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Abstract

Various characterizations of finite convex geometries are well known. This note
provides similar characterizations for possibly infinite convex geometries whose lat-
tice of closed sets is strongly coatomic and spatial. Some classes of examples of such
convex geometries are given.
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1 Introduction

There are various ways to characterize finite convex geometries; see our chapter on Convex
geometries in [4], which combines results from Dilworth [10], Avann [6], Edelman and
Jamison [12], Duquenne [11], and Monjardet [16]. These characterizations can be either
combinatorial or lattice theoretical in nature.

Infinite versions of convex geometries occur in several sources, each of which is equiv-
alent to a closure operator with the anti-exchange property, plus some finiteness condi-
tions to provide structure. Crawley and Dilworth [8] consider dually algebraic, strongly
coatomic, locally distributive lattices. Semenova [20, 21] extends these results to lower
continuous, strongly coatomic, locally distributive lattices. Adaricheva, Gorbunov and
Tumanov [3] discuss closure operators with the anti-exchange property whose closure lat-
tices are weakly atomic, dually spatial and atomistic. Adaricheva and Nation [4] are
concerned with algebraic closure operators with the anti-exchange property. See also
Sakaki [18], Adaricheva and Pouzet [5], and Adaricheva [2].

Here we consider a class of complete lattices for which most of the equivalent character-
izations of finite convex geometries remain valid, viz., lattices that are strongly coatomic
and spatial. (A complete lattice is spatial if every element is a join of completely join
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irreducible elements.) Our main result is Theorem 10, giving various characterizations
of the convex geometries within this class. Moreover, the class is rich enough to provide
manifold examples of infinite convex geometries.

2 The anti-exchange property

Definition 1. A closure system (X, γ) satisfies the anti-exchange property if for all x 6= y
and all closed sets A ⊆ X,

x ∈ γ(A ∪ {y}) and x /∈ A imply that y /∈ γ(A ∪ {x}). (AEP)

Equivalently, a closure operator satisfies the anti-exchange property if for all closed
sets A ⊆ X and elements x, y /∈ A, if γ(A ∪ {x}) = γ(A ∪ {y}) then x = y.

Examples of closure operators with the anti-exchange property include

• the convex hull operator on Euclidean space En,

• the convex hull operator on an ordered set,

• the subalgebra-generated-by operator on a semilattice,

• the algebraic-subset-generated-by operator on a complete lattice.

For a closure system (X, γ), we will let Cld(X, γ) denote the lattice of γ-closed subsets of
X. A closure system is zero-closure if γ(∅) = ∅.

Definition 2. A zero-closure system that satisfies the anti-exchange property is called a
convex geometry.

(This common convention is a bit awkward, as some useful closure operators with the
anti-exchange property have a non-empty closure of the empty set. Nonetheless, we shall
retain it.)

A lattice is strongly coatomic if a < c in L implies that there exists b such that
a 6 b ≺ c. A closure system is strongly coatomic if its lattice of closed sets is so.

Theorem 3. For a strongly coatomic closure system (X, γ), the following are equivalent.

(1) (X, γ) has the anti-exchange property.

(2) If A ≺ B in Cld(X, γ), then |B \ A| = 1.

Proof. Assume that (X, γ) has the AEP. If A ≺ B in Cld(X, γ) and x, y ∈ B \ A, then
γ(A ∪ {x}) = B = γ(A ∪ {y}), whence x = y by the AEP.

Suppose that (X, γ) satisfies (2). Assume that B = γ(A ∪ {x}) = γ(A ∪ {y}) > A =
γ(A). As Cld(X, γ) is strongly coatomic, there is a closed set A′ such that A 6 A′ ≺ B.
Then B = γ(A′ ∪ {x}) = γ(A′ ∪ {y}), so x, y ∈ B \ A′. By (2) we have x = y, as
desired.

The equivalence of the preceding theorem is also valid for algebraic closure systems;
see [2] and [4].

the electronic journal of combinatorics 23(1) (2016), #P1.56 2



3 Strongly spatial lattices

Our goal in this paper is to find a general class of lattices (not necessarily finite) to which
the characterizations of finite convex geometries extend naturally. Recall that in a finite
lattice, every element is a join of join irreducible elements.

