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Abstract

Given graphs G and H, G is H-saturated if H is not a subgraph of G, but for
all e /∈ E(G), H appears as a subgraph of G + e. While for every n > |V (H)|,
there exists an n-vertex graph that is H-saturated, the same does not hold for
induced subgraphs. That is, there exist graphs H and values of n > |V (H)|, for
which every n-vertex graph G either contains H as an induced subgraph, or there
exists e /∈ E(G) such that G + e does not contain H as an induced subgraph. To
circumvent this Martin and Smith [12] make use of a generalized notion of “graph”
when introducing the concept of induced saturation and the induced saturation
number of graphs. This allows for edges that can be included or excluded when
searching for an induced copy of H, and the induced saturation number is the
minimum number of such edges that are required.

In this paper, we show that the induced saturation number of many common
graphs is zero. This yields graphs that are H-induced-saturated. That is, graphs
such that no induced copy of H exists, but adding or deleting any edge creates an
induced copy of H. We introduce a new parameter for such graphs, indsat∗(n,H),
which is the minimum number of edges in an H-induced-saturated graph. We
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provide bounds on indsat∗(n,H) for many graphs. In particular, we determine
indsat∗(n,H) completely when H is the paw graph K1,3 + e, and we determine
indsat∗(n,K1,3) within an additive constant of four.

1 Background and Introduction

1.1 Background and Definitions

A well-known graph parameter is the saturation number, defined for a graph H and a
whole number n as the minimum number of edges in a graph G on n vertices such that
H is not a subgraph of G, but H occurs if any edge is added to G. Formally,

sat(n,H) = min{|E(G)| : G has n vertices, H 6⊆ G, and ∀e /∈ E(G), H ⊆ G+ e}.

Determining the saturation number for a given graph H has proven, in general, quite
difficult. For more information on the saturation number, see the dynamic survey of
Faudree, Faudree, and Schmitt [6].

A natural attempt at defining an induced variant of graph saturation would be to
state that an n-vertex graph G is H-induced-saturated if G is H-free (that is, without H
as an induced subgraph) and for all e /∈ E(G), G+ e contains H as an induced subgraph.
Unfortunately, this is not always well-defined. That is, there exist graphs H and values of
n > |V (H)| for which every n-vertex graph G either contains H as induced subgraph, or
there exists e /∈ E(G) such that G+e is H-free. A simple example is n = 4 and H = K1,3.

In this paper, we consider a variant of the saturation number introduced by Martin
and Smith in 2012 that looks for induced copies of H, and considers deleting as well as
adding edges. To create a well-defined parameter, Martin and Smith [12] make use of
trigraphs, objects also used by Chudnovsky and Seymour in their structure theorems on
claw-free graphs [3].

Definition 1.1. A trigraph T is a quadruple (V (T ), EB(T ), EW (T ), EG(T )), where V (T )
is the vertex set and the other three elements partition

(
V (T )
2

)
into a set EB(T ) of black

edges, a set EW (T ) of white edges, and a set EG(T ) of gray edges. These can be thought
of as edges, nonedges, and potential edges, respectively. For any e ∈ EB(T ) ∪ EW (T ),
let Te denote the trigraph where e is changed to a gray edge, i.e. Te = (V (T ), EB(T ) −
e, EW (T )− e, EG(T ) + e).

A realization of T is a graph G = (V (G), E(G)) with V (G) = V (T ) and E(G) =
EB(T ) ∪ S for some S ⊆ EG(T ). Let R(T ) be the family of graphs that are a realization
of T .

A trigraph T is H-induced-saturated if no realization of T contains H as an induced
subgraph, but H occurs as an induced subgraph of some realization whenever any black
or white edge of T is changed to gray.

The induced saturation number of a graph H with respect to n, written indsat(n,H),
is the minimum number of gray edges in an H-induced-saturated trigraph with n vertices.
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Formally,

indsat(n,H) = min{|EG(T )| : |V (T )| = n,∀G ∈ R(T ), H 66 G,

and ∀e ∈ EB(T ) ∪ EW (T ), H 6 G′, where G′ ∈ R(Te)}.

Notice that a trigraph with EG(T ) = ∅ has a unique realization, so if indsat(n,H) = 0,
there is a graph G that has no induced copy of H yet adding or removing any edge creates
an induced copy of H. We will call such a graph H-induced-saturated.

The complement of a trigraph T , denoted T , is the trigraph with V (T ) = V (T ),
EB(T ) = EW (T ), EW (T ) = EB(T ), and EG(T ) = EG(T ).

1.2 Notation

A trivial component of a graph is an isolated vertex. For a graph G, we use v(G) for the
number of vertices and e(G) for the number of edges in G. We let Pn denote the path
on n vertices and Cn the cycle on n vertices. Kn is the complete graph on n vertices,
and for k > 2, Ka1,...,ak is the complete multipartite graph with parts of size a1, . . . , ak.
K+

1,3 is the paw, which is obtained by adding a single edge to K1,3. For a set S ⊆ V (G),
G[S] is the subgraph of G induced by S, and if S = {v1, . . . , vp}, we will sometimes write
G[v1, . . . , vp]. For a vertex v ∈ V (G), NG(v) (or N(v), if G is clear from context) is the
set of neighbors of v in G, and N [v] = N(v) ∪ {v}. We use degG(v) or deg(v) to denote
the degree of v, that is, |N(v)|. In a trigraph, the black (resp. gray) degree of a vertex is
the number of black (resp. gray) edges incident to that vertex. We say a set S of vertices
dominates G, and we call S a dominating set, if every vertex of G−S is adjacent to some
vertex in S; if S = {v}, we say v is a dominating vertex. Similarly, a vertex u dominates a
vertex set S if u is adjacent to every vertex in S. For an integer n, we let [n] = {1, . . . , n}.

If G and H are graphs, then G ∪H denotes their disjoint union. The graph G ∨H,
known as the join of G and H, is obtained by taking disjoint copies of G and H and
making each vertex u ∈ V (G) adjacent to each vertex v ∈ V (H). The Cartesian product
of G and H, denoted G�H, is the graph with vertex set V (G)× V (H), where (u1, u2) is
adjacent to (v1, v2) if either u1 = v1 and u2 is adjacent to v2 in H, or if u2 = v2 and u1 is
adjacent to v1 in G.

Other notation will be defined as it is used, or see [13] for any undefined terms.

1.3 Observations and Previous Results

By definition, the only trigraphs on fewer than v(H) vertices that are H-induced-saturated
are those in which all edges are gray. Thus we will usually assume that n > v(H) when
we discuss indsat(n,H).

The following theorem summarizes the results of Martin and Smith [12]:

Theorem 1.2. Let H be a graph.

• For all n > v(H), indsat(n,H) 6 sat(n,H). By [9], sat(n,H) = O(n), so in
particular indsat(n,H) = O(n).
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• For all n > m > 3, indsat(n,Km) = sat(n,Km). (Note that sat(n,Km) was deter-
mined by Erdős, Hajnal, and Moon in [5].)

• For all n > m > 2, and for e ∈ E(Km), indsat(n,Km − e) = 0. In particular, for
all n > 3, indsat(n, P3) = 0.

• For all n > 4, indsat(n, P4) =
⌈
n+1
3

⌉
.

We also make the following observation, which was stated in [12] for H = P4:

Observation 1.3. A trigraph T is H-induced-saturated if and only if T is H-induced-
saturated. In particular, indsat(n,H) = indsat(n,H).

Proof. Suppose a trigraph T has a realization G such that H is an induced subgraph of
G. Then H is an induced subgraph of G. Using the definition of T , G is a representation
of T . It follows that a trigraph T is H-induced-saturated if and only if T is H-induced-
saturated.

