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Abstract

Erdős and Sós conjectured that every graph G of average degree greater than
k−1 contains every tree of size k. Several results based upon the number of vertices
in G have been proved including the special cases where G has exactly k+1 vertices
(Zhou), k + 2 vertices (Slater, Teo and Yap), k + 3 vertices (Woźniak) and k + 4
vertices (Tiner). We further explore this direction. Given an arbitrary integer c > 1,
we prove Erdős-Sós conjecture in the case when G has k + c vertices provided that
k > k0(c) (here k0(c) = c12polylog(c)). We also derive a corollary related to the
Tree Packing Conjecture.

1 Introduction

A set of (simple) graphs G1, G2, . . . , Gq are said to pack into a complete graph Kn (in short
pack) if G1, G2, . . . , Gq can be found as pairwise edge-disjoint subgraphs in Kn. Many
classical problems in Graph Theory can be stated as packing problems. In particular, H
is a subgraph of G if and only if H and the complement of G pack.

Erdős and Sós conjectured that every graph G with average degree greater than k− 1
contains every tree with k edges. This conjecture has been restated by Woźniak [16] as
follows.

Conjecture 1. Suppose that G is a graph with n vertices and T is any tree with k edges.
If |E(G)| < n(n−k)

2
, then G and T pack (into the complete graph Kn).

Ajtai, Komlós, Simonovits and Szemerédi have announced a proof of Conjecture 1
for sufficiently large k. There are many partial results concerning this conjecture. They
have been obtained either for some special families of graphs [2, 5, 6, 15] or for some
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special families of trees [7, 11, 12] or else for certain values of the parameters k and n. In
particular, the cases where n is equal to k+ 1, k+ 2, k+ 3, or k+ 4 were proved by Zhou
[17], by Slater, Teo, and Yap [13], by Woźniak [16], and by Tiner [14], respectively. We
extend these results to n = k + c for any c, provided k is sufficiently large.

Theorem 2. Let c be a positive integer and let k0(c) = γc12 ln4 c where γ is some universal
sufficiently large constant. Then for every t = 1, . . . , c and for every integer k > k0(c)
the following holds. If T is a tree with k edges and G is a graph on k + t vertices with
|E(G)| < t(k+t)

2
, then T and G pack into Kk+t.

Another famous tree packing conjecture (TPC) posed by Gyárfás [9] states that any
set of n− 1 trees Tn, Tn−1, . . . , T2 such that Ti has i vertices pack into Kn. In [8] Bollobás
suggested the following weakening of TPC

Conjecture 3. For every c > 1 there is an n(c) such that if n > n(c), then any set of c
trees T1, T2, . . . , Tc such that Ti has n− (i− 1) vertices pack into Kn.

Bourgeois, Hobbs and Kasiraj [4] showed that any three trees Tn, Tn−1, Tn−2 pack into
Kn. Recently, Balogh and Palmer [3] proved that any set of t = 1

10
n1/4 trees T1, . . . , Tt

such that no tree is a star and Ti has n − i + 1 vertices pack into Kn. We obtain the
following corollary of Theorem 2:

Corollary 4. Let c be a positive integer and let n0(c) = γc12 ln4 c where γ is some universal
sufficiently large constant. If n > n0(c), then any set of c trees T1, T2, . . . , Tc, such that
Ti has n− 2(i− 1) vertices pack into Kn.

Proof. The proof is by induction on c. For c = 1 the statement is obvious. So fix some
c > 1 and assume that the statement is true for c − 1. Let T1, T2, . . . , Tc be any set of c
trees such that Ti has n− 2(i− 1) vertices. By the induction hypothesis T1, T2, . . . , Tc−1
pack into Kn. Let G be a graph with V (G) = V (Kn) and E(G) =

⋃c−1
i=1 E(Ti). Clearly,

|E(G)| 6 (c− 1)n <
(2c− 1)n

2
.

Furthermore, Tc has n − (2c − 1) edges. Thus, by Theorem 2, G and Tc pack, which
completes the proof of the corollary.