Lemma 4. In a strongly coatomic complete lattice, every nonzero join irreducible element
is completely join irreducible.

Proof. We prove the contrapositive. Assume that w =
∨
X with x < w for all x ∈ X.

Choose any x0 ∈ X. Then x0 < w, so by strong coatomicity there exists c ∈ L such that
x0 6 c ≺ w. Since

∨
X = w > c, there exists an element x1 ∈ X such that x1 � c. But

then w = x1 ∨ c is finitely join reducible.

A complete lattice in which every element is a join of completely join irreducible ele-
ments is said to be spatial. Clearly, this is a desirable property for any sort of “geometry.”
In [5], it was shown that every weakly atomic convex geometry is spatial.

The set of nonzero join irreducible elements of a lattice L will be denoted by Ji(L). The
preceding lemma says that in dealing with strongly coatomic lattices, we need not worry
about the distinction between join irreducible and completely join irreducible elements.

Note that every complete lattice can be represented via a closure system in various
ways. If the lattice is spatial, then a standard representation would use the completely
join irreducible elements of L as the set X. The next observation relates this to condition
(2) of Theorem 3.

Lemma 5. Let (X, γ) be a closure system such that the lattice of closed subsets Cld(X, γ)
is strongly coatomic and satisfies the property that A ≺ B implies |B \ A| = 1. Then
there is a one-to-one correspondence betweeen X \ γ(∅) and the nonzero completely join
irreducible closed sets of (X, γ).

Proof. Always in a closure system, if B is a completely join irreducible closed set, then
B = γ(x) for any x ∈ B \ B∗, where B∗ denotes the unique lower cover of B. On the
other hand, if Cld(X, γ) is strongly coatomic and x /∈ γ(∅), then there is a closed set A
such that A ≺ γ(x). If (X, γ) also satisfies the condition, so that |γ(x) \A| = 1, then the
only choice for A is γ(x) \ {x}. That makes γ(x) \ {x} the unique lower cover of γ(x), so
that γ(x) is completely join irreducible.

It is useful to identify a stronger version of spatiality. A complete lattice L is said to be
strongly spatial if whenever a � b in L, then there exists an element p that is minimal with
respect to the property that x 6 a, x � b. Clearly any such element must be completely
join irreducible, and thus a strongly spatial lattice is spatial.

Consider the lattice K which is a union of two chains, an infinite chain 0 < · · · <
a2 < a1 < 1 and a 3-element chain 0 < b < 1, with no other relations holding. Then K is
strongly coatomic and spatial, but not strongly spatial.

In the remainder of this section, we identify some conditions under which strongly
coatomic, spatial lattices will be strongly spatial. The first one is easy.

A complete lattice L is called atomistic if every nonzero a ∈ L is a join of atoms.
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Lemma 6. Every atomistic lattice is strongly spatial.

A lattice L is called lower semimodular if a ≺ b implies a∧ c � b∧ c for all a, b, c ∈ L.
Equivalently, a lattice is lower semimodular if a ≺ a ∨ c implies a ∧ c ≺ c.

Lemma 7. If a complete lattice is strongly coatomic, lower semimodular and spatial, then
it is strongly spatial.

Proof. Let a � b in L. Then a > a ∧ b, and hence there exists c such that a � c > a ∧ b.
As L is spatial, there is a join irreducible element p with p 6 a, p � c. By lower
semimodularity, p � p ∧ c, and thus p is a minmal element with this property.

A subset D of a lattice L is down-directed if for every pair d1, d2 ∈ D there exists
d3 ∈ D such that d1 > d3 and d2 > d3 both hold. (Note that every chain in L is a
down-directed set.) A complete lattice is lower continuous if a ∨

∧
D =

∧
d∈D(a ∨ d) for

every down-directed set D ⊆ L. A standard result of lattice theory is that every dually
algebraic lattice is lower continuous.