1.4 Minimally H -induced-saturated Graphs

In this paper we show that indsat(n,H) is zero for several graphs, which as noted above,
means that there exists a graph that is H-induced-saturated. This leads to the natural
question: What is the minimum number of edges in such a graph?

Definition 1.4. For a graph H and whole number n with indsat(n,H) = 0, we define

indsat∗(n,H) := min{e(G) : v(G) = n and G is H-induced-saturated}.

We say a graph G on n vertices with indsat∗(n,H) edges is minimally H-induced-
saturated.

By Observation 1.3, the maximum number of edges in an n-vertex
H-induced-saturated graph is

(
n
2

)
− indsat∗(n,H).

The paper proceeds as follows. In Section 2, we characterize the
K+

1,3-induced-saturated graphs, which in turn completely determines indsat∗(n,K+
1,3). Sec-

tion 3 contains a construction that shows that indsat(n,H) = 0 when H is a star, and gives
bounds on indsat∗(n,H) for stars. Section 4 studies indsat∗(n,K1,3) in detail, showing
that the upper bound given in Section 3 is correct for K1,3. In Section 5, we turn our atten-
tion to C4, proving that indsat(n,C4) = 0 and giving an upper bound on indsat∗(n,C4).
We also use the complement of C4 to show that indsat(n, kK2) = 0 with a constant upper
bound on indsat∗(n, kK2). Section 6 gives an upper bound on indsat∗(n,H) when H is
an odd cycle or a minor modification of an even cycle. Finally, in Section 7, we introduce
the induced-saturation number of a family of graphs and show that while every graph in
a family may have induced-saturation number zero, the family itself could have nonzero
induced-saturation number.
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2 The Paw

In this section we will prove the following theorem, which will allow us to completely
determine indsat∗(n,K+

1,3) for n > 7.

Theorem 2.1. A graph is K+
1,3-induced-saturated if and only if it is as described in Con-

struction 2.2.

The graphs in Construction 2.2 do not exist for n < 7, and as Theorem 2.1 shows
that these are the only K+

1,3-induced-saturated graphs, it follows that indsat(n,K+
1,3) is

nonzero for n ∈ {4, 5, 6}. The exact values for such n are provided in Table 1. In this
table, we see that for n ∈ {5, 6}, there are K+

1,3-induced-saturated trigraphs on n vertices
that have only one gray edge. This establishes indsat(n,K+

1,3) = 1 for such n. For n = 4,
we have a 4-vertex, K+

1,3-induced-saturated trigraph with two gray edges. To show that
indsat(4, K+

1,3) = 2, we argue that any 4-vertex trigraph with only one gray edge is not
K+

1,3-induced-saturated.
Suppose T is a K+

1,3-induced-saturated trigraph on 4 vertices with one gray edge.
Clearly, T has at least two black edges, otherwise changing a white edge to gray does not
result in a realization with an induced K+

1,3. Now suppose T has no white edges. Since
it has precisely one gray edge, its black edges form K4 − e, and changing the black edge
whose endpoints have black degree three to a gray edge does not result in a realization
with an induced K+

1,3. Next, suppose T has at least two white edges. Since K+
1,3 has

precisely two nonedges, changing a black edge to gray does not result in a realization with
an induced K+

1,3, unless T already had such a realization. Therefore T has precisely one
white edge. If the gray edge of T is incident to the white edge, then K+

1,3 is a realization,
so the black edges induce C4. Since C4 6⊆ K+

1,3, changing the white edge to gray does not
create an induced K+

1,3. Thus, this trigraph does not exist, and indsat(4, K+
1,3) = 2.

trigraph

indsat(4, K+
1,3) = 2

indsat(5, K+
1,3) = 1

indsat(6, K+
1,3) = 1

Table 1: Values of indsat(n,K+
1,3) for 4 6 n 6 6 and trigraphs realizing those values
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Having established indsat(n,K+
1,3) for small values of n, we now present our construc-

tion.

Construction 2.2. Let G be a graph with at most one trivial component, where each
nontrivial component is complete multipartite. Further, each nontrivial component has
at least three parts, at most one of which contains only one vertex, and the remainder of
which have order at least three.

Notice that graphs such as those in Construction 2.2 exist for all n > 7. In particular,
any complete tripartite graph with parts of the appropriate order will suffice.

Proposition 2.3. The graph G in Construction 2.2 is K+
1,3-induced-saturated.

Proof. Since K+
1,3 is not an induced subgraph of a complete multipartite graph, G contains

no induced K+
1,3. Suppose we add an edge xy such that x and y are in distinct components,

say Fx and Fy, respectively. Since at least one of these components, say Fx, has at least
three parts, x is in some triangle xab in Fx. Because y is in a different component, y is
adjacent to x but not a or b. Thus {x, y, a, b} induces a K+

1,3.
Suppose we add an edge xy such that x and y are in the same component. Then in

particular, they are in the same part. This part has at least two vertices, so by construction
it has at least three vertices; choose z distinct from x and y from this part, and let a be
in another part of the component. Then {x, y, z, a} induces a K+

1,3.
Suppose we delete an edge xy. Then x and y were in different parts of one component,

say F . As F is complete multipartite with at least three parts, there exists a vertex z in
a third part of that component. Since at most one part has only one vertex, there is a
vertex a in the same part as either x or y; say x. Then {x, y, z, a} induces a K+

1,3.

The induced-saturation number indsat(n,K+
1,3) is an immediate corollary of this result.

Corollary 2.4. For n > 7, indsat(n,K+
1,3) = 0.

Since indsat(n,K+
1,3) = 0 for n > 7, we turn our attention to Theorem 2.1, which will

allow us to determine indsat∗(n,K+
1,3). To prove the theorem, we begin by making several

observations.

Lemma 2.5. Let G be a K+
1,3-induced-saturated graph. Then G has the following proper-

ties:

(a) Every edge of G is in a triangle.

(b) The neighborhood of any vertex of G is a complete multipartite graph.

(c) Given any non-isolated vertex v ∈ V (G), the set N(x) \N [v] is the same for every
x ∈ N(v). Call this set S(v). If S(v) is not empty, then S(v) is an independent set.
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Proof. Lemma 2.5(a) holds because deleting any edge in G creates an induced K+
1,3. As a

consequence, any vertex has either degree zero or degree at least two.
Since G does not contain an induced K+

1,3, the neighborhood of any vertex cannot
contain an induced copy of K2 ∪ K1. This is equivalent to the neighborhood being a
complete multipartite graph. This gives us Lemma 2.5(b).

To prove Lemma 2.5(c), suppose there exists x ∈ N(v) that has a neighbor not in
N [v]. (If no such x exists, the claim holds with S = ∅.) Let S := N(x)\N [v]. If G[S] has
an edge ss′, then G[v, x, s, s′] is a K+

1,3. Since G is K+
1,3-induced-saturated, we conclude

that S is independent.
By Lemma 2.5(a), there exists y ∈ N(v)∩N(x). If any element s ∈ S is not adjacent

to y, then G[v, x, y, s] is a K+
1,3 with s as the pendant vertex. Therefore, S ⊆ N(y), but

also N(y)\N [v] ⊆ S or else we would have a K+
1,3. Because N(v) is complete multipartite

by Lemma 2.5(b), every vertex in N(v) \ {x, y} is adjacent to x or y. By symmetry, we
conclude that for every z ∈ N(v), N(z) \N [v] = S.