The notation is standard. In particular |V (G)| is called the order of G and |E(G)|
is called the size of G. Furthermore, dG(v) (abbreviated to d(v) if no confusion arises)
denotes the degree of a vertex v in G, δ(G) and ∆(G) denote the minimum and the
maximum degree of G, respectively. NG(v) denotes the set of neighbors of v and, for a
subset of vertices W , NG(W ) =

⋃
w∈W N(w) \W and NG[W ] = NG(W ) ∪W .
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2 Preliminaries

In the proof we refine the approach of Alon and Yuster from [1]. However, we apply it in
a slightly different way as we choose random subsets Bi (to be defined later) in a denser
graph.

We write Bin(p, n) for the binomial distribution with n trials and success probability
p. Let X ∈ Bin(n, p). We will use the following two versions of the Chernoff bound which
follows from formulas (2.5) and (2.6) from [10] by taking t = 2µ− np and t = np− µ/2,
respectively.

If µ > E[X] = np then

Pr[X > 2µ] 6 exp(−µ/3) (1)

On the other hand, if µ 6 E[X] = np then

Pr[X 6 µ/2] 6 exp(−µ/8). (2)

Proposition 5. Let G be a graph with n vertices and at most m edges. Let V (G) =
{v1, . . . , vn} with d(v1) > d(v2) > · · · > d(vn). Then

d(vi) 6
2m

i
.

Proof. The proposition is true because

2m >
n∑

j=1

d(vj) >
i∑

j=1

d(vj) > id(vi).

The following technical lemma is the main tool in the proof. A version of it appeared
in [1].

Lemma 6. Let G be a graph with n vertices and at most m edges. Let V (G) = {v1, . . . , vn}
with d(v1) > d(v2) > · · · > d(vn). Let Ai, i = 1, . . . , n, be any subsets of V (G) with
the additional requirement that if u ∈ Ai then d(u) < a. For i = 1, . . . , n let Bi be a
random subset of Ai where each vertex of Ai is independently selected to Bi with probability
p < 1/a. Let

Ci =

(
i−1⋃
j=1

Bj

)
∩N(vi),

Di = Bi \

(
i−1⋃
j=1

N [Bj]

)
.

Then
1. Pr [|Ci| > 4mp] 6 exp(−2mp/3) for i = 1, . . . , n

2. Pr
[
|Di| 6 p|Ai|

2e

]
6 exp

(
−p|Ai|

8e

)
for i = 1, . . . , b1/(ap)c.
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Proof. Fix some vertex vi ∈ V (G).
Consider the first part of the lemma. If d(vi) 6 2mp then the probability is zero

because |Ci| 6 |N(vi)| = d(vi). So we may assume that d(vi) > 2mp. For u ∈ N(vi)
the probability that u ∈ Bj is at most p (it is either p if u ∈ Aj or 0 if u 6∈ Aj.) Thus
Pr[u ∈ Ci] 6 (i− 1)p. By Proposition 5, i 6 2m/d(vi). Hence,

Pr[u ∈ Ci] 6
2mp

d(vi)
.

Observe that |Ci| is a sum of d(vi) independent indicator random variables each of which
has success probability at most 2mp

d(vi)
. Thus, the expectation of |Ci| is at most 2mp.

Therefore, by (1), the probability of |Ci| being larger than 4mp satisfies

Pr[|Ci| > 4mp] 6 exp (−2mp/3) .

Consider now the second part of the lemma. Observe that for u ∈ Ai, the probability
that u ∈ Bi is p. On the other hand, for any j, the probability that u 6∈ N [Bj] is at least
1 − ap. Indeed, u ∈ N [Bj] if and only if u ∈ Bj or one of its neighbors belongs to Bj.
Since u ∈ Ai, it has at most a− 1 neighbors. Hence, the probability that u ∈ N [Bj] is at
most ap. Therefore, as long as i 6 1/(ap),

Pr[u ∈ Di] > p(1− ap)i−1 > p

e
.

Observe that |Di| is a sum of |Ai| independent indicator random variables, each having

success probability at least p
e
. Therefore the expectation of |Di| is at least p|Ai|

e
. By (2),

the probability that |Di| falls below p|Ai|
2e

satisfies

Pr

[
|Di| 6

p|Ai|
2e

]
6 exp

(
−p|Ai|

8e

)
.

