1
i−2

(ln(i) + (i− 3) ln(2)) for all i > 4, we have that

3 ln(T (DI)) < 6 ln(2) + ln(3)n6 +
3

2
ln(2)(n− n6)

= 6 ln(2) +

(
ln(3)− 3

2
ln(2)

)
n6 +

3

2
ln(2)n, (4)
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regardless of whether or not A = 0.
As A > 8n6 + 6n4 − 6n, the following inequality is always satisfied.

3 ln(T (DI)) < 6 ln(2) + ln(3)n6 +

∆(G)/2∑
i=4

(ln(i) + (i− 3) ln(2))n2i −
8n6 + 6n4 − 6n

27
.

As n4 = 6 +
∑∆(G)/2

i=4 (i− 3)n2i, we have that 3 ln(T (DI)) is less than

6

(
ln(2)− 2

9

)
+

2

9
n+

(
ln(3)− 8

27

)
n6 +

∆(G)/2∑
i=4

(
ln(i) +

(
ln(2)− 2

9

)
(i− 3)

)
n2i.

Similarly to above, note that ln(i) + (ln(2) − 2
9
)(i − 3) corresponds to the contribution

of i − 2 vertices (again one of degree 2i and i − 3 of degree four) and the summation∑∆(G)/2
i=4 (ln(i)+(ln(2)− 2

9
)(i−3))n2i is the contribution of the vertices of degree not equal

to six. As 3
2

ln(2)− 1
9
> 1

i−2

(
ln(i) + (i− 3)

(
ln(2)− 2

9

))
for all i > 4 it follows that

3 ln(T (DI)) < 6 ln(2) +
2

9
n+

(
ln(3)− 8

27

)
n6 +

(
3

2
ln(2)− 1

9

)
(n− n6)

= 6 ln(2) +

(
ln(3)− 3

2
ln(2)− 5

27

)
n6 +

(
3

2
ln(2) +

1

9

)
n. (5)

As both Inequality (4) and Inequality (5) must hold,

3 ln(T (DI)) < 6 ln(2) + min

{(
ln(3)− 3

2
ln(2)

)
n6 +

3

2
ln(2)n,(

ln(3)− 3

2
ln(2)− 5

27

)
n6 +

(
3

2
ln(2) +

1

9

)
n

}
.

Fixing n and letting n6 vary continuously between 0 and n, the maximum value of

min

{(
ln(3)− 3

2
ln(2)

)
n6 +

3

2
ln(2)n,

(
ln(3)− 3

2
ln(2)− 5

27

)
n6 +

(
3

2
ln(2) +

1

9

)
n

}
occurs when n6/n = 3/5; yielding 3 ln(T (DI)) <

3
5
(ln(3) + ln(2))n = 3

5
ln(6)n. As G is a

triangulation of the sphere, by the Euler equation, n − t = 2, where t is the number of
faces in one colour class; hence,

lim sup
t→∞

(mt)
1/t < lim sup

t→∞

(
exp

(
ln(6)

5
(t+ 2)

))1/t

= 61/5.

A family of face 2-coloured spherical triangulations that has attracted recent interest,
see [6] and [7], are triangulations that contain precisely six degree four vertices and all
the other vertices have degree six, i.e. near-homogeneous face 2-coloured spherical trian-
gulations. Part of the motivation for their study comes from their connection to a solved
case of Barnette’s Conjecture [14]. When restricting ourselves to the near-homogeneous
case we can improve the upper bound.
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Theorem 11. Let ht be the maximal order of the canonical group of all near-homogeneous
properly face 2-coloured spherical triangulations whose underlying graphs are simple and
have t faces of each colour. Then

lim sup
t→∞

(ht)
1/t <

(
exp

(
ln(3)− 2

27

))1/3

< 1.4071.

Proof. As a near-homogeneous spherical triangulation has exactly six degree four vertices
and every other vertex has degree six, the upper bound (3) reduces to 6 ln(2) − 4

3
+(

ln(3)− 2
27

)
(n− 6), and the result follows.