Lemma 8. If a complete lattice is strongly coatomic and lower continuous, then it is
strongly spatial.

Proof. Again let a � b in L, so that a > a ∧ b, and choose c such that a � c > a ∧ b. Let
P = {x ∈ L : x 6 a, x � c}, and note that x ∈ P if and only if c∨ x = a. It follows from
lower continuity that if D is a chain in P , then

∧
D ∈ P . By Zorn’s Lemma, P contains

a minimal element, which is the desired conclusion.

4 Strongly coatomic, strongly spatial, join semidistributive lat-
tices

Next we generalize some equivalences of join semidistributivity which are well-known for
finite lattices.

The implication

(SD∨) w = x ∨ y = x ∨ z implies w = x ∨ (y ∧ z)

is known as the join semidistributive law. In view of the results in Jónsson and Kiefer
[14], we consider the following version of the law:

(SD∗∨) w =
∨

Y =
∨

Z implies w =
∨

(y ∧ z)

where the sets Y , Z are potentially infinite.
For subsets A, B ⊆ L we say that A refines B, denoted A � B, if for every a ∈ A

there exists b ∈ B such that a 6 b. Note that A� B implies
∨
A 6

∨
B.

We say that w =
∨
A is a canonical join decomposition if the join is irredundant, and

w =
∨
B implies A� B. This implies that A ⊆ Ji(L).
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Theorem 9. The following properties are equivalent in a strongly coatomic, strongly
spatial lattice L.

1. L satisfies SD∨.

2. L satisfies SD∗∨.

3. Every element of L has a canonical join decomposition.

4. If w � c in L, then there exists a join irreducible k which is the unique minimal
element such that k 6 w but k � c.

Proof. To see that (1) ⇒ (4), note that the strongly spatial property says that there is
at least one such element k. If there were two or more, say k1 and k2, then c ∨ k1 = w =
c ∨ k2 > c ∨ (k1 ∧ k2) by the minimality of each ki, contradicting (SD∨). Hence such an
element k is unique.

(4) ⇒ (3). Assume that property (4) holds, and fix an element w ∈ L. Let C =
{c ∈ L : w � c} be the set of lower covers of w. For each c ∈ C, we can find a minimal
element kc such that kc 6 w but kc � c. We claim that w =

∨
c∈C kc canonically. Clearly∨

c∈C kc = w, since each kc is below w, while the join is below no lower cover of w.
If c 6= d ∈ C, then d � c. By strong spatiality, there exists a minimal element p such

that p 6 d, p � c. As kc is assumed to be the unique minimal element below w but
not c, we must have p = kc, whence kc 6 d. Thus

∨
c 6=d kc 6 d. It follows that the join

representation w =
∨

c∈C kc is irredundant.
Suppose w =

∨
A and consider c ≺ w. There exists some a0 ∈ A such that a0 � c,

though a0 6 w, whereupon kc 6 a0. Since this holds for all c ∈ C, we have {kc : c ∈
C} � A, as desired.

(3) ⇒ (2). Suppose that w =
∨
S =

∨
T . If there is a canonical join decomposition

w =
∨
U in L, then U refines both S and T , so that for each u ∈ U there exist s ∈ S

with u 6 s, and t ∈ T with u 6 t. Hence each u 6 s∧ t for some pair, and it follows that
w =

∨
(s ∧ t).

(2)⇒ (1) clearly, as SD∨ is a special case of SD∗∨.

5 Characterizations of strongly coatomic, spatial convex geome-
tries

First, we introduce an idea with a geometric flavor.
For any A ⊆ X, x ∈ A is called an extreme point of A if x /∈ γ(A \ {x}). The set of

extreme points of A is denoted Ex(A). In lattice terms, for a strongly spatial lattice L,
we identify the element a with the set Ji(a) = {p ∈ Ji(L) : p 6 a}. Then x ∈ Ji(a) is an
extreme point of a if a >

∨
(Ji(a) \ {x}). This means that (i) x is completely join prime

in the ideal id(a), and (ii) there is no other join irreducible y with x < y 6 a.
We now extend some characterizations of finite convex geometries to strongly coatomic,

spatial geometries. In this setting we want to think of a lattice in terms of its standard
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representation as a closure system on its set of join irreducibles. Note that properties
(1)–(2) of the next theorem are about closure systems, while (3) and (5)–(6) are lattice
properties; (4) is more geometric in nature. For the finite case, various parts of the
theorem are due to S.P. Avann, P. Edelman and R. Jamison, and V. Duquenne.