3 Proof of Theorem 2

The proof is by induction on t. By Zhou’s result the theorem holds for t = 1. So fix some
t, 2 6 t 6 c, and assume that the statement is true for t−1. Let G′ be a (bipartite) graph
that arises from T by adding a set I ′ of t − 1 isolated vertices. Thus |V (G)| = |V (G′)|.
Clearly, G′ and G pack if and only if T and G pack.

Let V (G) = {v1, . . . , vn} where dG(vi) > dG(vi+1) and V (G′) = {v′1, . . . , v′n} where
dG′(v′i) > dG′(v′i+1). Since |E(G)| < tn/2, we have

δ(G) 6 t− 1 (3)

Suppose first that there is a vertex v ∈ V (G) with dG(v) > t+ k−1
2

. Clearly,

|E(G− v)| = |E(G)| − dG(v) <
t(k + t)

2
− t− k − 1

2
=

(t− 1)(k + t− 1)

2
.
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Thus, by the induction hypothesis, G− v and T pack. Therefore, G and T pack as well.
Hence, we may assume that

∆(G) 6 t− 1 +
k

2
(4)

Let Si ⊂ V (G) \N [vi] with the assumption that if u ∈ Si then dG(u) < 5c.

Claim 7. |Si| > n
4

+ t

Proof. By (4) each vertex of G has at least

k + t− 1− (t− 1 + k/2) = k/2

non-neighbors. Suppose that α vertices of G have degree greater than or equal to 5c.
Thus

cn > 2|E(G)| =
n∑

i=1

d(vi) > α · 5c,

and so α 6 n
5
. Therefore

|Si| > k/2− n

5
> n/4 + t.

Now, we divide the proof into two cases depending whether ∆(T ) < 60cn3/4 or ∆(T ) >
60cn3/4.

3.1 Case ∆(T ) < 60cn3/4

Recall that Si ⊂ V (G) \N [vi] with the assumption that if u ∈ Si then dG(u) < 5c.
For i = 1, . . . , n letBi be a random subset of Si where each vertex of Si is independently

selected to Bi with probability

p =
n−3/4

15 · 102c3
(5)

Let

Ci =

(
i−1⋃
j=1

Bj

)
∩N(vi),

Di = Bi \

(
i−1⋃
j=1

N [Bj]

)
.

Claim 8. The following conditions hold simultaneously with positive probability:
1. |Ci| 6 n1/4

750c2
for i = 1, . . . , n

2. |Di| > 3 for i = 1, . . . , b300c2n3/4c.
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Proof. Recall that |E(G)| < tn
2
6 cn

2
. Thus, by Lemma 6,

Pr

[
|Ci| >

n1/4

750c2

]
6 exp

(
−n1/4

4500c2

)
<

1

2n
.

Furthermore, by Claim 7,

3 6
n1/4

12 · 103ec3
=

n−3/4 · (n/4)

15 · 102c3 · 2e
<
p|Si|
2e

.

Hence, by Lemma 6 (with a = 5c and Ai = Si), for each i 6 b1/(ap)c = b300c2n3/4c

Pr[|Di| 6 3] 6 Pr

[
|Di| 6

p|Si|
2e

]
6 exp

(
−p|Si|

8e

)
6 exp

(
− n1/4

48 · 103ec3

)
<

1

600c2n3/4
.

Thus, by the union bound, each part of the lemma holds with probability greater than
1/2. Hence both hold with positive probability.

Therefore, we may fix sets B1, . . . , Bn satisfying all the conditions of Claim 8 with re-
spect to the cardinalities of the sets Ci and Di. We construct a packing f : V (G)→ V (G′)
in three stages. At each point of the construction, some vertices of V (G) are matched to
some vertices of V (G′), while the other vertices of V (G) and V (G′) are yet unmatched.
Initially, all vertices are unmatched. We always maintain the packing property, that is
for any u, v ∈ V (G) if uv ∈ E(G) then f(u)f(v) 6∈ E(G′).

