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Abstract

The Chip-firing game is a discrete dynamical system played on a graph, in which
chips move along edges according to a simple local rule. Properties of the underlying
graph are of course useful to the understanding of the game, but since a conjecture
of Biggs that was proved by Merino López, we also know that the study of the
Chip-firing game can give insights on the graph. In particular, a strong relation
between the partial Tutte polynomial TG(1, y) and the set of recurrent configurations
of a Chip-firing game (with a distinguished sink vertex) has been established for
undirected graphs. A direct consequence is that the generating function of the set
of recurrent configurations is independent of the choice of the sink for the game,
as it characterizes the underlying graph itself. In this paper we prove that this
property also holds for Eulerian directed graphs (digraphs), a class on the way from
undirected graphs to general digraphs. It turns out from this property that the
generating function of the set of recurrent configurations of an Eulerian digraph is
a natural and convincing candidate for generalizing the partial Tutte polynomial
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TG(1, y) to this class. Our work also gives some promising directions of looking for
a generalization of the Tutte polynomial to general digraphs.

Keywords. Chip-firing game, critical configuration, Eulerian digraph, feedback
arc set, recurrent configuration, reliability polynomial, Sandpile model, Tutte poly-
nomial.

1 Introduction

The Tutte polynomial is an important polynomial in two variables which is defined on
undirected graphs [26]. It has many interesting properties and applications. Its evalua-
tions at some specific points count various combinatorial objects such as vertex colorings,
spanning trees, spanning subgraphs, acyclic orientations, etc [5, 12, 14, 15, 17, 25]. There
is an evident interest in looking for analogues of the Tutte polynomial for directed graphs
(digraphs) and some other objects [7, 11, 13]. These attempts share properties of the
Tutte polynomial. Nevertheless, they are not natural extensions of the Tutte polynomial
in the sense that one does not know a conversion from the properties of these polynomials
to those of the Tutte polynomial, in particular how to get back to the Tutte polynomial
on undirected graphs from these polynomials. For this reason the authors of [7] asked for
a natural generalization of Tutte polynomial for digraphs.

The evaluation of the Tutte polynomial TG(x, y) at x = 1 is important since it has
a strong connection to the reliability polynomial that is studied in network theory. In
this paper we present a polynomial that can be considered as a natural generalization of
TG(1, y) for the class of Eulerian digraphs. An Eulerian digraph is a strongly connected
digraph in which each vertex has equal in-degree and out-degree, or equivalently there
is a closed path covering all arcs. A connected undirected graph can be regarded as an
Eulerian digraph by replacing each edge e by two reverse arcs a and b which have the
same endpoints as e. When considering undirected graphs seen as Eulerian digraphs in
that way, we will see that we get back to the partial Tutte polynomial TG(1, y), which is
a new and relevant feature.

This work is based on an idea conjectured by Biggs and proved by Merino López, that
the generating function of the set of recurrent configurations of the Chip-firing game of
an undirected graph is equal to the partial Tutte polynomial TG(1, y) [1, 19]. Based on a
discrete dynamical system, this construction defines a polynomial that characterizes the
graph supporting the dynamic. It is not straightforward to generalize those ideas to the
class of Eulerian digraphs, but the results we will develop give a promising direction for
further extensions.

The Chip-firing game is a discrete dynamical system which is defined on a directed
graph (digraph) G. The game is initialized by some chips stored on the vertices of G.
If a vertex has at least one out-going arc and has as many chips as its out-degree, it
can distribute its chips to its neighbors by sending one chip along each out-going arc
to the corresponding vertex. The game playing with this rule is called Chip-firing game
(CFG). A distribution of chips on vertices is called a configuration of G. Stabilizing a
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configuration is the process of repeatedly applying the rule whenever it is applicable.
This process may be infinite. If the process is finite, we call the game convergent. It is
known that the game either plays forever or converges to a unique stable configuration,
in which the rule is no longer applicable [3, 4, 16]. The unique stable configuration (if it
exists) is called stabilization of the game. In this paper we are interested in the digraphs
with a global sink, i.e. a vertex s of out-degree 0 and for any other vertex v there is
a path from v to s. The game on such digraphs is always convergent for any initial
configuration. For a strongly connected digraph (without global sink) the game plays
forever if the number of chips in the initial configuration is sufficient, but we can make
the game always convergent by choosing a vertex s and removing all out-going arcs of
s. The vertex s becomes a global sink of the new graph. The game now is played on
that new graph, and therefore it is always convergent. In this paper we study properties
of such games, which are independent of the choice of s, and provide clues to define a
natural analogue of the Tutte polynomial, for the class of Eulerian digraphs.

The Dollar game is a variant of CFG on undirected graphs in which a particular
vertex is called sink, and this vertex can only be fired if all other vertices are stable (not
firable) [2]. In this model the number of chips stored in the sink may be negative. This
definition leads naturally to the notion of recurrent configurations (originally called critical
configurations) that are stable, and unchanged under firing at the sink and taking the
stabilization of the resulting configuration. The Dollar game can be defined for Eulerian
digraphs with the same definition, i.e. some vertex is chosen to be the sink that can only
be fired if all other vertices are stable [16]. Although the notion of recurrent configurations
is originally defined on the Dollar game, it can be defined in an equivalent way on the
Chip-firing game. Since we work only with the Chip-firing game throughout this paper,
we will use the Chip-firing game to define recurrent configurations. This important notion
has a generalization to the digraphs with a global sink [16].

The set of recurrent configurations of a CFG with a sink on an undirected graph has
many interesting properties, such as it is an Abelian group with the addition defined by
vertex-wise addition of chip content followed by stabilization, and its cardinality is equal
to the number of spanning trees of the support graph, etc. A direct consequence of the
result of Merino López for proving Biggs’ conjecture is that the generating function of
recurrent configurations of a CFG with a sink is independent of the chosen sink, and thus
characterizes the support graph. This fact is definitely not trivial, and opened a new
direction for studying graphs using the Chip-firing game as a tool [8, 20].

A lot of properties of recurrent configurations on undirected graphs can be extended
to Eulerian digraphs without difficulty. However the situation is different when one tries
to extend the sink-independence property of the generating function to a larger class of
graphs, in particular to Eulerian digraphs, mainly because a natural definition of the
Tutte polynomial for digraphs is unknown, even for Eulerian digraphs. In this paper
we develop a combinatorial approach, based on a level-preserving bijection between two
sets of recurrent configurations with respect to two different sinks, to show that this
sink-independence property also holds for Eulerian digraphs. This bijection provides new
insights into the groups of recurrent configurations.
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It turns out from the sink-independence property of the generating function, that this
latter is a characteristic of the support Eulerian digraph, and we can denote it by TG(y)
regardless of the sink. We will see that evaluations of TG(y) can be considered as extensions
of TG(1, y) to Eulerian digraphs, which make us believe that the polynomial TG(y) is a
natural generalization of TG(1, y). Furthermore, the most important feature is that TG(y)
and TG(1, y) are equal on undirected graphs. It requires to be inventive to discover which
objects the evaluations of TG(y) counts, and we hope that further properties will be found.
The class of Eulerian digraphs is in-between undirected and directed graph, and following
the track we develop in this paper, we propose some conjectures that would be promising
directions of looking for a natural generalization of TG(x, y) to general digraphs.