We proceed to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let G be a K+
1,3-induced-saturated graph. It is clear that G has

at most one nontrivial component, since adding an edge between two isolated vertices
does not create an induced K+

1,3. We now show that every nontrivial component of G
is a complete multipartite graph. Let v be a non-isolated vertex in G and let S be the
set given by Lemma 2.5(c). By Lemmas 2.5(b) and 2.5(c), G[N [v] ∪ S] is a complete
multipartite graph, with v and S sharing a part. So, we need only show N [v] ∪ S is a
component of G. If not, then there exists some vertex s ∈ S with a neighbor t 6∈ N [v]∪S
since we have included the neighborhood of every x ∈ N [v] and S is an independent set.
If there exists an edge xy in G[N(v)], then G[x, y, s, t] is a K+

1,3, so N(v) is an independent
set. This violates Lemma 2.5(a).

Now, by Lemma 2.5(a), every nontrivial component ofGmust have at least three parts.
Next, we show that no part in any component of G has order two, and each component
has at most one parts of order one. Suppose x and y either make up a part of order two,
or are each a part of order one in a component F . Then {x, y} dominates F \ {x, y}, and
so x and y do not appear together in an induced claw, so adding or deleting the edge xy
does not create an induced paw. Hence, G being K+

1,3-induced-saturated implies that it
must be as described by Construction 2.2.

Corollary 2.6. For n > 7, let n ≡ r mod 7, where 0 6 r 6 6. Then

indsat∗(n,K+
1,3) =

{ 15

7
n if r = 0

15bn/7c+ 4(r − 1) if r 6= 0
.

Proof. Let G be a minimally K+
1,3-induced-saturated graph on n vertices. From Theorem

2.1, each nontrivial component of G is a complete multipartite graph with at least three
parts. If some nontrivial component F of G has more than three parts, then we form
a K+

1,3-induced-saturated graph with strictly fewer edges by dropping edges between two
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of the parts and forming a single larger part. Thus each nontrivial component of G is
tripartite.

The number of edges of a complete tripartite graph on m vertices with parts of size
s, t, and m− (s+ t) is given by (m− [s+ t])(s+ t)+st. Given the constraints s > 1, t > 3,
and m > t, we see that (m − (s + t))(s + t) is minimized when s + t is minimized, i.e.
s + t = 4; also st is minimized when s + t is minimized. Therefore, K1,3,m−4 obtains the
smallest number of edges among all complete tripartite graphs on m vertices.

Now, we may assume G has components F0, F1, . . . , Fk with v(F0) ∈ {0, 1} and for
i > 0, Fi = K1,3,ni−4, where v(F0) +

∑k
i=1 ni = n. Then:

e(G) =
k∑

i=1

e(Fi) =
k∑

i=1

(4ni − 13) = 4n− 13k − 4v(F0).

Clearly, this is minimized by taking k as big as possible and, subject to this, v(F0) = 1.
That is, we take k = bn/7c and

v(F0) =

{
0 if 7 divides n
1 else.

Observation 2.7. Given H for which indsat∗(n,H) is defined for all sufficiently large
n, the function indsat∗(n,H) is not necessarily monotone in n. In particular, from
Corollary 2.6 we see for any integer k > 2, indsat∗(7k,K+

1,3) < indsat∗(7k + 2, K+
1,3) <

indsat∗(7k − 1, K+
1,3). This is a similarity between minimal induced saturation and satu-

ration: as noted in [6], the function sat(n,H) is not necessarily monotone in n for fixed
H.

3 Stars

Recall that K1,2 = P3, and indsat(n, P3) = 0 for n > 3, as established in [12]. In this
section we provide a construction extending this result, to show that for fixed k > 2 and
n sufficiently large, indsat(n,K1,k+1) = 0. Additionally, our construction, together with a
simple argument, determines indsat∗(n,K1,k+1) within a factor of two. The main result of
this section is Theorem 3.4, which gives the bounds on indsat∗(n,K1,k+1). The case when
k = 2, which refers to the graph K1,3, commonly known as the claw, will be addressed in
further detail in Section 4.

Construction 3.1. Fix k > 2 and n > 3k. Let z,R be positive integers such that
n = z3k + R with 0 6 R < 3k. Let H be the graph K1

3 �K
2
3 � · · ·�Kk

3 , where Ki
3

denotes a single copy of K3. In other words, V (H) = {(α1, . . . , αk) : αi ∈ [3]}, and
(α1, . . . , αk)(β1, . . . , βk) ∈ E(H) if and only if |{i : αi 6= βi}| = 1. Let H ′ be such that
V (H ′) is the disjoint union of V (H) and V (KR), and E(H ′) = E(KR)∪E(H)∪{vα : v ∈
V (KR), α ∈ V (H), and α = (α1, 1, 1, . . . , 1) where α1 ∈ [3]}. Let G be the disjoint union
of z − 1 copies of H and a single copy of H ′.

Proposition 3.2. The graphs in Construction 3.1 are K1,k+1-induced-saturated.
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Proof. Given fixed n and k, let G and R be as defined in Construction 3.1. Let F denote
the subgraph of H ′ isomorphic to H. Suppose that G contains an induced K1,k+1 with
center x, and suppose first that x is in a copy of H. Since V (G) can be represented by
k-dimensional vectors as described in the construction, any set of k + 1 neighbors of x
contains two vertices with vectors that differ in exactly one coordinate. Thus, x cannot
have k + 1 neighbors which form an independent set, and H is K1,k+1-free.

If H ′ contains an induced K1,k+1, then x cannot be in the KR as the neighborhood of
x would be a clique. Thus, x is in F . If this induced K1,k+1 contains no vertices from
the copy of KR, then the above argument produces a contradiction. Thus, this K1,k+1

contains a vertex from the copy of KR, and without loss of generality, we may assume that
x is represented by (1, 1, . . . , 1) in F . Consequently, our K1,k+1 has exactly one vertex in
KR, but then contains no vertices of the form (α1, 1, 1, . . . , 1) other than x. Hence, x has
at most k − 1 other neighbors from F in this copy of K1,k+1 from F . So G is K1,k+1-free.

It is clear that every vertex in a copy of H (or in F ) is the center of an induced K1,k.
Thus, if we add an edge between two components of G, one component must be a copy of
H, and we obtain an induced K1,k+1. Thus, it remains to consider adding an edge within
a component. Note that by the construction of H ′, the only possible way to add an edge
is within F , which is isomorphic to H. So, it suffices to consider adding an edge to a copy
of H. Suppose we add the edge uv. Without loss of generality, we may assume that u is
represented by (1, 1, . . . , 1). Since u and v were not adjacent in H, their corresponding
vectors must differ in at least two coordinates, say the first and second. As a consequence,
v is adjacent to neither y nor w, where y ∈ {(2, 1, 1, . . . , 1), (3, 1, 1, . . . , 1)} and w ∈
{(1, 2, 1, 1, . . . , 1), (1, 3, 1, 1, . . . , 1)}. Thus, {u, v, w, y} is an induced K1,3 centered at u.
To this set we add vertices α3, α4, . . . , αk, where αi has all coordinates equal to 1 except
that the ith coordinate is either 2 or 3. This induces K1,k+1.

Lastly, suppose we remove an edge uv. There are three cases to consider. The first
case is if uv is in a copy of H (or in F ). Here, we may assume u = (2, 1, 1, . . . , 1) and
v = (3, 1, 1, . . . , 1). The second case is if both u and v are in KR. The last case is if
only endpoint, say v, is in KR. Here, we may again assume that u = (2, 1, 1, . . . , 1). In
all three cases, (1, 1, . . . , 1) together with u, v, and the vertices α2, . . . , αk defined above
induce a K1,k+1. This completes the proof.

Corollary 3.3. For fixed k > 2 and n > 3k, indsat(n,K1,k+1) = 0.

Theorem 3.4. For n > 2 · 3k and k > 2, there exist constants c1 = c1(k) and c2 = c2(k)
such that nk

2
− c1 6 indsat∗(n,K1,k+1) 6 nk + c2.