In Stage 1 we match certain number of vertices ofG that have the largest degrees. After
this stage, by the assumption that ∆(G′) 6 60cn3/4, bothG andG′ do not have unmatched
vertices of high degree (vertices of high degree are the main obstacle in packing). This
fact enables us to complete the packing in Stages 2 and 3.

Stage 1 Let x be the largest integer such that dG(vx) > n1/4

300c
. Thus, by Proposition 5,

x 6 300c2n3/4 (6)

This stage is done repeatedly for i = 1, . . . , x and throughout it we maintain the
following two invariants

1. At iteration i we match vi with some vertex f(vi) of G′ such that dG′ (f(vi)) 6 3.

2. Furthermore, we match all yet unmatched neighbors of f(vi) to some vertices of Bi

(this way all neighbors of f(vi) in G′ are matched to vertices of
⋃i

j=1Bj).

To see that this is possible, consider the i’th iteration of Stage 1 where vi is some yet
unmatched vertex of G. Let Q′ be the set of all yet unmatched vertices of G′ having
degree less than or equal to 3. Note that, by Proposition 5, the number of vertices of
degree less than or equal to 3 in G′ is at least n/2. Hence,

|Q′| > n/2− 4(i− 1) > n/2− 4x > n/2− 1200c2n3/4 > n/3.
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Let X be the set of already matched neighbors of vi and let Y ′ = NG′(f(X)). Thus, the
valid choice for f(vi) would be a vertex of Q′ \ Y ′. To see that such a choice is possible,
it is enough to show that |Q′| > |Y ′|. Let X = X1 ∪ X2 with X1 ⊆ {v1, . . . , vi−1} and
X2 ⊆ B1∪· · ·∪Bi−1. Hence X1 6 x and |X2| = |Ci|. Thus, by the first invariant of Stage
1, and by (6) and Claim 8

|Q′| − |Y ′| > n/3− 3|X1| −∆(G′)|X2| > n/3− 3x− 60cn3/4|Ci|

> n/3− 900c2n3/4 − 60cn3/4 n
1/4

750c2

= n/3− 6n/(75c)− 900c2n3/4 > n/4− 900c2n3/4 > 0.

In order to maintain the second invariant it remains to match the yet unmatched neighbors
of f(vi) with vertices from Bi. Let R′ be the set of neighbors of f(vi) in G′ that are still
unmatched. Recall that |R′| 6 3. We have to match vertices of R′ with some vertices

of Bi. Since Di = Bi \
(⋃i−1

j=1N [Bj]
)

, a valid choice of such vertices is by taking an

|R′|-subset of Di. By Claim 8 and by (6), |Di| > 3 for i = 1, . . . , x. Furthermore, since
each v ∈ Di satisfies dG(v) < 5c 6 dG(vx), Di ∩ {v1, . . . , vi−1} = ∅. Thus, all vertices of
Di are still unmatched. Hence, such a choice is possible.

Stage 2 Let M1 and M ′
1 be the set of matched vertices of G and G′ after Stage 1,

respectively. Clearly |M1| = |M ′
1| 6 4x < n/9. Hence G′ −M ′

1 has an independent set J ′

with |J ′| > 4n/9.
In Stage 2 we match the vertices from V (G′) \ (M ′

1 ∪ J ′), one by one, with some
n − |M1| − |J ′| vertices from V (G) \M1. Suppose that v′ ∈ V (G′) \ (M ′

1 ∪ J ′) is still
unmatched. Let Q be the set of all yet unmatched vertices of G. Clearly, |Q| > |J ′| > 4n/9
since the vertices of J ′ remain unmatched in every step of Stage 2. Let X ′ be the set
of already matched neighbors of v′. Let Y = NG(f−1(X ′)). Thus, the valid choice for
f−1(v′) would be a vertex of Q \ Y . To see that such a choice is possible we will prove
that |Q \ Y | > 0.
Recall that

|X ′| 6 60cn3/4.

What is more, by the second invariant of Stage 1, the neighbors of each f(vi), i = 1, . . . , x,
are already matched. Hence,

X ′ ⊂ V (G′) \ {f(v1), . . . , f(vx)}

and so
f−1(X ′) ⊂ V (G) \ {v1, . . . , vx}.