The paper is divided into the following sections. Section 2 recalls the definition of the
Chip-firing game on digraphs and some known results about the recurrent configurations
on a digraph with global sink and on an Eulerian digraph with a sink. Section 3 establishes
the sink-independence of the generating function of recurrent configurations in the case
of Eulerian digraphs. The Tutte polynomial generalization is presented in Section 4, and
Section 5 hints at continuations of the present work.

2 Chip-firing game and recurrent configurations

All graphs in this paper are assumed to be multi-digraphs without loops. Throughout
this paper an undirected graph is regarded as a digraph by replacing each edge e by two
reverse arcs that have the same endpoints as e. Graphs with loops will be considered
in Section 4. In this section we recall the definition of the Chip-firing game and present
some known results about recurrent configurations of a CFG on a graph with a global
sink and on an Eulerian graph with a sink, followed by straightforward considerations
on the number of chips stored on vertices of recurrent configurations. All graphs in this
section are assumed to be connected.

2.1 Chip-firing game

For a digraph G = (V,A) and an arc e ∈ A, we denote by e− and e+ the tail and head
of e, respectively. For a vertex v let deg+

G(v) denote the number of arcs e with e− = v
and deg−G(v) denote the number of arcs e with e+ = v. For two vertices v, w ∈ V , let
degG(v, w) denote the number of arcs from v to w in G. A configuration c on G is a map
from V to N = {0, 1, 2, . . . }. A vertex v is firable in c if and only if c(v) > deg+

G(v) > 0.
A configuration c is called stable if there is no firable vertex in c. Firing a firable vertex
v is the process that decreases c(v) by deg+

G(v) and increases each c(w) with w 6= v by
degG(v, w). A sequence (v1, v2, · · · , vk) of vertices of G is called a firing sequence of a
configuration c if starting from c we can consecutively fire the vertices v1, v2, · · · , vk in
this order. Applying the firing sequence leads to configuration d and we write c

v1,v2,··· ,vk−→ d,
or c

∗→ d without specifying the firing sequence. A sink is a vertex of out-degree 0. A
vertex s is called global sink if it is a sink and from every other vertex there is a directed
path leading to s. Note that if G has a global sink then the sink is unique.
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Lemma 1. [3, 4, 16] Suppose that G has a global sink. For any initial configuration c
the game converges to a unique stable configuration, denoted by c. Let f and g be two

firing sequences of c such that c
f→ c and c

g→ c̄. Then for any vertex v the number of
times v occurs in f is the same as in g.

The configuration c̄ in the lemma is called the stabilization of c.

2.2 Recurrent configurations on a digraph with a global sink

The following is simple but very important, and will often be used without explicit refer-
ence.

Lemma 2. Let G = (V,A) be a graph with a global sink. For two configurations c and
d, we denote by c + d the configuration given by (c + d)(v) = c(v) + d(v) for any v ∈ V .
Then c+ d = c+ d.

For two sets X and Y we denote by Y X the set of maps from X to Y . In the rest
of this subsection we work with a graph G = (V,A) which has a global sink s. The
definition of recurrent configurations is based on the convergence of the game, which is
ensured if G has a global sink. Since s is not firable no matter how many chips it has, it
makes sense to define a configuration to be an element in NV \{s}. When a chip goes into
the sink, it vanishes. Two configurations are considered to be the same if they have the
same number of chips on every vertex except for the sink. Note that in this section we
consider only one fixed sink, but in subsequent sections we will consider the CFG relative
to different choices of sink, and therefore we will need some more notations. Let us not
be overburdened yet, a configuration on G with sink s is an element in NV \{s}.

Definition. A stable configuration c is recurrent if and only if for any configuration a
there is a configuration b such that c = a+ b.

There are several equivalent definitions of recurrent configurations. For an undirected
graph G (regarded as a digraph) with a particular vertex s, which is called a sink, let H be
the graph which is obtained from G by removing all out-going arcs of s. Then recurrent
configurations of H can be defined by the firing rule of the Dollar game on G as follows. A
configuration is recurrent if it remains unchanged under firing the sink and stabilizing the
resulting configuration [2, 10]. For a graph G with global sink, recurrent configurations
can be defined naturally by using the notion of recurrent states of the Markov chain which
is defined as follows. The state space is the set of all stable configurations of G. When at
a state c, the next state is obtained by adding one chip to c at some vertex (distinct from
the sink) chosen uniformly at random, and then stabilizing the resulting configuration.
The recurrent configurations can be defined to be the recurrent states of this Markov
chain [9, 10, 18]. The one we present in this paper says that c is recurrent if and only if
it can be reached from any other configuration a by adding some chips (according to b)
and then stabilize the resulting configuration.

Dhar proved that the set of recurrent configurations has an elegant algebraic structure
[9]. Fix a linear order v1 ≺ v2 ≺ · · · ≺ vn−1 ≺ vn on the vertices, where n = |V |. We

the electronic journal of combinatorics 23(1) (2016), #P1.57 5



suppose that vn = s. Now a configuration of G can be represented as a vector in Zn−1.
The Laplacian matrix ∆ of G is an n× n matrix which is defined by

∆ij =

{
− degG(vi, vj,) if i 6= j

deg+
G(vi) if i = j

.

Note that the Laplacian matrix of a general graph (not necessarily having a global sink)
is defined by the same formula as above. Let Λ be the matrix which is obtained from
∆ by deleting the last row and column of ∆. Let Λi denote the ith row of Λ. Firing
the index i in a configuration c corresponds to adding the vector −Λi to c. We define a
binary relation ∼ over Zn−1 by b ∼ c if and only if there exist a1, a2, · · · , an−1 ∈ Z such
that b− c =

∑
16i6n−1 aiΛi, i.e. b and c are linked by a (possibly impossible to perform)

sequence of firings. The following result states the nice algebraic structure of the set of
all recurrent configurations of G with sink s.

Lemma 3. [16] The set of all recurrent configurations of G is an Abelian group under the
operation (a, b) 7→ a+ b. This group is isomorphic to Zn−1/〈Λ1,Λ2, · · · ,Λn−1〉. Moreover,
each equivalence class of Zn−1/∼ contains exactly one recurrent configuration, and the
number of recurrent configurations is equal to the number of equivalence classes.

The group in Lemma 3 is called the Sandpile group of G. For two functions f, g : X →
R we write f 6 g if f(x) 6 g(x) for every x ∈ X. The following simple properties can be
derived easily from the definition of recurrent configuration.

Lemma 4. The following holds:

1. Let c be a configuration such that c(v) > deg+
G(v) − 1 for every v 6= s. Then c is

recurrent.

2. Let c and d be two configurations (elements of NV \{s}) such that c 6 d. Then∑
v 6=s

c(v)−
∑
v 6=s

c(v) 6
∑
v 6=s

d(v)−
∑
v 6=s

d(v).

Moreover, if c is recurrent then d is also recurrent.

Proof.

1. For any configuration a let b = c − a. Clearly, b is a configuration. We have
a+ b = a+ c− a = a+ c− a = c, therefore c is recurrent.