Theorem 10. Let L be an strongly coatomic, spatial lattice. Then the following are
equivalent.

1. L is the closure lattice Cld(X, γ) of a closure system (X, γ) with the AEP.

2. L is the closure lattice Cld(X, γ) of a closure system (X, γ) with the property that
if A ≺ B in Cld(X, γ), then |B \ A| = 1.

3. L is join semidistributive and lower semimodular.

4. Every element w ∈ L is the join of Ex(w).

5. Every element w ∈ L has a unique irredundant join decomposition into join irre-
ducible elements, which is canonical, i.e., it refines every other join representation
of w.

6. For every pair of elements w, c ∈ L with c ≺ w, there exists a unique j in Ji(L)
such that j 6 w and j � c.

Note that we need only assume that L is spatial, but that strong spatiality will follow,
for example from (3) and Lemma 7.

Proof. The equivalence of (1) and (2) is Theorem 3.
To see that (2) ⇒ (3), consider a closure system (X, γ) satisfying (2). Clearly (2) im-

plies that Cld(X, γ) is lower semimodular; we want to show that it is join semidistributive.
This can be done by proving that every closed set B has a canonical join decomposition
in Cld(X, γ). (Note that (3) ⇒ (2) ⇒ (1) of Theorem 9 holds in all complete lattices.)

For each A ≺ B in Cld(X, γ), let {xA} = B \ A. The claim is that B =
∨

A≺B γ(xA)
canonically. Let R denote the right hand side, and note that B ⊇ R. If B ⊃ R properly,
then there would exist C such that R 6 C ≺ B. That would imply xC ∈ R ⊆ C, a
contradiction. Thus B = R. Moreover, the join is irredundant as xA ∈ C for any pair of
distinct lower covers A, C ≺ B.

Now suppose B =
∨

i∈I Di for some closed sets Di in Cld(X, γ). For each A ≺ B, we
have

⋃
Di 6⊆ A, so that there exists an i0 with Di0 6⊆ A. Since Di0 ⊆ B, this implies

xA ∈ Di0 , whence γ(xA) 6 Di0 . We have shown that {γ(xA) : A ≺ B} � {Di : i ∈ I}, as
required for a canonical join decomposition. This proves (3).

Properties (4)–(6) are variations on a theme. Let us work with (6) for now, returning
to their equivalence later.

Assume (3), that L is join semidistributive and lower semimodular, and we want to
show that (6) holds. Let w � c in L. The assumption that L is spatial means that
there is a completely join irreducible element j such that j 6 w but j � c. By lower
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semimodularity, j � j ∧ c, i.e., j∗ 6 c, so j is minimal with this property. By SD∨, there
can be only one such minimal element. Thus j is the unique minimal element with j 6 w,
j � c.

Note that (6) implies (2) immediately for the standard representation of a apatial
lattice as a closure system on its set of join irreducible elements. Indeed, (6) says that if
c ≺ w in L, then Ji(w) \ Ji(c) = {j}.

We turn to the equivalence of conditions (4)–(6). Let w ∈ L, and assume (6), that for
each covering pair c ≺ w there is a unique jc in Ji(L) such that jc 6 w and jc � c. Then∨
{jc : c ≺ w} = w, since the join is below w but not below any of its lower covers. On

the other hand, each such jc is extreme, as c =
∨

(Ji(w)\{jc}), because jc is the only join
irreducible below w that not below c. Thus (4) holds.