Thus, by the definition of x, for each u′ ∈ X ′ we have

∣∣NG(f−1(u′))
∣∣ 6 n1/4

300c
. (7)
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Therefore,

|Q \ Y | > |Q| − |X ′| n
1/4

300c
> 4n/9− 60cn3/4 n

1/4

300c
> 0.

Stage 3 Let M2 and M ′
2 be the sets of matched vertices of G and G′ after Stage

2, respectively. In order to complete a packing of G and G′, it remains to match the
vertices of V (G) \M2 with the vertices of J ′. Consider a bipartite graph B whose sides
are V (G) \M2 and J ′. For two vertices u ∈ V (G) \M2 and v′ ∈ J ′, we place an edge
uv′ ∈ E(B) if and only if it is possible to match u with v′ (by this we mean that mapping
u to v′ will not violate the packing property). Thus u is not allowed to be matched to at
most dG(u)∆(G′) vertices of J ′. Hence

dB(u) > |J ′| − n1/4

300c
60cn3/4 > |J ′| − 2n/9 > |J ′|/2.

Now we will evaluate dB(v′). We define X ′ and Y in the same way as in Stage 2. Then

(7) holds again. Hence, v′ is not allowed to be matched to at most ∆(G′)n
1/4

300c
vertices of

V (G) \M2. Thus,

dB(v′) > |J ′| − n1/4

300c
60cn3/4 > |J ′|/2.

Therefore, by Hall’s Theorem there is a perfect matching in B, and so a packing of G and
G′.

3.2 Case ∆(T ) > 60cn3/4

In this case we will follow the ideas from the previous subsection. However, the key
difference is that now both G and G′ may have vertices of high degrees. Because of this
obstacle, a packing has two more stages at the beginning. After a preparatory Stage 1, in
Stage 2 we match the vertices of G that have high degrees with vertices of G′ that have
small degrees. Then in Stage 3, we match the vertices of G′ having high degree. This
stage is very similar to Stage 1 from the previous subsection, but with the change of the
role of G and G′. Finally, we complete the packing in Stages 4 and 5, which are analogous
to Stages 2 and 3 from the previous subsection.

Let

q =
n1/4

59c
. (8)

Let P ′ ⊆ NG′(v′1) be the set of neighbors of v′1 such that each vertex in P ′ has degree at
most q in G′, and every neighbor different from v′1 of every vertex from P ′ has degree at
most q in G′.

Claim 9. |P ′| > cn3/4.
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Proof. Note that every vertex v′ ∈ NG′(v′1) \ P ′ has the property that dG′(v′) > q or v′

has a neighbor w′ 6= v′1 such that dG′(w′) > q. Therefore,

n = |V (G′)| > (∆(G′)− |P ′|)q > (60cn3/4 − |P ′|)n
1/4

59c
,

and the statement follows.

We construct a packing f : V (G) → V (G′) in five stages. At each point of the
construction, some vertices of V (G) are matched to some vertices of V (G′), while the
other vertices of V (G) and V (G′) are yet unmatched. Initially, all vertices are unmatched.

Stage 1. We first match vn with v′1, i.e. f(vn) = v′1. Next we match the neighbors of vn
with dG(vn) vertices from I ′. This is possible since, by (3), dG(vn) = δ(G) 6 t− 1 = |I ′|.
Moreover, since I ′ is a set of isolated vertices, this maping does not violate the packing
property.

Stage 2. Let z be the largest integer such that dG(vz) > n1/4. Since |E(G)| < cn/2,
by Proposition 5

z 6 cn3/4. (9)

This stage is done repeatedly for i = 1, . . . , z and throughout it we maintain the following
invariants:

1. At iteration i we match vi (if it is not matched in Stage 1) with some vertex f(vi)
of G′ such that f(vi) ∈ P ′ ∪ I ′.

2. Furthermore, we also make sure that all neighbors of f(vi) in G′ are matched to
vertices of Si ∪ {vn}.

Note that because G′ is acyclic and since there are no edges (in G) between vi and Si∪{vn}
for those vi that are non-neighbors of vn, such a mapping does not violate the packing
property.