2. Let f = (v1, v2, · · · , vk) be a firing sequence of c such that c
f→ c. Since

∑
v 6=s c(v)−∑

v 6=s c(v) is the number of chips lost into the sink, we have∑
v 6=s

c(v)−
∑
v 6=s

c(v) =
∑
16i6k

degG(vi, s).
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Since c(v) 6 d(v) for any v 6= s, f is also a firing sequence of d. Therefore there is a

firing sequence g = (v1, v2, · · · , vk, vk+1, vk+2, · · · , vl) of d such that d
g→ d. For the

same reason we have ∑
v 6=s

d(v)−
∑
v 6=s

d(v) =
∑
16i6l

degG(vi, s).

The first claim follows.

Let a be an arbitrary configuration. Since c is recurrent, there is a configuration b
such that a+ b = c. Let e = b+ d− c. We have

a+ e = a+ b+ d− c = a+ b+ d− c = c+ d− c = c+ d− c = d,

thus d is recurrent.

2.3 Recurrent configurations of an Eulerian digraph with a sink

In this subsection we work with an Eulerian graph G and present properties that recurrent
configurations have in that case. As in the previous subsection, the definition of recurrent
configuration is based on the convergence of the game. Therefore a global sink plays an
important role in the definition. The digraph G is strongly connected, therefore it has no
global sink and the game may play forever from some initial configurations. To overcome
this issue, we distinguish a particular vertex s of G that plays the role of the sink. By
removing all outgoing arcs of s from G we obtain the digraph H that has a global sink s.
The Chip-firing game on G with sink s is the ordinary Chip-firing game that is defined on
H, and recurrent configurations are defined as presented in the previous subsection, on
H. Figures 1a and 1b present an example of G and H. It is a good way to think of the
Chip-firing game on an Eulerian digraph with a sink as the ordinary Chip-firing game on
G with a fixed vertex that never fires in the game no matter how many chips it has. In
this section we will work with G, s and H.

A configuration of the Chip-firing game on G with sink s is a map in NV \{s}. To verify
the recurrence of a configuration c, we have to test the condition that for any configuration
a there is a configuration b such that a+ b = c. This is a tiresome task. However, in the
case of Eulerian digraphs we have the following useful criterion.

Lemma 5. [9, 16] A configuration c is recurrent if and only if c+ β = c, where β is the
configuration defined by β(v) = degG(s, v) for every v 6= s. Moreover, if c is recurrent
then each vertex distinct from s occurs exactly once in any firing sequence f from c+ β to
c+ β.

Figure 1c presents a configuration c. The configuration c + β is presented in Figure
1d, adding β corresponds to firing the sink. To verify the recurrence of c, one computes
c+ β. Starting with c+ β we fire consecutively the vertices v1, v3, v2, v4 in this order and
get exactly the configuration c, therefore c is recurrent. This procedure is called Burning
algorithm.

For two integers p, q we denote by [p..q] the set {x ∈ Z : p 6 x 6 q}. The following
lemma will be important later.
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t s u

r

(a) G

v

t s u

r

(b) H

1

0 1

0

(c) A configuration c

2

0 2

1

(d) c+ β

Figure 1: Burning algorithm

Lemma 6. Let c and d be two stable configurations such that c and d are in the same
equivalence class. If c is recurrent then

∑
v 6=s
d(v) 6

∑
v 6=s
c(v).

Proof. Let β be the configuration that is defined as in Lemma 5 and a be an arbitrary
stable configuration. We claim that for any firing sequence f = (v1, v2, · · · , vk) of a + β

such that a + β
f→ a+ β, each vertex of G occurs at most once in f. For a contradiction

we assume otherwise. This assumption implies that there is a first repetition, i.e., there is
p ∈ [1..k] such that v1, v2, · · · , vp−1 are pairwise-distinct and vp = vq for some q ∈ [1..p−1].
We denote b the configuration obtained from a+ β after the vertices v1, v2, · · · , vp−1 have
been fired. We will now show that vp is not firable in b, a contradiction. Let r be the
number of chips vp has received from its in-neighbors when the vertices v1, v2, · · · , vp−1
have been fired. Since adding β corresponds to firing the sink and vp has been fired exactly
once during the process of firing vertices in the sequence (v1, v2, . . . , vp−1), it follows that
b(vp) = a(vp) + degG(s, vp) + r− deg+

G(vp). Since v1, v2, · · · , vp−1 are pairwise-distinct and
different from the sink, we have r + degG(s, vp) 6 deg−G(vp). The digraph G is Eulerian,
therefore deg−G(vp) = deg+

G(vp) and from the previous equality we have b(vp) 6 a(vp), but
a is stable so vertex vp is not firable in configuration b, which is absurd.

Since each of the in-neighbors of s is fired at most once in any firing sequence f of

a + β such that a + β
f→ a+ β, it follows that during the stabilization process of a + β

the number of chips lost in the sink is not greater than deg−G(s) = deg+
G(s). This implies

that ∑
v 6=s

(a+ β)(v)−
∑
v 6=s

a+ β(v) 6 deg+
G(s).
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0 1 1

1

(a) A recurrent configuration

0 0 2

1

(b) A non-recurrent configuration

Figure 2: Two stable configurations from the same equivalence class on an undirected
graph

Since ∑
v 6=s

(a+ β)(v) =
∑
v 6=s

a(v) +
∑
v 6=s

β(v) =
∑
v 6=s

a(v) + deg+
G(s)

it follows that ∑
v 6=s

a(v) 6
∑
v 6=s

a+ β(v).

Repeating the application of this inequality n times we have∑
v 6=s

a(v) 6
∑
v 6=s

a+ nβ(v),

where nβ is the configuration given by (nβ)(v) = nβ(v) for any v 6= s. This reasoning
can be applied to d and we have∑

v 6=s

d(v) 6
∑
v 6=s

d+ nβ(v) for any n ∈ N.

Since for any vertex v 6= s and any w being an out-neighbor of s there is a path in H
from w to v, with a sufficiently large n there is an appropriate firing sequence g of d+nβ

and a configuration e such that d+ nβ
g→ e and e(v) > deg+

G(v)− 1 for any v 6= s. When
stabilizing e, it follows from Lemma 1 (convergence), Lemma 4 (recurrence) and Lemma
3 (uniqueness of recurrent configuration in an equivalent class) that it leads to c, that is,
c = e = d+ nβ. This finishes the proof.

Question. Does the claim of Lemma 6 hold for a general digraph with a global sink?

Note that if this statement is true, then it is tight. Figure 2 presents an example, on an
undirected graph, of a recurrent configuration and a non-recurrent configuration belonging
to the same equivalence class, such that they contain the same total number of chips. As
a consequence, the recurrent configuration is not necessarily the unique configuration of
maximum total number of chips over stable configurations of its equivalence class.
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1

0 1

1 0

0 1

0 0

0 0

1

0

0 1

1 1

0 1

0 1

0 0

1

Figure 3: Recurrent configurations with respect to sink s

1

0 0 1

1

0 1 0

1

0 1 1

1

0 2 0

1

0 2 1

0

0 2 1

Figure 4: Recurrent configurations with respect to sink r

3 Sink-independence of generating function of recurrent config-
urations of an Eulerian digraph

Key observation. Let us give an important observation that motivates the study
presented in this paper. We consider the Chip-firing game on the digraph drawn on
Figure 1a. In this game the vertex s is chosen to be sink. All the recurrent configurations
are presented in Figure 3. For each recurrent configuration we compute the sum of
chips on the vertices different from the sink. We get the sorted sequence of numbers
(1, 1, 2, 2, 2, 3). If r is chosen to be the sink of the game, all the recurrent configurations
are given in Figure 4, and the sum of chips on vertices different from the sink gives the
sorted sequence (2, 2, 3, 3, 3, 4). The two sequences are the same up to adding a constant
sequence. This property also holds with other choices of sink, therefore, up to a constant,
this sequence is characteristic of the support graph itself. This interesting property is the
main discovery exploited in this paper, and allows to generalize the construction presented
in [1] and proved in [19] of an analogue for the Tutte polynomial to the class of Eulerian
digraphs. It is stated in the following theorem.
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Theorem 1. Let G be an Eulerian digraph and s a vertex of G. For each recurrent config-
uration with respect to sink s, let sum G(c) denote deg+

G(s)+
∑
v 6=s
c(v). Let c1, c2, . . . , cp be an

enumeration of recurrent configurations with sink s. Then the sequence (sum G(ci))16i6p
is independent of the choice of s up to a permutation of the entries.