Next assume (4), and let us show that w =
∨

Ex(w) is the unique irredundant decom-
position of an element w ∈ L into join irreducibles, and that this decomposition refines
any other decomposition. Suppose w =

∨
B is another such decomposition. Because each

j ∈ Ex(w) is completely join prime in the ideal id(w), we have j 6 b for some b ∈ B.
As there are no other join irreducibles in the interval [j, w], this implies j = b. Thus
Ex(w) ⊆ B, and since both are irredundant decompositions, Ex(w) = B. This proves (5).

Finally, assume (5), that each element of L has a unique irredundant join decompo-
sition into join irreducible elements, which is canonical. Let w ∈ L with w =

∨
K its

canonical decomposition, and let c ≺ w. There exists a k0 ∈ K such that k0 � c. We
want to show that k0 is the only join irreducible element of L that is below w but not
below c.

Note that for any element p 6 w, we have p � c if and only if k0 6 p. Clearly k0 6 p
implies p � c. Conversely, if p � c then w = p ∨ c, and since w =

∨
K canonically,

K � {p, c}. In particular, k0 6 p. This also implies that k 6 c for all k ∈ K \ {k0}.
Now let p ∈ Ji(L) with k0 6 p 6 w. Let K ′ = {k ∈ K : k � p}. We claim that

w = p∨
∨
K ′ is an irredundant decomposition of w into join irreducibles. As noted above,∨

K ′ 6 c. Consider any k1 ∈ K ′. There is a lower cover d ≺ w such that k1 � d. By
the argument above applied to k1 we have p∨

∨
(K ′ \ {k1}) 6 d. Thus the decomposition

is irredundant. As w =
∨
K is the unique such decomposition, it must be that p = k0.

Thus (6) holds, completing the proof.
(When L is finite, it is not necessary to assume that the decomposition in (5) is

canonical. This will follow from uniqueness, since every join representation of an element
refines to an irredundant one in a finite lattice.)

Conspicuously missing from the list of equivalences of Theorem 10 is an analogue of
Dilworth’s characterization of finite convex geometries as lattices that are locally dis-
tributive. A strongly coatomic complete lattice is said to be locally distributive (or lower
locally distributive or meet distributive) if for any x ∈ L the interval [µ(x), x], where
µ(x) =

∧
{y : y ≺ x}, is a distributive lattice (and hence for finite lattices a boolean

algebra).
The property L is locally distributive is missing from the list because it is not equivalent

in this setting. Consider the lattice (ω + 1)d × 2, with its atom doubled. This lattice is
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strongly coatomic, strongly spatial, locally distributive, and even join semidistributive,
but it is not lower semimodular.

On the other hand, it is straightforward to show that property (2) of Theorem 10
implies local distributivity in any closure system. One solution is to further restrict
the class of lattices under consideration. For lattices that are also lower continuous, M.
Semenova has shown that local distributivity is also equivalent.

Theorem 11. [20] Let L be a strongly coatomic, lower continuous, complete lattice. Then
the conditions of Theorem 10 are equivalent to

(7) L is locally distributive.

However, it may be that we need only add the hypothesis of lower semimodularity to
complete the equivalences.

Problem 12. Does every strongly coatomic, locally distributive, lower semimodular,
complete lattice satisfy the properties of Theorem 10?

It would suffice, for example, to show join semidistributivity. But so far, a solution
eludes us.

Atomistic convex geometries were characterized in Proposition 3.1 of Adaricheva, Gor-
bunov and Tumanov [3]. For the strongly coatomic case, the proof is particularly easy.

Corollary 13. Any atomistic, strongly coatomic, join semidistributive lattice is the clo-
sure lattice of some convex geometry.

Proof. Let L be a lattice with these properties, and let c ≺ w in L. By atomicity, there
is an atom t such that t 6 w and t � c. There cannot be two distinct such atoms, say t1
and t2, else c ∨ t1 = c ∨ t2 = w > c = c ∨ (t1 ∧ t2), contradicting join semidistributivity.
Hence Ji(w) \ Ji(c) = {t}, so that condition (2) of Theorem 10 holds.