To see that this mapping is possible, consider the i’th iteration of Stage 2, where vi is
a vertex of G with dG(vi) > n1/4 > 5c. In particular vi 6∈

⋃i−1
j=1 Sj. Thus, if vi is already

matched, then it was matched in Stage 1 and so f(vi) ∈ I ′. Then, the second invariant
of Stage 2 is automatically preserved because f(vi) is isolated.

Therefore, we may assume that vi is yet unmatched. In this case we may take f(vi)
to be any vertex of P ′. Indeed, note that |P ′| > z and before iteration i, the number of
already matched vertices of P ′ was at most i− 1.

Furthermore, observe that since v′1 is a common neighbor of all f(vj), j = 1, . . . , i, at
iteration i the overall number of matched vertices is at most

δ(G) + 1 + iq 6 t+ zq 6 t+ n/59. (10)

Let R′ be the set of neighbors of f(vi) in G′ that are still unmatched. Note that R′ contains
all neighbors of f(vi) apart from v′1. Thus, in order to maintain the second invariant, it
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suffices to match vertices of R′ with some vertices of Si. Note that by the choice of P ′

and since v′1 is already matched, |R′| 6 q− 1. Let Q be the set of yet unmatched vertices
of Si. By Claim 7 and formula (10),

|Q| > n/4 + t− (t+ n/59) >
n1/4

59c
> q − 1.

Hence, this is possible.
Before we describe Stage 3, we need some preparations. Let M2 be the set of all

vertices of G that were matched in Stage 1 or 2. Similarly, let M ′
2 be the set of all vertices

of G′ that were matched in Stage 1 or 2. Recall that

|M2| = |M ′
2| 6 t+ zq 6 t+ n/59. (11)

Let H = G[V \M2] be a subgraph of G induced by yet unmatched vertices. Similarly let
H ′ = G′[V ′ \M ′

2]. Note that since G′ is acyclic and by the construction of Stages 1 and 2,

dG′(v′) 6 dH′(v′) + 1 for each v′ ∈ V ′ \M ′
2. (12)

Let V (H ′) = {w′1, . . . , w′r} with dH′(w′1) > dH′(w′2) > · · · > dH′(w′r). By (11),

r > n− (t+ n/59) > 3n/4. (13)

Let y be the largest integer such that dH′(w′y) > 360
√
n. Then, by Proposition 5,

y 6
2n

360
√
n

=

√
n

180
. (14)

For each 1 6 i 6 r we define a set S ′i ⊆ V (H ′) \ NH′ [w′i] to be a largest independent
set of vertices but with the additional requirement that each w′ ∈ S ′i has dH′(w′) < 180.

Claim 10. |S ′i| > n/10 for i > 1.

Proof. Note that each w′i has at least

r − dH′(w′i)− 1 > r − dG′(w′i)− 1 > r − dG′(v′2)− 1 > r − n

2
− 1 >

3

4
n− n

2
− 1 =

n

4
− 1

non-neighbors. Since H ′ is a forest, the subgraph of H ′ induced by all non-neighbors of
w′i has an independent set of cardinality at least n/4−1

2
> n/9. Let α be the number of

vertices of H ′ that have degree greater than or equal to 180. Thus

2n >
r∑

j=1

dH′(w′j) > α · 180,

and so α 6 n
90

. Therefore

|S ′i| > n/9− n

90
= n/10.
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For i = 1, . . . , r let B′i be a random subset of S ′i where each vertex of S ′i is independently
selected to B′i with probability 1/

√
n. Let

C ′i =

(
i−1⋃
j=1

B′j

)
∩N(w′i),

D′i = B′i \

(
i−1⋃
j=1

NH′ [B′j]

)
.

Claim 11. The following conditions hold simultaneously with positive probability:
1. |C ′i| 6 4

√
n for i = 1, . . . , r

2. |D′i| >
√
n

20e
for i = 1, . . . , y.