It makes sense to call an Eulerian digraph G undirected if for any two vertices v, w of G
we have degG(v, w) = degG(w, v). The result of Merino López [19] implies that Theorem
1 is true for undirected graphs. The following known result is thus a particular case of
Theorem 1, for the class of undirected graphs.

Theorem 2. [19] Let C be the set of all recurrent configurations with respect to some sink
s. If G is an undirected graph (defined as a digraph) then

TG(1, y) =
∑
c∈C

ylevel(c),

where TG(x, y) is the Tutte polynomial of G and for any c ∈ C,

level(c) = −|A|
2

+ deg+
G(s) +

∑
v 6=s

c(v).

In the rest of this section we work with an Eulerian digraph G = (V,A). For simplicity
we remove G in some notations such as deg+

G(v), deg−G(v), sum G(c), degG(v, w). In order
to prove Theorem 1, we consider the following natural approach. Let r and s be two
arbitrary distinct vertices of G. Let U = V \{r} and W = V \{s}. We denote by R and
S the sets of all recurrent configurations with respect to sink r and s, respectively. We
are going to construct a bijection θ from R to S such that sum(c) = sum(θ(c)) for every
c ∈ R. Clearly, this bijection will imply Theorem 1. We recall that it follows from [16]
that |R| = |S|.

For each configuration c ∈ NV we denote by cr (resp. cs) the stabilization of c with
respect to sink r (resp. sink s). Note that in the process of stabilizing c with respect to
sink r, when a chip arrives at r it does not vanish but stays at r forever since r is never
fired in the process. See Figure 5 for an illustration. Warning: let us underline that a
configuration is now an element of NV .

Notation. For a function f : X → Y and a subset Z ⊆ X we denote by f |Z the restriction
of f to Z.

We denote by R̂ the set of configurations c ∈ NV such that c|U ∈ R and c(r) > deg+(r),
and by Ŝ the set of configurations c ∈ NV such that c|W ∈ S and c(s) > deg+(s). For
each c ∈ R (resp. S) let c̃ denote the configuration in R̂ (resp. Ŝ) such that c̃|U = c
(resp. c̃|W = c) and c̃(r) = deg+(r) (resp. c̃(s) = deg+(s)).

The following shows the first relation between R̂ and Ŝ under the stabilization.

Lemma 7. Let c ∈ R, then c̃
s ∈ Ŝ. Symmetrically, for each c ∈ S we have c̃

r ∈ R̂.
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(a) A configuration c of G (b) cs

Figure 5: Chip-unvanished stabilization

1

0 2 0

(a) A recurrent configuration c
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(b) Configuration c̃

0

0 4 1

0

(c) c̃
s

0

0 1

0

(d) Recurrent configuration
c̃
s|W

Figure 6: Change of sink

Since the concept of this lemma is at the heart of the construction of the map θ, we
give an illustration of the claim before going into the details of the proof. We consider
the Eulerian digraph given in Figure 1. Figure 6a shows a recurrent configuration with
respect to sink r. The configuration c̃ is given in Figure 6b. Figure 6c and Figure 6d
show c̃

s
and its restriction to W . Using the Burning algorithm, one easily checks that the

configuration in Figure 6d is indeed recurrent with respect to sink s.

Proof of Lemma 7. We will once again use Lemma 5 (the Burning algorithm), which
provides a firing sequence associated to a recurrent configuration of R, that we will ma-
nipulate to built a firing sequence associated to a recurrent configuration of S. In c̃, only
r is firable, and after firing it, we will use the firing sequence leading back to c, provided
by Lemma 5.

Let β ∈ NU (resp. γ ∈ NW ) be given by β(v) (resp. γ(v)) is equal to deg(r, v) (resp.
deg(s, v)). Let a be such that c̃

r→ a. We have a|U = c + β, and can therefore apply
Lemma 5 (since c is recurrent), providing a firing sequence f = (v1, v2, · · · , v|V |) of c̃ such
that v1 = r and each vertex of G occurs exactly once in this sequence. Let k be such
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that s = vk and b be the configuration reached after vertices (v1, v2, . . . , vk−1) have been
fired. Vertex s is firable in b, thus b(s) > deg+(s). Since the game is convergent, and
this intermediate configuration b is reachable from c̃ without firing s, when we stabilize c̃
with respect to sink s we end up with at least as many chips in s as in b, and therefore
c̃
s
(s) > deg+(s).

Since c̃
f→ c̃, the sequence g = (s, vk+1, vk+2, · · · , v|V |, v1, v2, · · · , vk−1) is a firing se-

quence of b. We now consider the game with respect to sink s (that is, on G where the
out-going arcs of s are removed), and the configuration b|W . Let d be such that b

s→ d.

We have d|W = b|W + γ, and the rest of the firing sequence implies that b|W + γ
∗→ b|W ,

therefore b|W + nγ
∗→ b|W for any n ∈ N. The recurrence of b|W can be shown similarly

as in the proof of Lemma 6 as follows. With n large enough there is e ∈ NW such that
b|W ∗→ e and e(v) > deg+(v) for any v ∈ W . By Lemma 4 we have e = b|W is recurrent.
Since c̃

s
(s) > deg+(s) and b|W = c̃

s|W , it follows that c̃
s ∈ Ŝ.

Lemma 7 naturally suggests a bijection from R to S that is defined by c 7→ c̃
s|W .

However, this does not give the intended bijection since it does not necessarily preserve
the sum of chips, as shown on Figure 6. We will improve the above map by adding some
extra chips to c at the vertex r so that the map preserves the sum. The required number of
extra chips added to r follows from Lemma 10 below and is a non-constructive quantity.
That is what we are going to present now. We need the following notation. We denote
by 1r (resp. 1s) the configuration on G which has one chip at r (resp. s) and none in
other vertices. By this notation for any i ∈ N we have i1r (resp. i1s) is the configuration
which has i chips at r (resp. i chips at s) and none in other vertices.

Lemma 8. For any c ∈ R̂ we have cs ∈ Ŝ. Symmetrically, for any c ∈ Ŝ we have cr ∈ R̂.

Proof. Clearly, we have c̃|U 6 c. It follows from Lemma 7 and the second item of Lemma
4 that cs|W ∈ S. By using the same arguments as in the proof of Lemma 7 we have
cs(s) > deg+(s). This finishes the proof.