6 Examples of strongly coatomic convex geometries

Natural examples of the kind of geometries described in Corollary 13 can be obtained
by taking standard convex geometries and adding finiteness conditions to ensure strong
coatomicity. Recall that every chain in an ordered set P is finite if and only if P satisfies
both the ACC and DCC.

Theorem 14. (1) If P is an ordered set in which every chain is finite, then the lattice of
convex subsets Co(P ) is an atomistic, strongly coatomic convex geometry.

(2) If S is a meet semilattice that satisfies the ACC, then the lattice of subsemilattices
Sub∧(S) is an atomistic, strongly coatomic convex geometry.

Note that in each example, the closure operator is algebraic.
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Proof. (1) A subset A of an ordered set P is convex if a1, a2 ∈ A and a1 6 x 6 a2
implies x ∈ A. We know that the convex hull operator on an ordered set satisfies the
AEP; it remains to show that if P has the property that every chain is finite, then Co(P )
is strongly coatomic.

Suppose that P has that property, and that A < B in Co(P ). Let b0 ∈ B \ A. Then
either id(b0)∩A = ∅ or fil(b0)∩A = ∅, w.l.o.g. the former. Choose b1 minimal in B∩id(b0).
Then A ⊆ B \ {b1} ≺ B in Co(P ). Thus Co(P ) is strongly coatomic.

(2) Now consider Sub∧(S) for a meet semilattice S. Again, we know that the sub-
semilattice operator satisfies the AEP, and it remains to show that if S satisfies the ACC,
then Sub∧(S) is strongly coatomic. But this is easy: if A < B in Sub∧(S), then we can
choose b0 maximal in B \ A to obtain A 6 B \ {b0} ≺ B.

We can even combine these examples: if S is a meet semilattice in which every principal
filter fil(x) is a finite tree, then the lattice of convex subsemilattices of S is a strongly
coatomic, lower continuous convex geometry. See Adaricheva [1] and Cheong and Jones
[7].

In a similar vein, if (P,6) is an ordered set in which every chain is finite and every
interval is finite, then the lattice of suborders of 6 on P is a strongly coatomic and lower
continuous convex geometry. See Semenova [19].

Another construction yields strongly coatomic, lower continuous convex geometries
that need not be atomistic. Our inspiration is the fact that a geometric lattice is iso-
morphic to the ideal lattice of its finite dimensional elements. (There is no chance for a
similar characterization here, since for any non-limit ordinal α, the dual αd is a strongly
coatomic, lower continuous convex geometry.) Our construction uses Jónsson and Rival’s
characterization of join semidistributive varieties [15].

Define certain lattice terms recursively: for k > 0,

y0 = y z0 = z

yk+1 = y ∧ (x ∨ zk) zk+1 = z ∧ (x ∨ yk).

Then consider the lattice inclusions

SD∨(k) yk 6 x ∨ (y ∧ z) .

These are equivalent to the corresponding identities x ∨ yk ≈ x ∨ (y ∧ z). For example,
SD∨(1) is equivalent to the distributive law.

Lemma 15. [15] Let V be a lattice variety. Then every lattice in V is join semidistributive
if and only if V satisfies SD∨(n) for some n < ω.

Let SD∨(n) be the variety of all lattices satisfying SD∨(n).

Theorem 16. Let L0 be a lattice with the following properties.

• fil(x) is finite for each x ∈ L0.
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• L0 ∈ SD∨(n) for some n < ω.

• L0 is lower semimodular.

Then the filter lattice L = Fil(L0) is a strongly coatomic, lower continuous convex geom-
etry.

Proof. As usual, we order the filter lattice by reverse set inclusion: F 6 G iff F ⊇ G. The
filter lattice of any lattice is lower continuous and satisfies the equations of the original, in
particular SD∨(n) in this case. It remains to show that L is strongly coatomic and lower
semimodular.