Proof. Given fixed n and k, let G and R be as defined in Construction 3.1.
We establish e(G) by considering vertex degrees. The component H ′ has at most 2 ·3k

vertices, and so (trivially) at most
(
2·3k
2

)
edges. The remaining vertices, of which there

are at most n− 3k, all have degree 2k for a contribution of at most (n− 3k)k edges. All

told, e(G) 6 nk − k · 3k +
(
2·3k
2

)
.

To show the lower bound, suppose that G is a K1,k+1-induced-saturated graph. Let
S = {x ∈ V (G) : deg(x) 6 k − 1}. We claim that |S| 6 k.
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If |S| > k, then there exist x, y ∈ S such that xy /∈ E(G). Let G′ denote G + xy. As
G was K1,k+1-induced-saturated, G′ must contain an induced K1,k+1, using the edge xy
with either x or y as the center of this K1,k+1. However, as both x and y are adjacent to
at most k − 1 vertices in G, this cannot happen. So |S| 6 k, as claimed.

Observe:

e(G) >
1

2

(
k(n− |S|) +

∑
x∈S

deg(x)

)
>
nk

2
− k2

2
.

This establishes the lower bound.

It worth noting that we can extend Construction 3.1, as any graph formed as a Carte-
sian product of exactly k cliques, each of size at least three, is K1,k+1-induced-saturated.

4 The Claw

For sufficiently large n, Theorem 3.4 states that indsat∗(n,K1,k+1) is linear in n, and in
particular, we know the coefficient within a factor of two. In this section, we will prove the
following theorem, which agrees with the upper bound given in Theorem 3.4 and further
narrows the range of possible values of indsat∗(n,K1,3).

Theorem 4.1. For n > 9, if n 6= 14, 17, then 2n− 2 6 indsat∗(n,K1,3) 6 2n+ 2.

Values of indsat(n,K1,3) were determined for 4 6 n 6 10 by computer search1 and are
listed in Table 2, along with trigraphs that achieve the minimum number of gray edges.
This together with Corollary 3.3 determines indsat(n,K1,3) for all n. We now turn our
attention to indsat∗(n,K1,3).

In order to prove Theorem 4.1, we first prove a series of lemmas.

Lemma 4.2. Let G be a K1,3-induced-saturated graph. Then G has

1. at most one isolated vertex,

2. no vertices of degree one,

3. at most one vertex of degree two, and

4. at most two vertices of degree three.

Furthermore, if G has an isolated vertex v, then δ(G− v) > 4.

Proof. Let G be a K1,3-induced-saturated graph. Observe that if we had two isolated
vertices, then adding the edge between them would not yield a K1,3. Also, any edge of G
lies in a triangle, so there are no vertices of degree one.

Suppose that u and v are vertices of degree two. Since every edge lies in a triangle
the neighbors of u are adjacent, as are the neighbors of v. Thus, if u and v are not

1A program was written in C++ and is available at http://www.math.unl.edu/~s-sbehren7/main/
Data.html.

the electronic journal of combinatorics 23(1) (2016), #P1.54 10

http://www.math.unl.edu/~s-sbehren7/main/Data.html
http://www.math.unl.edu/~s-sbehren7/main/Data.html


indsat(4, K1,3) =
3

indsat(5, K1,3) =
3

indsat(6, K1,3) =
3

indsat(7, K1,3) =
2

indsat(8, K1,3) =
2

indsat(9, K1,3) =
0

indsat(10, K1,3) = 0

Table 2: Values of indsat(n,K1,3) for 4 6 n 6 10 along with trigraphs realizing those
values. All K1,3-induced-saturated graphs for n = 9 and n = 10 are shown.

adjacent, adding the edge uv does not create an induced K1,3. If u and v are adjacent,
then N [u] = N [v] = {u, v, w} for some w. However, removing uw does not create an
induced K1,3 as v would have to have been its center. So G has at most one vertex of
degree two.

To prove (4), suppose u is a vertex of degree three with neighbors u1, u2, u3. Since
every edge is in a triangle, we may assume that u1u2, u2u3 ∈ E(G). Case 1: u1u3 /∈ E(G).
Then adding u1u3 creates an induced K1,3 centered at either u1 or u3; say u1. Then u1 has
two nonadjacent neighbors x and y that are distinct from u2 and u3. However, {u, u1, x, y}
induces a K1,3 in G, a contradiction. Case 2: u1u3 ∈ E(G). In particular, every vertex
of degree three in G is contained in a K4. Let v be another vertex of degree three. By
the above, N [v] induces K4. If uv /∈ E(G), then adding uv does not create an induced
K1,3. Thus, u and v are adjacent, and consequently the only vertices of degree three are
contained in N [u].

If we remove uu1, then an induced K1,3 exists, centered at either u2 or u3. So at least
one of them has degree at least four, say u3. Similarly, removing uu3 creates an induced
K1,3 centered at either u1 or u2 so that at least one of them has degree at least four. In
any case, at most two vertices in N [u], and as a result in G, have degree three. Thus, (4)
holds.

If G has an isolate, u, and another vertex v with deg(v) 6 2, then adding uv cannot
create an induced K1,3 unless deg(v) = 2. In this case, the neighbors of v cannot be
adjacent, however every edge of G must be in a triangle, a contradiction.
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(a) H = K3�K3, 9 vertices (b) Graph J on 11 vertices

(c) Graph K on 12 vertices (d) Graph L on 15 vertices

Figure 1: These graphs are K1,3-induced-saturated.

Lemma 4.3. If G is a graph where the neighborhood of every vertex induces 2K2, then
G is K1,3-induced-saturated.

Proof. Since no vertex has three independent neighbors, G contains no induced K1,3.
Suppose we delete an edge xy. Since every edge is in a triangle, say xyz, deleting xy
leaves z as the center of a K1,3 with leaves x, y, and any other neighbor of z. If we add an
edge between two vertices with no common neighbors, then we take the new edge together
with two nonadjacent neighbors of one of the vertices and find a K1,3. Therefore it suffices
to consider adding an edge xy, where x and y share a neighbor. Let N(x) = {u1, u2, v1, v2}
with u1u2, v1v2 ∈ E(G), and suppose u1 ∈ N(y). Then u2 /∈ N(y) otherwise N(u2) would
contain a P3 and not be 2K2. Similarly, both v1 and v2 cannot be in N(y). So we may
assume v2 /∈ N(y). Then upon adding xy, {x, y, u2, v2} induces a K1,3.

Lemma 4.4. Let G be a graph with at most one isolated vertex, where each nontrivial
component is one of the graphs in Figure 1. Then G is K1,3-induced-saturated.

Proof. By inspection, the graph in Figure 1b is K1,3-induced-saturated, and since the
graphs in Figures 1a, 1c, and 1d have the property that the neighborhood of every vertex
induces 2K2, they are K1,3-induced-saturated by Lemma 4.3.
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Now let G be a graph with at most one isolated vertex and each of the remaining
components are one of the graphs from Figure 1. Since each nontrivial component of G is
K1,3-induced-saturated, we only need to consider adding an edge xy between components.
When we add the edge xy, at least one of x and y must be in a nontrivial component,
say x. By inspection we see every vertex in every graph of Figure 1 has two nonadjacent
neighbors, and in particular, this holds for x. Thus, x together with these two neighbors
and y induce a K1,3. Therefore, G is K1,3-induced-saturated.

We now can prove Theorem 4.1.

Proof of Theorem 4.1. Lemma 4.2 together with the degree-sum formula gives us the
lower bound of 2n − 2. To obtain the upper bound, we contruct graphs using H, J,K,
and L from Figure 1. These constructions will be based on the residue class of n modulo
3.