4 Improving the lower bound

In [15], Grubman and Wanless analyse the effect to the order of the canonical group of face
2-coloured spherical triangulations whose underlying graphs are simple of applying several
recursive constructions. They obtain a lower bound on the growth rate of 51231/30 by using
a construction that identifies a black triangle in one face 2-coloured spherical triangulation,
G1 say, with a white triangle in a second face 2-coloured spherical triangulation, G2 say.

Their construction can be described in terms of the related directed Eulerian spherical
embeddings as follows. Let {Ii, Ji, Ki} = {Ri, Ci, Si} be the set of vertex colour classes
of Gi, where i ∈ {1, 2}. Let a1 be an arc from vertex u to vertex u′ in DI1(G1), and let
(u, u′, x1,1, x1,2, . . . , x1,`) and (u, u′, y1,1, y1,2, . . . , y1,m) denote the facial walks of the two
faces containing a1 where the face (u, u′, x1,1, x1,2, . . . , x1,`) corresponds to a vertex in J1

of G1 and the face (u, u′, y1,1, y1,2, . . . , y1,m) corresponds to a vertex in K1 of G1. Let a2

be an arc from vertex w to vertex w′ in DI2(G2), and let (w,w′, x2,1, x2,2, . . . , x2,p) and
(w,w′, y2,1, y2,2, . . . , y2,q) denote the facial walks of the two faces containing a2 where the
face (w,w′, x2,1, x2,2, . . . , x2,p) corresponds to a vertex in J2 of G2 and the face (w,w′, y2,1,
y2,2, . . . , y2,q) corresponds to a vertex in K2 of G2.

Remove a1 and the faces containing it from DI1(G1), and a2 and the faces containing
it from DI2(G2). Now identify u and w′ and add an arc from w to u′ and the faces with
facial walks

(u, x2,1, x2,2, . . . , x2,p, w, u
′, x1,1, x1,2, . . . , x1,`)

and
(u, y2,1, y2,2, . . . , y2,q, w, u

′, y1,1, y1,2, . . . , y1,m).

This yields a directed Eulerian spherical embedding D. Counting the spanning arbores-
cences rooted at u = w′ in the underlying digraph it follows that

T (D) = T (DI1(G1))T (DI2(G2)).

By considering recursive constructions applied to faces, rather than the arcs, of DR,
DC and DS, taking care to ensure the resulting related undirected triangulations have
underlying graphs that are still simple, we will provide an improved lower bound for
lim supt→∞(mt)

1/t.
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Lemma 12. Let G be a face 2-coloured spherical triangulation whose underlying graph G
is simple, which has a proper vertex 3-colouring given by the colour classes R, C and S,
and canonical group C. Suppose that G has t faces in each colour class. Further suppose
that DI(G) for some I ∈ {R,C, S} where |I| > k > 2 contains a face, f say, of size k the
vertices of which all have (out-)degree two.

Then there exists a face 2-coloured spherical triangulation G ′, whose underlying graph
is simple, with t + 2k faces in each colour class, a proper vertex 3-colouring given by
the colour classes R′, C ′ and S ′, and with canonical group C ′ such that: there exists a
I ∈ {R′, C ′, S ′} where DI(G ′) contains a face of size k in which all the vertices have
(out-)degree two; and

|C ′| >

(
k−1∑
j=0

k

2j

(
k − 1

j

))
|C|.

Proof. Consider DI(G) and the face f described in the statement of the lemma. Denote
the vertices of the face f by v0, v1, . . . , vk−1 so that the arcs on the boundary of the face
are from vi to vi+1, where subscripts are taken modulo k. Insert a new vertex into the
interior of f , call this vertex u, and add an arc from u to vj and an arc from vj to u, for
all 0 6 j 6 k− 1, in such a manner as to obtain a directed Eulerian spherical embedding,
D′ say. (We have replaced a face of size k with k triangular faces and k digons.)