The lemma means that the correspondence c 7→ cs is a map from R̂ to Ŝ. The following
implies the injectivity of this map.

Lemma 9. For any c ∈ R̂ we have (cs)
r

= c.

Proof. Let a denote (cs)
r
. It follows from Lemma 8 that both a and c are in R̂. Since

G is Eulerian and a can be obtained from c by a sequence of firings, it follows that a|U
and c|U are in the same equivalence class. Both are recurrent, hence from Lemma 3 they
are equal. Since a and c contain the same total number of chips, and are equal on the
vertices different from r, it follows that a = c.

The aim is now to find, for every recurrent configuration c ∈ R, the good i so as to
get a bijection from R to S that preserves the sum of chips. We first concentrate on the
sum conservation: if one wants to have

sum(c) = sum
(
c̃+ i1r

s|W
)
,
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then the number i must be chosen so that c̃+ i1r
s
(s) = i+ deg+(s), because the i extra

chips are not counted in both sums in this case. The following shows that such an i always
exists.

Lemma 10. For every c ∈ R there exists i such that c̃+ i1r
s
(s) = i+ deg+(s).

Proof. For each i ∈ N let di denote the c̃+ i1r
s
. Let the function f : N → Z be defined

by f(i) = di(s) − deg+(s) − i. We are going to prove that there exists j ∈ N such
that f(j) = 0. Since c̃ + i1r 6 c̃ + (i + 1) 1r, it follows from Lemma 4 (using the trick∑

v∈W c(v) =
∑

v∈V c(v)−c(s)) that di(s)−c(s) 6 di+1(s)−c(s), therefore di(s) 6 di+1(s).
As a consequence f(i+ 1)− f(i) > −1 for every i, that is, the function f decreases by at
most one.

By Lemma 8 we have d0(s) > deg+(s), therefore f(0) > 0. Since f(i+ 1)− f(i) > −1
for any i ∈ N, the proof is completed by showing that there is j ∈ N such that f(j) 6 0.
In particular, we are going to prove that f(N − 1) 6 0, where N = |S|. Note that N is
the order of the Sandpile group of G with respect to sink s.

f(N − 1) = dN−1(s) − deg+(s) − (N − 1). We are going to use Lemma 6, which
states that the recurrent configuration has maximum total number of chips over stable
configurations of its equivalence class, in order to upper bound dN−1(s) by c(s) +N , and
the result follows since vertex s is stable in the recurrent configuration c (meaning that
c(s) 6 deg+(s)− 1).

Let a denote c̃ + (N − 1) 1r and b denote c̃ − 1r. Note that b ∈ NV since G is an
Eulerian graph. We have a = b+N 1r, thus the choice of N implies that a and b are in the
same equivalence class with respect to sink s, and the first contains N more chips than the
latter. Since dN−1 = as and the configuration dN−1|W is recurrent, it follows from Lemma
6 that

∑
v∈W b(v) 6

∑
v∈W dN−1(v). It remains to exploit the total number of chips

difference between the two configurations: N +
∑

v∈V b(v) =
∑

v∈V dN−1(v). Replacing∑
v∈W x(v) by

∑
v∈V x(v) − x(s) on both sides, the inequality given by Lemma 6 thus

becomes b(s) +N > dN−1(s), and equivalently c(s) +N > dN−1(s).

We can now construct the intended bijection θ. For each c ∈ R (resp. c ∈ S), let
I(c) (resp. J (c)) denote the smallest number i ∈ N such that c̃+ i1r

s
(s) = deg+(s) + i

(resp. c̃+ i1s
r
(r) = deg+(r)+ i). The positive integers I(c) and J (c) are called the swap

numbers of c from r to s and from s to r, respectively. By Lemma 10 we know that swap
numbers are well-defined and unique.

θ : R → S
c 7→ d|W ,where d = c̃+ I(c) 1r

s
.

The map θ satisfies
sum(c) = sum(θ(c)).

Since |R| = |S| is finite, in order to prove Theorem 1 it remains to show that θ is injective.
Let us first present some properties of swap numbers. A configuration c ∈ R is called
minimal if there is no configuration d ∈ R such that c 6= d and d 6 c, and minimum if∑

v∈U c(v) is minimum over all configurations in R.
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Proposition 1. Let c ∈ R. If c is minimum then I(c) = 0.

Proof. Let a denote c̃
s
. By definition of I(c), the aim is to prove that a(s) = deg+(s). The

proof relies intuitively on Lemma 7: it says that the lower bound for a(s) is always reached
for the configuration containing the minimum total number of chips. Let us assume it is
false, therefore we can define b 6= a such that b(v) = a(v) for v ∈ W and b(s) = deg+(s),
and we will get a contraction to the minimality of c.

By Lemma 8 we have a(s) > deg+(s). By the assumption b 6= a we have a(s) >
deg+(s). This implies that ∑

v∈V

b(v) <
∑
v∈V

a(v) =
∑
v∈V

c̃(v).

By Lemma 8 the configuration a is in Ŝ, and so is b. Applying again Lemma 8 to s and
S, we have b

r ∈ R̂, and therefore b
r
(r) > deg+(r) = c̃(r). Now, since∑

v∈V

b
r
(v) =

∑
v∈V

b(v) <
∑
v∈V

c̃(v),

it follows that ∑
v∈U

b
r
(v) <

∑
v∈U

c̃(v) =
∑
v∈U

c(v),

a contradiction to the minimality of c.

Proposition 2. Let c, d ∈ R. If c 6 d then I(c) 6 I(d).

Proof. Regarding Proposition 1, we would intuitively expect that the number I(x) in-
creases monotonically with the total number of chips of x. We use the same construction
as in the proof of Lemma 10.

Let k denote I(d). Let a and b denote c̃+ k 1r
s

and d̃+ k 1r
s

, respectively. Since
c̃ + k 1r 6 d̃ + k 1r, it follows from Lemma 4 that a(s) − c(s) 6 b(s) − d(s). Since
by hypothesis c(s) 6 d(s), we have a(s) 6 b(s), therefore a(s) − deg+(s) − k 6 b(s) −
deg+(s)− k = 0. Let f : N→ Z be given by f(i) = (c̃+ i1r)

s
(s)− deg+(s)− i, from the

previous inequality it verifies that f(k) 6 0, and I(c) is by definition the smallest j such
that f(j) = 0. By the same arguments as in the proof of Lemma 10, we have f(0) > 0
and f(i + 1) − f(i) > −1 for any i ∈ N. As a consequence, there is j ∈ [0..k] such that
f(j) = 0, therefore I(c) 6 k = I(d).

By Propositions 1 and 2, for a recurrent configuration c ∈ R the number I(c) increases
monotonically as we add chips to c, starting from 0 when the configuration is minimum.
When G is an undirected graph, every minimal recurrent configuration is minimum since
every minimal recurrent configuration has the same number of chips, namely |A|

2
−deg+(s)

[23]. Thus I(c) = 0 for every minimal recurrent configuration c. One tends to think that
a minimal configuration c should also have I(c) = 0, but it may indeed be strictly positive
as shown on Figure 7.
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s

r

(a) An Eulerian graph

1 1

1

0

(b) A minimal recur-
rent configuration with
respect to sink r

Figure 7: A minimal recurrent configuration c with I(c) = 1

Question. Give an upper bound of I(c) when c is minimal.