Case 4.4.1. n ≡ 0 mod 3, n > 9

Use bn/9c− 1 copies of H, together with one copy of H, K, or L, for a graph with 2n
edges.

Case 4.4.2. n ≡ 1 mod 3, n > 10

Use an isolated vertex with a graph from Case 4.4.1 for a graph with 2n− 2 edges.

Case 4.4.3. n ≡ 2 mod 3, n > 20 or n = 11.

If n = 11, the graph J suffices. If n > 11, then take J and a construction from
Case 4.4.1. This achieves 2n+ 2 edges.

It is worth noting that for n ≡ 1 mod 3, n > 10, indsat∗(n,K1,3) = 2n− 2. Addition-
ally, a detailed case analysis of degree sequences of K1,3-induced-saturated graphs shows
that indsat∗(n,K1,3) > 2n for n 6≡ 1 mod 3. In particular, this implies indsat∗(n,K1,3) =
2n for n ≡ 0 mod 3, n > 9, and 2n 6 indsat∗(n,K1,3) 6 2n+2 for n ≡ 2 mod 3, n > 20.

5 C4 and Matchings

In this section we show that the induced saturation number of C4 is zero for sufficiently
large n, and we show that (5/2)n 6 indsat∗(n,C4) 6 (7/64)n2 + o(n) Additionally, to-
gether with Observation 1.3 and the fact that C4 = 2K2, we use C4-induced-saturated
graphs to show that the induced saturation number of kK2 is zero for n sufficiently large
and k > 2. We then show that indsat∗(n, kK2) is constant in terms of n.

Construction 5.1. For j > 5 and k > 2, let Ikj be the following graph. Begin with k
copies of a wheel with j spokes. Label the wheels W 1, . . . ,W k, and label the vertices of
W i so that its center is wi

0, and the outer cycle of W i is wi
1, . . . , w

i
j. For each i and p with

1 6 i, p 6 k and i 6= p, add the following edges: wi
`w

p
` for each ` ∈ [j]; wi

`w
p
`+1 for each

` ∈ [j − 1]; and wi
jw

p
1.
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I25 is the icosahedron, shown in Figure 2. The icosahedron can be thought of as
two wheels with 5 spokes whose outer-cycle vertices are joined by a zig-zag pattern (as
described precisely in Construction 5.1). Construction 5.1 generalizes the icosahedron by
allowing the number of wheels and the length of their outer cycles to vary.

w1
0

w1
5

w1
1

w1
2 w1

3

w1
4

w2
1

w2
2

w2
3

w2
4

w2
5

w2
0

Figure 2: The icosahedron graph.

Proposition 5.2. For j ∈ {5, 6, 7}, and k > 2, Ikj is C4-induced-saturated.

Proof. We first show that Ikj does not contain an induced C4. Suppose to the contrary
that it does. Since a single wheel does not contain an induced C4, this C4 must contain
vertices from at least two different wheels. Suppose that wp

0 is in this C4. Recall that wp
0

is the center of wheel W p. Then, this C4 must contain wp
r and wp

s such that |s − r| > 2.
However, since |s−r| > 2, wp

r and wp
s contain no common neighbors outside of W p. Thus,

all four vertices of this induced C4 must be inside of W p, a contradiction. So our induced
C4 contains no centers of wheels.

If this C4 contains exactly three vertices from a single W p, then they must be consec-
utive along their cycle. That is, C4 contains wp

s , w
p
s+1, and wp

s+2. However, as above, wp
s

and wp
s+2 have no common neighbors outside of W p. Thus, our induced C4 contains at

most two vertices from each W p.
If this C4 contains exactly two vertices from a single W p, then by the same arguments

used above, they must be adjacent in W p, say wp
s and wp

s+1. No vertex of the form wq
s,

with q < p, or wr
s+1, with r > p, can be in our C4, as either produces a triangle with wp

s

and wp
s+1.

Now, wp
s+1 must have another neighbor in our C4. Suppose it is in W t. If t > p, then

it must be wt
s+2 by the above. However, the only common neighbors wt

s+2 and wp
s have

are of the form wq
s+1 where q > p, a contradiction. So t < p, and the other neighbor of

wp
s+1 is wt

s+1. Again though, the only common neighbors of wp
s and wt

s+1 are either of the
form wq

s+1 where q > p, or wr
s where r < p. In either case, we have a contradiction to the

above. Thus, our C4 has exactly one vertex from each wheel.
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Suppose our induced C4 contains the vertices wp
t1 , w

q
t2 , w

r
t3
, ws

t4
. If |{t1, t2, t3, t4}| 6 2,

then we have a triangle, a contradiction. If |{t1, t2, t3, t4}| = 4, then some vertex is not
adjacent to two of the others, a contradiction. So |{t1, t2, t3, t4}| = 3, and two vertices
have the same subscript. We may assume that it is wp

t1 , w
q
t2 = wq

t1 , and that p < q. Then,
wp

t1 must have a neighbor not adjacent to wq
t1 in this C4, say it is wr

t3
. However, in order

for this to be possible, we must have t3 = t1 + 1 and p < r < q. Thus, ws
t4

is adjacent
to both wr

t1+1 and wq
t1 . However, since t4 must be distinct from both t1 and t1 + 1, this

cannot happen, a contradiction. So Ikj is C4-free.
We now must show that adding and removing edges from Ikj creates an induced C4.

We begin by considering removal of edges. The edges of Ikj can be classified into three
types: edges that are on the outer cycle of a wheel, edges that are incident to the center
of a wheel, and edges that are incident to two different wheels. If we remove an edge that
is on the outer cycle of a wheel, say wi

`w
i
`+1 where ` 6= j, then the vertices wi

0, w
i
`, w

i
`+1,

and wp
`+1, where p 6= i, create an induced C4. If ` = j, then removing wi

jw
i
1 creates a

C4 induced by the vertices wi
j, w

i
1, w

i
0, and wp

1, again where p 6= i. If we remove an edge
that is incident to the center of a wheel, say wi

0w
i
`, then wi

0, w
i
`−1, w

i
`, and wi

`+1 induce a
C4. Now, for i 6= p and ` ∈ [j], we have the edge wi

`w
p
` . Removing this edge creates a

C4 induced by the vertices wi
`−1, w

i
`, w

p
` , and wp

`+1, if ` 6= 1, or by the vertices wi
j, w

i
1, w

p
1,

and wp
2 if ` = 1. When ` ∈ [j − 1], the edge wi

`w
p
`+1 exists in Ikj ; removing it creates a

C4 induced by wi
`, w

p
` , w

p
`+1, and wi

`. Finally, removing the edge wi
jw

p
1 from Ikj yields a C4

induced by wi
j, w

p
j , w

p
1, and wi

1.
To show that adding edges creates an induced C4, we consider the different types of

edges that are missing from Ikj . Adding an edge within one wheel (say Wm) is simply
adding a chord wm

i w
m
p to a 5-, 6-, or 7-cycle. If p 6= i+ 2 or j = 5, then this chord creates

an induced 4-cycle. If p = i+ 2 and j = 6 or j = 7, then if m 6= k, wm
i w

`
i+1w

`
i+2w

m
i+2w

m
i is

an induced 4-cycle, where ` > m, and if m = k, then wm
i w

m
i+1w

`
i+1w

`
iw

m
i is an induced C4.

Now suppose we add an edge between wheels, say Wm and W `, where we may assume
m < `. If the new edge is between the centers of these wheels, that is, wm

0 w
`
0, then

wm
0 w

`
0w

`
1w

m
1 w

m
0 is an induced C4. If it is from the center of Wm to a vertex on the cycle

of W `, say w`
i , then wm

0 w
`
iw

`
i+1w

m
i+1w

m
0 is an induced C4; a similar cycle is also created if

the new edge is w`
0w

m
i . Finally, if we add an edge wm

i w
`
p, note that wm

i is not adjacent to
at least one of wm

p and wm
p−1; label this vertex u. Since u is adjacent to w`

p, the vertices
wm

0 , w
m
i , w

`
p, and u induce a C4.