Proof. Clearly, |E(H ′)| < n. By Lemma 6 (with m = n, p = 1/
√
n and Ai = S ′i and

a = 180),

Pr
[
|C ′i| > 4

√
n
]
6 exp(−2

√
n/3) <

1

2n
6

1

2r
.

Furthermore, by Claim 10,
√
n

20e
=

(1/
√
n)(n/10)

2e
6
p|S ′i|
2e

.

Hence, by the second part of Lemma 6 and by (14), for i 6 y 6 b
√
n/180c we have

Pr

[
|D′i| 6

√
n

20e

]
6 Pr

[
|D′i| 6

p|S ′i|
2e

]
6 exp

(
−p|S

′
i|

8e

)
6 exp

(
−(1/

√
n)(n/10)

8e

)
= exp

(
−
√
n

80e

)
<

90√
n
6

1

2y
.

Thus, by the union bound, each part of the lemma holds with probability greater than
1/2. Hence both hold with positive probability.

Now we are in the position to describe the next stages of a packing. By Claim 11 we
may fix independent sets B′1, . . . , B

′
r satisfying all the conditions of Claim 11 with respect

to the cardinalities of the sets C ′i and D′i. Let W = {v1, . . . , vz}. Recall that

∆(G−W ) < n1/4. (15)

Stage 3 This stage is done repeatedly for i = 1, . . . , y and throughout it we maintain
the following (similar to those from Stage 2) invariants

1. At iteration i we match w′i ∈ V (H ′) with some yet unmatched vertex u = f−1(w′i)
of H such that dG(u) 6 2c.

2. Furthermore, we match all yet unmatched neighbors in H of f−1(w′i) to vertices of
B′i (this way all neighbors of f−1(w′i) in H are matched to vertices of

⋃i
j=1B

′
j).
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To see that this is possible, consider the i’th iteration of Stage 3 where w′i is some yet
unmatched vertex of H ′. Let Q be the set of all yet unmatched vertices of G having
degree less than or equal to 2t. Note that, by Proposition 5, the number of vertices of
degree less than or equal to 2t in G is at least n/2. Hence, by (11) and (14), and since
t 6 c,

|Q| > n/2− |M2| − 2ty > n/2− t− n/59− c
√
n/90 > n/4. (16)

Let X ′ be the set of already matched neighbors (in G′) of w′i and let Y = NG(f−1(X ′)).
Thus, the valid choice for f−1(w′i) would be a vertex of Q \ Y . Let X ′ = X ′1 ∪ X ′2 ∪ X ′3
such that X ′1 ⊂ M ′

2 = V (G′) \ V (H ′), X ′2 ⊂ {w′1, . . . , w′i−1} and X ′3 ⊂
⋃i−1

j=1B
′
i. By (12),

|X ′1| 6 1. Moreover if v′ ∈ X ′1 then, by the second invariant of Stage 2, v′ 6∈ NG′(v′1).
Thus v′ = v′1 or v′ is at distance 2 from v′1. Hence, either f−1(v′) = vn or f−1(v′) belongs
to some set Sj, j ∈ {1, . . . , z}. Therefore, dG (f−1(v′)) 6 5c. Furthermore, |X ′2| 6 i − 1
and, by Claim 11, |X ′3| 6 4

√
n. Hence, by (15) and by the first invariant of Stage 3,

|Y | 6 5c|X ′1|+ 2c|X ′2|+ |X ′3| · n1/4 < n/4 (17)

Therefore, by (16), |Q \ Y | > 0.
In order to maintain the second invariant we have to match yet unmatched neighbors

of f−1(w′i) with some vertices of B′i. Let R be the set of neighbors of f−1(w′i) in G that
are still unmatched. Recall that by the first invariant (of Stage 3) |R| 6 2c. Since D′i =

B′i\
(⋃i−1

j=1N [B′j]
)

, a natural choice of such vertices is taking an |R|-subset of D′i. However,

unlike in Stage 1 in the previous subsection, this subset cannot be chosen arbitrarily
because of the existence of possible edges between vertices from P ′′ := NG′(P ′)\{v′1} and
D′i. For this reason, we have to match the vertices from R carefully. We match them,
one by one, with some vertices from D′i in the following way. Suppose that v ∈ R is
yet unmatched. Let D′ be the set of yet unmatched vertices of D′i. Since each w′ ∈ D′i
satisfies dH′(w′) < 180 6 360