There is a nice relation between swap numbers for c in R from r to s, and for θ(c)
from s to r. The following proposition does most part of the work to prove Theorem 1,
and the latter can be considered as a corollary of this result.

Proposition 3. For all c ∈ R, we have I(c) = J (θ(c)).

Proof. The proposition is proved with two inequalities.

• J (θ(c)) 6 I(c):

Let l denote I(c) and let a = c̃+ l 1r
s
. We have a|W = θ(c). First, by definition of

l we have a(s) = deg+(s) + l, therefore a = θ̃(c) + l 1s. Second, by Lemma 9 applied
to c̃+ l 1r, we have

ar = c̃+ l 1r
sr

= c̃+ l 1r.

This implies that ã|W + l 1s
r

(r) = ar(r) = deg+(r)+ l. Since J (a|W ) is the minimal

number i such that ã|W + i1s
r

(r) = deg+(r)+i, it follows that J (θ(c)) = J (a|W ) 6
l.

• J (θ(c)) > I(c):

This part of the lemma is more involved. For convenience, let us denote θ = θ(c).
Let p denote J (θ). The previous inequality implies p 6 l. In order to get a

contradiction, let us suppose that p < l. Let b ∈ R be such that θ̃ + p1s
r

= b̃+ p1r
(the existence of b is due to Lemma 7 and the definition of p). The above inequality
applied to θ implies that b 6= c.

We have

c̃+ l 1r
s

= θ̃ + l 1s and b̃+ p1r
s

= θ̃ + p1s (By Lemma 9), (1)
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therefore the two configurations

c̃+ l 1r|W and b+ p1r|W

are in the same equivalence class for the CFG with sink s. Removing p chips to r in
both configurations does not affect the equivalence relation, hence with k = l−p > 0,

c̃+ k 1r|W and b̃|W

are also in the same equivalence class for the CFG with sink s, and from Lemma 8
and the uniqueness of the recurrent configuration in an equivalence class (Lemma
3),

c̃+ k 1r
s|W = b̃

s

|W . (2)

From equation (1) there are k more chips in c̃+ l 1r than in b̃+ p1r, thus it follows
from the above equality (2) that

c̃+ k 1r
s
(s) = b̃

s

(s) + k. (3)

We now consider the two configurations d and e defined by

d = c̃+ (k − 1) 1r
⇐⇒ d+ 1r = c̃+ k 1r

and
e = b̃− 1r

⇐⇒ e+ 1r = b̃
.

It follows from equality (2) that

d
s

+ 1r
s

|W = es + 1r
s|W . (4)

As we will see, it is not possible that both:

– these two configurations are equal;

– enough chips go to s during these stabilization processes so that equation (3)
is verified.

Let us present a reasoning contradicting equation (3).

We first work on the total chip content of d
s|W and es|W . For the same reason as

above, d|W and e|W belong to the same equivalence class for the CFG with sink s,
and so do d

s|W and es|W because the firing process does not affect the equivalence

relation. We have d
s|W = c̃+ (k − 1) 1r

s|W with k−1 > 0, thus from Lemma 8 it is
recurrent. Furthermore es|W is stable, and since they belong to the same equivalence
class, it follows from Lemma 6 that∑

v∈W

d
s
(v) >

∑
v∈W

es(v). (5)
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Now we compare the number of chips going into the sink s. Let f = (v1, . . . , vm)
and g = (w1, . . . , wn) be two firing sequences such that

d
s

+ 1r
f−→ d

s
+ 1r

s

and es + 1r
g−→ es + 1r

s
.

Obviously s /∈ f and s /∈ g, and it follows from equations (4) and (5) that during
the stabilization process, more chips go to s in f than in g:∑

16i6m

deg(vi, s) >
∑
16i6n

deg(wi, s). (6)

In order to get the intended contradiction with (3), let us have a close look at the
chip content in both sinks s, using the fact that from the minimality of l,

c̃+ (k − 1) 1r
s
(s) > deg+(s) + (k − 1).

c̃+ k 1r
s
(s) = d

s
+ 1r

s

(s)

= d
s
(s) +

∑
16i6m deg(vi, s)

= c̃+ (k − 1) 1r
s
(s) +

∑
16i6m deg(vi, s)

> deg+(s) + (k − 1) +
∑

16i6m deg(vi, s)

>
equation (6)

deg+(s) + (k − 1) +
∑

16i6n deg(wi, s)

>
stability

deg+(s) + (k − 1) +
∑

16i6n deg(wi, s) + es(s)− deg+(s) + 1

= k + es + 1r
s
(s)

= k + b̃
s

(s),

which contradicts equation (3).

Theorem 1 is now easy to prove.

Proof of Theorem 1. Since |R| = |S|, it remains to prove that the map θ is injective. For
a contradiction, suppose it is not, that is, there exist c and d belonging to R and such
that

c 6= d and θ(c) = θ(d).

By Proposition 3 we have I(c) = I(d). Let k denote I(c) and let e denote θ(c). It follows
from Lemma 9 that

c = c̃+ k 1r
sr|U = ẽ+ k 1s

r|U = d̃+ k 1r
sr

|U = d,

a contradiction.
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4 Tutte-like properties of generating function of recurrent con-
figurations

We present in this section a natural generalization of the partial Tutte polynomial TG(1, y)
in one variable for the class of Eulerian graphs. In order to set up the most general
setting, we introduce it for the class of Eulerian graphs with loops. Note that loops
are not interesting regarding the Chip-firing game: a loop simply “freezes” a chip on
one vertex, that is the reason why we did not consider them in previous sections. The
Tutte-like polynomial we present is constructed from the generating function of the set of
recurrent configurations with respect to an arbitrary sink, and its uniqueness is based on
the sink-independence property exposed in Theorem 1.

Let us first present the extension of Theorem 1 to the class of Eulerian graphs with
loops. We begin with the definition of the Chip-firing game for this class of graphs. Note
that the out-degree of a vertex v is the number of arcs whose tail is v, therefore includes
loops. Let G = (V,A) be an Eulerian graph possibly having loops. A vertex v is firable
in a configuration c if c(v) > deg+(v) and deg+(v) − deg(v, v) > 1, where deg(v, v) is
the number of loops at v. Firing a firable vertex v means the process that decreases c(v)
by deg+(v) and increases each c(w) by deg(v, w) for all w, or equivalently decreases c(v)
by deg+(v) − deg(v, v) and increases each c(w) with w 6= v by deg(v, w). The Burning
algorithm presented in Lemma 5 remains valid for Eulerian graphs with loops.

As pointed out above, the CFG on a digraph possibly having loops is very close to the
CFG on the digraph where the loops are removed. For a digraph G we denote by G the
digraph G in which all loops are removed, and denote by L(G) the number of loops of G.
Regarding undirected graphs, the influence of a loop is the same as a directed loop (it also
“freezes” one chip). For two arcs a and b of G, a is reverse of b if a− = b+ and a+ = b−.
An undirected graph with loops is converted to an Eulerian graph in the same way as an
undirected graph without loops, however with the exception that each undirected loop e
is replaced by exactly one directed loop that has the same endpoint as e.