Proposition 5.2 implies that for many values of n, indsat(n,C4) = 0. In fact, this is the
case for all n > 12. To show this, we use the following proposition regarding kK2. While
we only employ the proposition in the case k = 2, the more general statement which we
present is not difficult.

Proposition 5.3. Let s := (s1, . . . , sn) be a sequence of positive integers. Let G be a
graph with vertex set {v1, . . . vn}, and let Gs be the graph obtained from G by replacing
each vertex vi with an independent set of order si and each edge with a complete bipartite
graph between the corresponding independent sets. For k > 2, G is kK2-induced-saturated
if and only if Gs is kK2-induced-saturated.
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Note that the graph Gs constructed in this proposition is in fact the blow-up of G, as
used in [10].

Proof. For each vertex vi ∈ V (G), let Vi be the independent set in Gs that corresponds to
it. We will call this collection of vertices in Gs that replaces a single vertex in G a part.

Note that no induced matching in Gs uses two vertices from the same part, and the
same holds if we add or remove a single edge from Gs. We claim that if wi and wj are
vertices from different parts Vi and Vj, respectively, of Gs, then Gs (or Gs + wiwj or
Gs − wiwj) contains an induced matching if and only if G (resp. G + vivj, or G − vivj)
contains an induced matching M . Suppose Ms is such an induced matching in Gs (or
Gs +wiwj or Gs−wiwj). Then each vertex in Ms comes from a different part of Gs (resp.
Gs + wiwj or Gs − wiwj), and thus they correspond to distinct vertices in V (G). This is
an induced matching in G.

If G (or G + vivj or G − vivj) has an induced matching M , then when the graph is
expanded, no new adjacencies have been added between the parts corresponding to the
endpoints of vertices in M (except for wiwj in the case of G + vivj). Thus, we can find
an induced matching in Gs (resp. Gs + wiwj or Gs − wiwj). This shows that if Gs is
kK2-induced-saturated, then so is G.

To show that if G is kK2-induced-saturated, then so is Gs, it remains to consider
adding edges between vertices in one part of Gs. First we note that G has no dominating
vertex. Indeed, if u is a dominating vertex, then deleting an edge incident to u, say uw,
does not create an induced 2K2, let alone an induced kK2, as u dominates NG(w).

Now, suppose we add wiw
′
i to Gs, in the part Vi corresponding to vi. Since vi is not

dominating, there exists w not adjacent to vi. Since G is kK2-induced-saturated, G+ viw
contains an induced matching M = {viw, x2y2, . . . , xkyk}. Then
Ms = {wiw

′
i, X2Y2, . . . , XkYk} is an induced matching in Gs +wiw

′
i, where Xj and Yj are

vertices in the parts corresponding to xj and yj, respectively.

Corollary 5.4. For n > 12, indsat(n,C4) = 0.

Proof. Applying Observation 1.3 to case k = 2 in Proposition 5.3, allows us to begin with
a graph that is C4-induced-saturated, replace a single vertex with a clique of any order,
replace the affected edges with complete bipartite graphs, and produce another graph
that is C4-induced-saturated. Thus, beginning with I25 , applying these operations obtains
C4-induced-saturated graphs for all values of n > 12.

For 4 6 n 6 10, a computer search showed indsat(n,C4) > 0. At this time, the value
of indsat(11, C4) is yet unknown. We now turn our attention to indsat∗(n,C4).

Theorem 5.5. For sufficiently large n, (5/2)n 6 indsat∗(n,C4) 6 (7/64)n2 + o(n).

Proof. To prove the lower bound we show that δ(G) > 5. Suppose G is a C4-induced-
saturated graph. Let x ∈ V (G), and let H := G[N(x)]. Since deleting any edge produces
an induced C4, every edge is the diagonal of a C4 and deg(x) > 3. In particular, there
exist v1, v2, v3 ∈ V (H) such that v1v3 is not an edge, but v1v2 and v2v3 are edges. Now,
G − xv1 contains an induced C4 that contains both x and v1, but not v3. If v2 is not in
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this C4, then there exist two other vertices distinct from v1, v2, v3 in H. Thus, deg(x) > 5.
If v2 is in this C4, then there exists v4 ∈ V (H) distinct from v1, v2, v3 such that v1v4 is
an edge, but v2v4 is not. By a similar argument, considering G − xv3 gives at least one
additional vertex in H distinct from v1, v2, v3, v4. So in any case, deg(x) > 5, and as x
was arbitrary, δ(G) > 5. Thus, provided n > 12, indsat∗(n,C4) > (5/2)n.

To prove the upper bound, we choose n > 56 and create a graph G of order n. Let
r ≡ n mod 8, where 0 6 r 6 7. Set k = bn/8c so that k > r and v(Ik7 ) = 8k. If r = 0,
choose G = Ik7 . If r > 0, we create G by adding r vertices to Ik7 . Recall, as discussed after
Proposition 5.3, by replacing the vertices of Ik7 with cliques, and its edges with complete
bipartite graphs, we preserve the property of being C4-induced-saturated. Accordingly,
using the notation of Construction 5.1, we replace w1

0, . . . , w
r
0 with copies of K2 and make

each new vertex adjacent to the neighborhood of the vertex it replaces.
Now we determine e(G). The first r wheels have 22 edges, and the rest have 14.

Between any two wheels there are 14 edges. So e(G) = 14
[(

k
2

)
+ k
]

+ 8r. Since r ∈ [0, 7]
and k = bn/8c, e(G) 6 7

64
n2 + 7

8
n+ 56.

5.1 Matchings

Another graph that is C4-induced-saturated is the join I25∨Kn−12. Observation 1.3 implies
that the complement of this graph is 2K2-induced-saturated. We can further generalize
this to get a kK2-induced-saturated graph for any k > 2.

Proposition 5.6. Let I25 be the complement of the icosahedron. For fixed k > 2 and

n > 12(k − 1), the graph (k − 1)I25 + (n− 12(k − 1))K1 is kK2-induced-saturated. Thus,
for n > 12(k − 1), indsat(n, kK2) = 0.

Proof. By Proposition 5.2 and Observation 1.3, the complement of an icosahedron is
2K2-induced-saturated. Let G denote (k− 1)I25 + (n− 12(k− 1))K1. Clearly, G contains
(k − 1)K2 as an induced subgraph, but no induced kK2. If we add or delete any edge
inside a component, or add an edge among the isolates, we create an induced kK2. Note
that every vertex v in I25 is in an induced copy of K2 + K1 where v is the isolate. Thus,

adding any edge with an endpoint in a copy of I25 creates an induced kK2.

Corollary 5.7. For n > 12(k − 1), indsat∗(n, kK2) 6 36(k − 1).

In particular, for fixed k, indsat∗(n, kK2) is constant.

6 Other Cycles and Generalizations of Cycles

In this section we provide a construction proving that odd cycles also have induced sat-
uration number zero for n sufficiently large. As it is already known that indsat(n,C3) =
sat(n,C3) [12], we only consider odd cycles of length at least five. Additionally, this
construction is also H-induced-saturated when H is a modification of an even cycle as
described below.
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Let C ′2k denote a cycle of length 2k with a pendant vertex, and Ĉ2k denote an even
cycle with a chord between two vertices at distance 2 from each other (sometimes called
a triangle chord or hop).

For a given k and n > (k + 1)2 + 2, we can write n as (k + 1)t− s where t and s are
integers with t > k + 2 and 0 6 s 6 t− 3. In particular, we choose t = d n

k+1
e. Using this

expression for n, we give the following construction.