√
n, D′i ∩ {w′1, . . . , w′i−1} = ∅. Hence,

|D′| > |D′i| − |R| >
√
n/(20e)− 2c. (18)

Let X2 be the set of those already matched neighbors u of v ∈ R which satisfy f(u) ∈ P ′′.
Let Y ′2 = NG′(f(X2)). Thus, the valid choice for f(v) would be a vertex from D′ \ Y ′2 .
Recall, that by the definition of z, |X2| 6 dG(v) 6 n1/4. Furthermore, by the definition
of P ′, NG′(f(u)) 6 q. Thus, by (8) and (18),

|D′ \ Y ′2 | >
√
n/(20e)− 2c−

√
n/59 > 0.

Thus, an appropriate choice for f(v) is possible.
Stage 4 Let M3 be the set of matched vertices of G after Stage 3. Similarly, let M ′

3 be
the set of matched vertices of G′ after Stage 3. Note that, by (14) and (11),

|M3| = |M ′
3| 6 |M2|+ (2c+ 1)y 6 t+ n/59 + (2c+ 1)

√
n/180 < n/4 (19)
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Let W ′ = {w′1, . . . , w′y} ∪ {v′1}. By (12),

∆(G′ −W ′) 6 ∆(H ′ −W ′) + 1 6 360
√
n+ 1. (20)

Furthermore, |V (G′) \M ′
3| > n − n/4 = 3n/4. Thus G′ −M ′

3 has an independent set J ′

with |J ′| > 3n/8. Let K ′ = V (G′) \ (J ′ ∪M ′
3).

In Stage 4 we match vertices from K ′ one by one, with arbitrary yet unmatched vertices
of G. Suppose that v′ ∈ K ′ is still unmatched. Let Q be the set of all yet unmatched
vertices of G. Clearly, |Q| > |J ′| > 3n/8 since the vertices of J ′ remain unmatched
in every step of Stage 4. Let X ′ be the set of already matched neighbors of v′. Let
Y = NG(f−1(X ′)). Thus, the valid choice for f−1(v′) would be a vertex of Q \ Y . By
(20), |X ′| 6 360

√
n+ 1. Furthermore, by the second invariant of Stage 2,

X ′ ⊆ V (G′) \ {f(v1), . . . , f(vz)}

and so
f−1(X ′) ⊆ V (G) \W.

Hence, by (15),
|Y | 6 |X ′| · n1/4 < 3n/8.

Hence
|Q \ Y | > 0,

and so the choice for f−1(v′) is possible.
Stage 5 Let M4 and M ′

4 be the sets of matched vertices of G and G′, respectively, after
Stage 4. In order to complete a packing of G and G′ it remains to match the vertices of
J ′ with the yet unmatched vertices of G. Consider a bipartite graph B whose sides are
V (G)\M4 and J ′. For two vertices u ∈ V (G)\M4 and v′ ∈ J ′, we place an edge uv′ ∈ E(B)
if and only if it is possible to match u with v′ (by this we mean that mapping u to v′ will
not violate the packing property). Recall that, by (15), dG(u) 6 n1/4. Moreover, by the
construction of Stage 1 and by the second invariant of Stage 3, f(NG(u)) ⊂ V (G′) \W ′.
Thus, by (20), u is not allowed to be matched to at most n1/4 (360

√
n+ 1) vertices of J ′.

Therefore,

dB(u) > |J ′| − n1/4
(
360
√
n+ 1

)
> |J ′| − 3n/16 > |J ′|/2.

Similarly, by (20), dG′(v′) 6 360
√
n + 1. Moreover, by the second invariant of Stage 2,

f−1(NG′ [v′]) ⊂ V (G) \W . Therefore, by (15),

dB(v′) > |J ′| − n1/4
(
360
√
n+ 1

)
> |J ′|/2.

Therefore, by Hall’s Theorem there is a perfect matching in B, and so a packing of G and
G′. This completes the inductive step, and so the theorem is proved. 2
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