Theorem 1 is generalized to the class of Eulerian graphs possibly having loops with the
following lemma. From now on, we will always consider an arbitrary fixed sink denoted
s, therefore a configuration means an element in NV \{s}.

Lemma 11. Let G = (V,A) be an Eulerian graph with sink s. Let C and C be the
sets of recurrent configurations of G and G with respect to sink s, respectively. For each
configuration c ∈ C, let µ(c) : V \{s} → N be given by µ(c)(v) = c(v) + deg(v, v) for any
v 6= s. Then µ is a bijection from C to C. Moreover,

∑
v 6=s
c(v)− ∑

v 6=s
µ(c)(v) = −∑

v 6=s
deg(v, v)

for any c ∈ C.

This lemma can be proved easily by using the definition of recurrent configuration with
the observation that if a configuration c is recurrent with respect toG then c(v) > deg(v, v)
for any v 6= s. An illustration of Lemma 11 is given in Figure 8.

In the rest of this section, we work with an Eulerian graph G = (V,A) possibly having
loops and an arbitrary but fixed vertex s of G that plays the role of sink for the game.
We now introduce the partial Tutte polynomial generalization, which is defined as the
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Figure 8: Relation between C and C

generating function of the set of recurrent configurations. The generating function is based
on the concept of level of recurrent configurations, which corresponds to the previously
defined sum normalized according to the smallest level of a recurrent configuration. For
an Eulerian graph G, let

κ(G) denote the minimum of sum(c) = deg+(s) +
∑
v 6=s

c(v)

over all recurrent configurations c of G with respect to sink s. Theorem 1 implies that
κ(G) is independent of the choice of s. It follows from [23] that the problem of finding
κ(G) is NP-hard for Eulerian graphs, and as a consequence the Tutte-like polynomial we
present is also NP-hard to compute. In addition, when G is undirected (and defined as a
digraph i.e., each edge is represented by two reverse arcs), the number κ(G) has an exact

formula, namely κ(G) = |A(G)|
2

. For a recurrent configuration c of G with respect to sink
s we define

levelG(c) = sum(c)− κ(G).

This is a generalization of the level that was defined in [1], because we recover the latter
when G is undirected. Let C denote the set of all recurrent configurations of G with
respect to sink s. The generating function of C is given by

TG(y) =
∑
c∈C

ylevelG(c),

and we claim that it is a natural generalization of the partial Tutte polynomial, for the
class of Eulerian graphs. First, it follows from Theorem 1 that TG(y) is independent of the
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choice of s, thus is characteristic of the support graph G itself. We are going to present in
this section a number of properties of TG(y) that can be considered as the generalizations
of those of the Tutte polynomial in one variable, namely TG(1, y), that is defined on
undirected graphs. The most interesting and new feature is that when G is an undirected
graph we get back to the well-known Tutte polynomial. This fact is straightforward to
notice.

• TG(y) = TG(1, y) if G is an undirected graph.

• TG(1) counts the number of oriented spanning tree of G rooted at s [16]. It general-
izes the evaluation TG(1, 1) that counts the number of spanning tree of an undirected
graph.

• TG(0) counts the number of maximum acyclic arc sets with exactly one sink s [23].
Therefore TG(0) is a natural generalization of TG(1, 0) that counts the number of
acyclic orientations with a fixed source of an undirected graph.

For an undirected graph G, TG(1, 2) counts the number of spanning connected subgraphs
of G. It would be interesting to investigate a combinatorial interpretation for TG(2). We
propose the following question for future work.

Question. What does TG(2) count?

These evaluations set up a promising ground for further investigations, but it is defi-
nitely not trivial to find out the objects counted by evaluations of graph polynomials. We
are now going to present the extension to TG(y) of four known recursive formulas for the
Tutte polynomial in the undirected case. We will need the two following simple lemmas.

For a subset B of A let G\B denote the graph (V,A\B). We write G\e for G\{e} if e
is an arc of G. For an arc e of G with two endpoints v and w let G/e denote the digraph
that is made from G by removing e from G, replacing v and w by a new single vertex u,
and for each remaining arc a if the head (resp. tail) of a in G is v or w then the head
(resp. tail) of a in G/e is u. This procedure is called arc contraction.

An analogue of arc contraction may also be defined for vertices. For a subset W of V ,
let G/W denote the digraph constructed from G by replacing all vertices in W by a new
vertex w, and each arc e ∈ A such that e− ∈ W (resp. e+ ∈ W ) in G by e− = w (resp.
e+ = w) in G/W .

In the case of undirected graphs Merino López gave a relation between the recurrent
configurations of G and the recurrent configurations of the contracted graph G/e, where
e is an edge of G [19]. In particular the author showed a bijection between the set of
recurrent configurations which have maximum value at some fixed neighbor t of the sink
and the set of recurrent configurations of the contracted graph G/(s, t) with the sink being
the new vertex from the edge contraction. The following lemma is a generalization of that
relation for the class of Eulerian graphs. The proof idea is originally due to Merino López
[19]. We recall that C is the set of recurrent configurations of the CFG on G with respect
to sink s.
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Figure 9: Arc contraction

Lemma 12. Let W be a non-empty subset of the set of out-neighbors of s, i.e., for every
v ∈ W we have v 6= s and (s, v) ∈ A. Let t be the new vertex in G/W ∪ {s} resulting
from contracting the set of vertices W ∪{s}. For any c ∈ C, if c(v) > deg+(v)− deg(s, v)
for all v ∈ W , then c|V \(W∪{s}) is a recurrent configuration of G/W ∪ {s} with respect to
sink t. Conversely, if d is a recurrent configuration of G/W ∪ {s} with respect to sink t,
then every configuration c : V \{s} → N, satisfying c(v) = d(v) for all v ∈ V \(W ∪ {s})
and deg+(v) > c(v) > deg+(v)− deg(s, v) for all v ∈ W , is in C.

Proof. This proof is straightforward. We use Lemma 5 (Burning algorithm) and the
hypothesis that a configuration is recurrent, thus it admits a firing sequence, in order
to construct a firing sequence for the considered configuration, which proves that it is
recurrent (again by Lemma 5).

We denote the vertices in W by w1, w2, · · · , wq. Let the configuration β : V \{s} → N
be given by β(v) = deg(s, v) for any v ∈ V \{s}. The condition c(wi) > deg+(s) −
deg(s, wi) for any i implies that wi is firable in c+β for any i. It follows from Lemma 1 and

Lemma 5 that there is a firing sequence f = (v1, v2, · · · , vk) of c+β inG such that c+β
f→ c,

vi 6= s for any i, each vertex of G distinct from s occurs exactly once in f, and vi = wi for

any i ∈ [1..q]. Let a be such that c+β
w1,w2,··· ,wp−→ a. Let γ : V \(W ∪{s})→ N be given by

γ(v) = deg(t, v) for any v ∈ V \(W ∪ {s}). Clearly, we have a|V \(W∪{s}) = c|V \(W∪{s}) + γ.
Since g = (vp+1, vp+2, · · · , vk) is a firing sequence of a, g is also a firing sequence of
c|V \(W∪{s}) + γ in G/W ∪ {s}. It follows from Lemma 5 that c|V \(W∪{s}) is a recurrent
configuration of G/W ∪ {s} with respect to sink t.