Construction 6.1. For k > 3 and n > (k + 1)2 + 2, let n = (k + 1)t − s, where
t = d n

k+1
e > k + 2 and 0 6 s 6 t − 3. Let Gn,k be formed from the Cartesian product

Kk+1�Kt by removing s vertices from one copy of Kt.

Proposition 6.2. If H ∈ {C2k−1, C
′
2k, Ĉ2k}, then the graph Gn,k in Construction 6.1 is

H-induced-saturated.

Proof. Let Gn,k be as described in Construction 6.1. We first show that Gn,k is H-free

for H ∈ {C2k−1, C
′
2k, Ĉ2k}. Any induced subgraph of Gn,k that is triangle-free has at most

two vertices from any copy of Kk+1 or Kt. Since 2k− 1 is odd, an induced C2k−1 contains
precisely one vertex v from some copy of Kk+1. Then the neighbors of v must be in the
same copy of Kt, which means they form a triangle. Thus, Gn,k has no induced odd cycle

larger than a triangle. Since Ĉ2k contains C2k−1 as an induced subgraph, neither C2k−1
nor Ĉ2k are induced subgraphs of Gn,k. As C ′2k contains K1,3 as an induced subgraph, but
Gn,k does not, Gn,k has no induced C ′2k.

In the remainder of this proof we view the vertices of Kk+1�Kt as a k + 1 by t grid
with vertices vi,j for 1 6 i 6 k + 1 and 1 6 j 6 t. The vertices in each row induce Kt

and those in each column induce Kk+1. Note that vi,j is adjacent to vm,p if and only if
i = j or m = p. To create Gn,k from this, we remove s vertices from the last row of the
grid. In particular, we remove vk+1,t−s+1, vk+1,t−s+2, . . . , vk+1,t. Thus, we can partition the
vertices of Gn,k into the following three sets: R1 = {vi,j : 1 6 i 6 k, 1 6 j 6 t − s},
R2 = {vk+1,j : 1 6 j 6 t − s}, and R3 = {vi,j : 1 6 i 6 k, t − s < j 6 t}. Recall that
t− s > 3, t > k + 2, and k > 3.

In the following arguments, we will use the fact that as t − s > 3, v1,1, v1,2, v1,3 ∈ R1

and vk+1,1, vk+1,2, vk+1,3 ∈ R2. Furthermore, we will use the path on 2k−6 vertices induced
by the set A = {vp,p+1, vp,p+2 : 2 6 p 6 k − 2}.
Case 6.2.1. Adding edges

We first consider adding an edge to Gn,k. Observe that all the vertices in R1 are
interchangeable by switching rows and columns, and the same holds for the vertices in R2

and R3. So without loss of generality, there are five kinds of edges that can be added: an
edge contained in R1, contained in R3, or between any two parts.

Suppose we add an edge contained in R1. Without loss of generality, assume it is
v1,1vk,2. Let B1 = {v1,1, vk,2, vk+1,1, vk+1,3}. Then the vertex set A ∪ B1 ∪ {vk,k} induces

C2k−1, the set A∪B1∪{vk,k, v1,2} induces Ĉ2k, and the set A∪B1∪{vk−1,k, vk−1,k+1, v1,k+1}
induces C ′2k with pendant vk,2.

Suppose we add an edge contained in R3. Without loss of generality, assume it is
v1,tvk,t−1. Let B2 = {v1,t, vk,t−1, vk−1,k, vk−1,t}. Then the vertex set A∪B2∪{vk,3} induces
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C2k−1, the set A ∪B2 ∪ {vk,2,, vk,3} induces Ĉ2k, and the set A ∪B2 ∪ {v1,2, vk+1,2, vk+1,3}
induces C ′2k with pendant vk,t−1.

Suppose we add an edge between R1 and R2. Without loss of generality, assume
it is v1,1vk+1,2. Let B3 = {v1,1, vk+1,2, vk−1,1, vk−1,k}. Then the vertex set A ∪ B3 ∪
{vk+1,3} induces C2k−1, the set A ∪ B3 ∪ {vk+1,3, v1,2} induces Ĉ2k, and the set A ∪ B3 ∪
{vk,3, vk,k+1, v1,k+1} induces C ′2k with pendant vk+1,2.

Suppose we add an edge between R1 and R3. Without loss of generality, assume it is
v1,1vk,t. Let B4 = {v1,1, vk,t, vk+1,1, vk+1,3}. Then the vertex set A ∪ B4 ∪ {vk,k} induces

C2k−1, the set A∪B4∪{vk,k, v1,t} induces Ĉ2k, and the set A∪B4∪{vk−1,k, vk−1,k+1, v1,k+1}
induces C ′2k with pendant vk,t.

Suppose we add an edge between R2 and R3. Without loss of generality, assume it is
v1,tvk+1,1. Let B5 = {v1,t, vk+1,1, v1,k, vk,3}. Then the vertex set A ∪ B5 ∪ {vk,1} induces

C2k−1, the set A ∪ B5 ∪ {vk,1, vk,2} induces Ĉ2k, and the set A ∪ B5 ∪ {vk,2, vk−1,2, vk−1,t}
induces C ′2k with pendant vk+1,1.

Case 6.2.2. Deleting edges

There are several types of edges that we can delete within the categories of “vertical”
and “horizontal” edges. There are three types of vertical edges: edges with both endpoints
in R1, both in R3, and between R1 and R2. There are four types of horizontal edges: edges
with both endpoints in R1, both in R2, both in R3, and between R1 and R3.

We first consider deleting vertical edges. Suppose we delete an edge contained in
R1 or an edge between R1 and R2. If the former, assume it is v1,1vk,1, and let B6 =
{v1,1, vk,1, vk−1,3, v1,k}. If the latter, assume it is v1,1vk+1,1, and let
B6 = {v1,1, vk+1,1, vk−1,3, v1,k}. Then in either case, the vertex set A∪B6∪{vk−1,1} induces

C2k−1, and the set A ∪ B6 ∪ {vk−1,1, vk−1,2} induces Ĉ2k. If we deleted the edge v1,1vk,1,
then set A ∪ B6 ∪ {vk+1,1, vk+1,2, vk−1,2} induces C ′2k with pendant vk,1. If we deleted the
edge v1,1vk+1,1, then the set A ∪B6 ∪ {vk,1, vk,2, vk−1,2} induces C ′2k with pendant vk+1,1.

Suppose we delete an edge contained in R3. Without loss of generality, assume it is
v1,tvk,t. Let B7 = {v1,t, vk,t, v1,k, vk−1,t}. Then the vertex set A∪B7∪{vk,3} induces C2k−1,

the set A∪B7∪{vk,2, vk,3} induces Ĉ2k, and the set A∪B7∪{vk+1,2, vk+1,3, vk−1,2} induces
C ′2k with pendant vk,t.

We now consider deleting horizontal edges. Suppose we delete an edge contained in R1

or contained in R2. If the former, assume it is v1,1v1,3, and let B8 = {v1,1, v1,2, v1,3, vk−1,k}.
If the latter, assume it is vk+1,1vk+1,3, and let B8 = {vk+1,1, vk+1,2, vk+1,3, vk−1,k}. Then in
either case, the vertex set A ∪B8 ∪ {vk−1,1} induces C2k−1, the set A ∪B8 ∪ {vk−1,1, vk,1}
induces Ĉ2k, and the set A ∪ B8 ∪ {vk,2, vk,k+1, vk−1,k+1} induces C ′2k with pendant v1,1
when deleting v1,1v1,3, and pendant vk+1,1 when deleting vk+1,1vk+1,3.