Suppose F < G in L, i.e., F ⊃ G. Let k be an element maximal in F \G, and note that
k is meet irreducible. We claim that the filter generated by G ∪ {k}, say H = fil(G, k),
satisfies F 6 H ≺ G. Let ` be any element of H \G. Then ` > g∧ k for some g ∈ G, and
we may take g 6 k∗, where k∗ denotes the unique upper cover of k in L0. In that case, by
lower semimodularity, g � g ∧ k, whence also g ∧ k = g ∧ `. It follows that H = fil(G, `),
and since ` is arbitrary, H ≺ G. Thus L is strongly coatomic.

The proof that L is lower semimodular is an adaptation of that for the corresponding
dual claim in Theorem 11.1 of [17]. Assume that L is lower semimodular, and suppose
that F ≺ F ∨ G = F ∩ G in Fil(L0). Choose an element a maximal in F \ G, and note
that a is meet irreducible, thus by the finiteness of fil(a) completely meet irreducible.
Then F = (F ∨ G) ∧ fil(a), and hence F ∧ G = fil(a) ∧ G. Let x be any element in
(F ∧ G) \ G. Since x ∈ F ∧ G, there exists g ∈ G such that x > a ∧ g. Because L is
lower semimodular, a ∧ g ≺ a∗ ∧ g. On the other hand, every element of L is a meet of
finitely many meet irreducibles, so x /∈ G implies there exists a meet irreducible element
b > x with b /∈ G. Now b > a ∧ g and b � g, so b ∧ g = a ∧ g, whence a > b ∧ g. Thus
fil(b) ∧ G = fil(a) ∧ G = F ∧ G; if follows a fortiori that fil(x) ∧ G = F ∧ G. As this
holds for every x ∈ (F ∧G) \G, we have F ∧G ≺ G, as desired.

So in particular, we could take L0 to be the elements of finite depth in an infinite
direct product of finite convex geometries that satisfy SD∨(n) for some fixed n.

The examples so far have all been algebraic closure operators. For a non-algebraic
example of a strongly coatomic, lower continuous convex geometry, we form a closure
system (ω, γ) on the natural numbers ω. Define a subset S ⊆ ω to be γ-closed if either
0 ∈ S or S is finite. Clearly the closed sets are closed under arbitrary intersections, so
Cld(ω, γ) is a complete lattice. Moreover, the lower covers of a nonempty closed set S are
all sets S \{x} with x ∈ S if S is finite, and all sets S \{x} with 0 6= x ∈ S if S is infinite.
It follows easily that Cld(ω, γ) is strongly coatomic, and it has the property that T ≺ S
implies |S \T | = 1 of Theorem 11. Note that Cld(ω, γ) is a sublattice of the subset lattice
Pow(ω), closed under arbitrary intersections and finite unions (but not infinite unions).
This clearly makes Cld(ω, γ) lower continuous. To see that it is not algebraic, we show
that it is not upper continuous. For k > 1, let Fk = {1, . . . , k}. This is a chain with∨
Fk = ω, and hence

{0} = {0} ∧
∨

Fk ⊃
∨

({0} ∧ Fk) = ∅.
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Thus Cld(ω, γ) is a non-algebraic strongly coatomic, lower continuous convex geometry.

7 Discussion

In some sense, algebraic closure operators are the natural settings for any type of ge-
ometry. On the other hand, Crawley and Dilworth’s setting of dually algebraic and
strongly coatomic gives the nice equivalence of local distributivity and unique represen-
tations. Since dually algebraic lattices are lower continuous, the hypothesis of strongly
coatomic, lower continuous is slightly weaker. Indeed, most of the equivalences for convex
geometries remain valid for lattices that are strongly coatomic and spatial. The question
remains whether local distributivity and lower semimodularity are equivalent to the other
characterizations under the weaker hypothesis of a strongly coatomic, spatial complete
lattice. Thus the question can be phrased: Does every strongly coatomic, spatial, locally
distributive and lower semimodular closure system satisfy the anti-exchange property?

Strong coatomicity is a strong assumption. Some progress has been made towards
relaxing this to the weakly atomic property (every interval contains a cover) in [4] and
[5], but more could doubtless be done along these lines.
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