We calculate a lower bound for T (D′). Let A be the set of all spanning arborescences
in the digraph underlying DI(G) rooted at x 6∈ {v0, v1, . . . , vk−1}. Choose a vertex v ∈
{v0, v1, . . . , vk−1}. Let 0 6 j 6 k−1 and select j distinct vertices from {v0, v1, . . . , vk−1}\
{v}, denote them v′1, . . . , v

′
j. For each arborescence in A, remove the ingoing arc with end

vertex v′i, for all 1 6 i 6 j. As degD(v′i) = 2 this yields at least 1
2j
|A| different subgraphs.

Now, to each of these subgraphs, add the arc from v to u and the arcs from u to v′i for all
1 6 i 6 j. This results in at least 1

2j
|A| different spanning arborescences of the digraph

underlying D′ rooted at x. There were k choices for v and
(
k−1
j

)
choices for the other j

vertices. Hence we have at least (
k−1∑
j=0

k

2j

(
k − 1

j

))
|A|

spanning arborescences rooted at x in D′.
To complete the proof we need to show that D′ corresponds to a face 2-coloured

spherical triangulation, G ′ say, whose underlying graph is simple, in which: there are
t + 2k faces in each colour class; there is a vertex 3-colouring with colour classes R′, C ′

and S ′; and there exists a I ∈ {R′, C ′, S ′} such that DI(G ′) has a face of size k in which
all the vertices have (out-)degree two.

By Lemma 1, D′ corresponds to a face 2-coloured spherical triangulation G ′ and by
Proposition 4, as k > 2, the graph underlying G ′ is simple. As D′ is obtained by adding
2k arcs (and one vertex) to D it follows that G ′ has t+ 2k faces in each colour class.

The triangulation G ′ can be obtained from G by first deleting the vertex of degree 2k
that corresponds to f in DI and all the faces and edges incident to it and replacing them
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Figure 9: An illustration of an application of Lemma 12 in the case where k = 4.

with a single face of size 2k. Denote the vertices of this new face by w0, w1, . . . , w2k−1 so
that w2i = vi, for 0 6 i 6 k − 1, and the edges on the boundary of the face are from wj
to wj+1, where 0 6 j 6 2k − 1 and subscripts are taken modulo 2k. Next insert 2k + 1
new vertices, z, z0 . . . , z2k−1 and edges into the new face so that the rotations at the new
vertices are:

ρ(z) = (z0, z1, . . . , z2k−1),
ρ(z2i) = (z, z2i−1, w2i, z2i+1),
ρ(z2i+1) = (z, z2i, w2i, w2i+1, w2i+2, z2i+2),

where 0 6 i 6 k − 1 and subscripts are taken modulo 2k.
So, in G ′ the vertex z has degree 2k and the vertices z2i, where 0 6 i 6 k − 1 are

all contained in precisely four faces (two white and two black). Moreover, for any proper
vertex 3-colouring, each of the z2i belong to the same colour class, I say, and in DI(G ′)
there is an arc from z2i to z2i+2, where subscripts are taken modulo 2k. Hence, DI(G ′)
contains a face of size k in which all the vertices have (out-)degree two.

Figure 9 illustrates the proof of Lemma 12 in the case where k = 4.

Theorem 13. Let mt be the maximal order of the canonical group of all properly face
2-coloured spherical triangulations whose underlying graphs are simple and have t faces of
each colour. Then (

27

2

)1/8

6 lim sup
t→∞

(mt)
1/t.

Proof. Consider the face 2-coloured spherical triangulation of a simple graph illustrated in
Figure 3. The vertex set R = {r0, r1, r2, r3, r4} forms a colour class of a vertex 3-colouring
(the other classes being {c0, c1, c2, c3} and {s0, s1, s2, s3, s4}). The digraph DR contains a
face of size four in which all the vertices have (out-)degree two. Repeated application of
Lemma 12, with k = 4, obtains the result.
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Similar base triangulations for the recursive application of Lemma 12 can easily be
obtained for face sizes other than four, but the resulting families have smaller growth
rates.
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