Suppose we delete an edge between R1 and R3. Without loss of generality, assume
it is v1,3v1,t. Let B9 = {v1,3, v1,t, v1,1, vk−1,k}. Then the vertex set A ∪ B9 ∪ {vk−1,t}
induces C2k−1, the set A ∪ B9 ∪ {vk−1,t−1, vk−1,t} induces Ĉ2k, and the set A ∪ B9 ∪
{vk+1,1, vk+1,2, vk−1,2} induces C ′2k with pendant v1,t.

Lastly, suppose we delete an edge contained in R3. Without loss of generality, as-
sume it is v1,t−1v1,t. Let Ã = {vp,t−k+p, vp,t−k+p+1 : 2 6 p 6 k − 2}, and let B̃ =
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{v1,t−1, v1,t, v1,1, vk−1,t−k+2}. Since t > k + 2, note that t − k + 2 > 4. Then the vertex

set Ã ∪ B̃ ∪ {vk−1,t} induces C2k−1, the set Ã ∪ B̃ ∪ {vk−1,t, vk,t} induces Ĉ2k, and the set
Ã ∪ B̃ ∪ {vk+1,1, vk+1,2, vk−1,2} induces C ′2k with pendant v1,t.

This completes the proof that Gn,k is H-induced-saturated for H ∈ {C2k−1, Ĉ2k, C
′
2k}.

Corollary 6.3. For all k > 3, if n > (k + 1)2 + 2 and H ∈ {C2k−1, C
′
2k, Ĉ2k}, then

indsat(n,H) = 0.

In the following discussion assume H ∈ {C2k−1, C
′
2k, Ĉ2k}. Using Construction 6.1 we

obtain an upper bound on indsat∗(n,H) with order of magnitude n2, which is trivial. We
can improve this order of magnitude slightly in the case when d

√
n e is not prime. To do

so we note that if n can be written as a product of two integers s and t that are both at
least k, then the graph Ks�Kt is H-induced-saturated.

Proposition 6.4. Fix k > 3 and choose n such that n1/4 > k + 1.
For H ∈ {C2k−1, C

′
2k, Ĉ2k}, if d

√
n e has a proper divisor t > 3, then indsat∗(n,H) 6

cn7/4 +O(n3/2) for some constant c.

Proof. As noted above, the Cartesian product of two sufficiently large cliques is H-
induced-saturated. So, consider G := Kd√n e/t�Ktd

√
n e. Simple computation shows

n 6 v(G) 6 n + 2
√
n + 1. So, v(G) can be written as n + s, where 0 6 s 6 2

√
n + 1 6

t
√
n− 3, as t > 3. Let G′ be obtained from G by removing s vertices from a single copy

of K3d
√
n e as in Construction 6.1. An argument similar to that in Proposition 6.2 shows

that G′ is H-induced-saturated. Observe:

e(G′) 6 td
√
n e
(

(1/t)d
√
n e

2

)
+(1/t)d

√
n e
(
td
√
n e

2

)
=
d
√
n e2

2

((
t+

1

t

)
d
√
n e)− 2

)
.

Since t divides d
√
n e, t 6

√
d
√
n e 6 c′n1/4 for some c′ > 1. Using this and d

√
n e 6√

n+ 1 gives e(G′) 6 c′

2
n7/4 +O(n3/2).

Considering odd cycles points out another property of the induced saturation num-
ber. That is, if indsat(n,H) = 0 for a particular n, it is not necessarily the case that
indsat(k,H) = 0 for all k > n. For example, Construction 6.1 shows indsat(n,C5) = 0 for
n = 9 and n > 12. However, a computer search showed that for n = 10 and n = 11, we
have indsat(n,C5) > 0. (A C5-induced-saturated trigraph on 10 vertices with one gray
edge is shown in Figure 3, so that indsat(10, C5) = 1.)

7 Families of Graphs

In this section we extend the definition of induced saturation to families of graphs in the
natural way, and show the surprising result that a family F can consist entirely of graphs
with induced-saturation number 0, yet satisfy indsat(n,F) > 0.
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v

v′

Figure 3: This trigraph, with the gray edge vv′, is a C5-induced-saturated trigraph.

Definition 7.1. For a family F of graphs, a trigraph T is F-induced-saturated if no
realization of T contains any member of F as an induced subgraph, but whenever any
black or white edge of T is turned to gray, some member of F occurs as an induced
subgraph of some realization.

The induced saturation number of F with respect to n, written indsat(n,F), is
the minimum number of gray edges in an F -induced-saturated trigraph with n vertices.

For any family F containing all graphs on k vertices, indsat(n,F) =
(
n
2

)
.

Construction 6.1 and Proposition 6.2 demonstrate that for any family F , all of whose
elements are odd cycles of length at least five, even cycles with a pendant, or even cycles
with a triangle chord, indsat(n,F) = 0 for n sufficiently large. However, we could have
indsat(n,F) 6= 0 even if there is some G ∈ F such that indsat(n,G) = 0 as demonstrated
in Proposition 7.2 below. One may suspect this is because of the presence of P4, which
has nonzero induced-saturation number, yet it is also possible for a family F to consist
of graphs that each individually have induced saturation number zero, while the induced
saturation number of F is nonzero. We provide an example of this in Proposition 7.3.

Proposition 7.2. For all n, indsat(n, {2K2, P4, C4}) 6= 0.

Proof. The graphs that contain no induced 2K2, P4, or C4 are precisely the threshold
graphs [4]. These graphs are characterized in a second way: they are constructed by
iteratively adding a vertex to a graph either as an isolate or a dominating vertex. Thus,
an n-vertex threshold graph can be represented as a string of n symbols from {−,+} as
follows: on the vertex set V = {v1, . . . , vn}, for every i > j, vivj is an edge if and only if
the ith symbol in the string is +.

We claim that for any threshold graph G with at least one edge, there exists e ∈ E(G)
such that G− e is also threshold. Let π = s1, . . . , sn be a string of symbols from {−,+}
representing G. Suppose there exists i ∈ [n − 1] such that si = − and si+1 = +, and let
i be minimal with this property. Then the graph G′ = G − vivi+1 is represented by the
symbol list π′ = s1 . . . si−1si+1sisi+1 . . . sn, so G′ is threshold. If no such index i exists,
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then π is a list consisting only of +, so G is the complete graph Kn; however, Kn − e is
also threshold.

Thus, for any graph G with no induced 2K2, P4, or C4, there exists an edge e ∈ G such
that G− e also has no induced 2K2, P4, or C4. It follows that indsat(n, {2K2, P4, C4}) 6=
0.

The family of split graphs is another family of graphs that can be characterized by
a set of forbidden induced subgraphs. A split graph is a graph whose vertex set can be
partitioned into a clique and an independent set. Földes and Hammer [7] showed that a
graph is a split graph if and only if it contains no induced 2K2, C4, or C5.

Proposition 7.3. For all n, indsat(n, {2K2, C4, C5}) 6= 0.

Proof. Since adding or deleting an edge between the clique part and the independent set of
a split graph still results in a split graph, it follows that indsat(n, {2K2, C4, C5}) 6= 0.

We have shown that indsat(n, 2K2), indsat(n,C4), and indsat(n,C5) are all equal to
zero for sufficiently large n. Thus, this example shows that even though every graph in
a family has induced-saturation number zero, the family itself may not have induced-
saturation number zero.

Other families characterized by a (not necessarily finite) family of forbidden induced
subgraphs include perfect graphs [2], trivially perfect graphs [14], [8], interval graphs [11],
and line graphs [1]. It would be interesting to determine indsat(n,F) and indsat∗(n,F),
if it exists, for these families. We suspect that doing so will be much more difficult than
for threshold and split graphs, as the families of forbidden graphs are significantly more
complicated.
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