For the converse statement let h = (u1, u2, · · · , up) be a firing sequence of d such that

d + γ
h→ d in G/W ∪ {s}, then ui 6∈ W ∪ {s} for any i, and each vertex of G not in

W ∪ {s} occurs exactly once in h. Let b be such that c + β
w1,w2,··· ,wq−→ b in G. Clearly,

b|V \(W∪{s}) = d+ γ, therefore (w1, w2, · · · , wq, u1, u2, · · · , up) is a firing sequence of c+ β
in G. It follows that c ∈ C.

Lemma 13. Let e and e′ be two reverse arcs of G such that they are not loops and
e− = s. Let H denote G\{e, e′} and w denote e+. If H is connected then {c ∈ C : c(w) <
deg+(w)− 1} is the set of all recurrent configurations of H with respect to sink s.
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Proof. We prove a double inclusion, using again both directions of Lemma 5 (Burning
algorithm).

Let β : V \{s} → N be given by β(v) = degG(s, v) for any v ∈ V \{s}, and γ : V \{s} →
N be given by γ(v) = degH(s, v) for any v ∈ V \{s}. We have β(v) = γ(v) for any v 6= w,
and β(w) − γ(w) = 1. Let c ∈ C such that c(w) < deg+(w) − 1. We have to prove that
c is also a recurrent configuration of H with respect to sink s. Let f = (v1, v2, · · · , vk) be

a firing sequence of c in G such that vi 6= s for any i, c + β
f→ c, and each vertex of G

distinct from s occurs exactly once in f. We will show that f is a firing sequence of c+ γ
in H. Let j be such that vj = w. Clearly, (v1, v2, · · · , vj−1) is a firing sequence of c + β

and c + γ in G and H, respectively. Let a be such that c + β
v1,v2,··· ,vj−1−→ a in G and b be

such that c+ γ
v1,v2,··· ,vj−1−→ b in H. It follows from β(w)− γ(w) = 1 that a(w)− b(w) = 1.

To prove that f is a firing sequence of c+ γ in H it suffices to show that vj is firable in b
with respect to H. Since vj is firable in a with respect to G, we have a(w) > deg+(w),
therefore b(w) > deg+(w) − 1. It follows that w is firable in b with respect to H. This
implies that f is also a firing sequence of c + γ with respect to H. By Lemma 5, c is a
recurrent configuration of H with respect to sink s.

For the converse, let d be a recurrent configuration of H with respect to sink s. Let
g = (u1, u2, · · · , up) be a firing sequence of d + γ in H such that ui 6= s for any i,

d + γ
g→ d in H, and each vertex of H distinct from s occurs exactly once in g. We

have d(w) 6 deg+(w) − 1 < deg+(w) − 1. By similar arguments as above, g is also a
firing sequence of d+ β in G, therefore d is a recurrent configuration of G with respect to
sink s.

First, the Tutte polynomial on undirected graphs has the recursive formula TG(1, y) =
y TG\e(1, y) if e is a loop. We have the following generalization.

Proposition 4. If e is a loop then TG(y) = y TG\e(y).

Proof. Let s denote e−. Let C be the set of all recurrent configurations of G with sink
s. Clearly, C is also the set of all recurrent configurations of G\e with sink s. Since
deg+(s)−deg+(s) = 1, for any c ∈ C we have levelG(c)− levelH(c) = 1. This implies that
TG(y) = yTG\e(y).

Second, in order to generalize the recursive formula TG(1, y) = TG/e(1, y) if e is a
bridge, we recall the definition of strong bridge of a directed graph.

Definition. Let H be a directed graph. An arc a of H is called strong bridge if H\a has
more strongly connected components than H.

The next lemma is used in the proofs of subsequent propositions. It aims at showing
that there is a similarity between a strong bridge of an Eulerian graph and a bridge of an
undirected graph.

Lemma 14. Let a be a strong bridge of G. Then there is a subset X of V such that
{a} = {e ∈ A : e− ∈ X, e+ 6∈ X}. Moreover, there is an arc b in G such that {b} = {e ∈
A : e− 6∈ X, e+ ∈ X}.
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Figure 10: Strong bridge

Proof. Let X be the set of all vertices v of G such that there is a path in G\a from a− to
v. We claim that a+ 6∈ X. For a contradiction we assume that a+ ∈ X. This implies that
there is a path P in G\a from a− to a+. Since G is strongly connected and G\e is not
strongly connected, there exists two vertices v, w of G such that every path in G from v
to w must contain a. Let Q be a path in G from v to w. We can assume that a occurs
exactly once in Q. Let Q1 be a subpath of Q from v to a−, and Q2 be a subpath of Q
from a+ to w. Then, (Q1, P,Q2) is a path in G from v to w that does not contain a, a
contradiction.

It follows from the definition of X and the above claim that {a} = {e ∈ A : e− ∈
X, e+ 6∈ X}. Since G in an Eulerian graph, for every subset X of V there are as many
arcs from X to V \X as from V \X to X. The second claim follows.

See Figure 10 for the illustration of Lemma 14. Note that the set X satisfying the
condition of the lemma may not be unique. The following shows that the definition of
strong bridge is a natural generalization of the notion of bridge on undirected graphs.

Proposition 5. Suppose that G is an undirected graph (seen as a directed graph). An
arc a is a strong bridge of G if and only if there is a reverse arc b of a in G and G\{a, b}
is not connected.

Proof. ⇒ Let X be a subset of V that satisfies the condition in Lemma 14. Since G is
undirected, there is a reverse arc b of a in G. Clearly, b ∈ {a ∈ E : a− 6∈ X, a+ ∈ X}.
Lemma 14 implies that {b} = {a ∈ E : a− 6∈ X, a+ ∈ X}. It follows that G\{a, b}
contains no arc from X to V \X and vice versa. Therefore G\{a, b} is not connected.
⇐ Since G is connected and G\{a, b} is not connected, a− and a+ are in different con-

nected components of G\{a, b}. Let X and Y be two connected components of G\{a, b}
such that a− ∈ X and a+ ∈ Y . Let v ∈ X and w ∈ Y . Since there is no arc in G\a from
a vertex in X to a vertex in Y , there is no path in G\a from v to w. This implies that
G\a is not strongly connected. Therefore a is a strong bridge.

The second relation, extending the recursive formula on undirected graphs TG(1, y) =
TG/e(1, y) if e is a strong bridge, is split into the two following propositions, depending on
whether the strong bridge has a reverse arc.

Proposition 6. Let e be a strong bridge of G such that it does not have a reverse arc.
Then TG(y) = TG/e(y).
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Proof. We construct a bijection from the set of recurrent configurations of G/e to the
set of recurrent configurations of G that preserves the level. We prove two intermediate
claims, and the result follows.

Let s denote e− and t denote e+. Let C be the set of all recurrent configurations of
G with respect to the sink s. We claim that for any c ∈ C we have c(t) = deg+(t) − 1.
For a contradiction we assume that c(t) < deg+(t) − 1. Let X be a subset of V that
satisfies the condition of Lemma 14. Let β : V \{s} → N be given by β(v) = deg(s, v) for
any v ∈ V \{s}. The choice of X straightforwardly implies that β(t) = 1, and β(v) = 0
for any v ∈ V \(X ∪ {t}). Let f = (v1, v2, · · · , vk) be a firing sequence of c + β such that

vi 6= s for any i, c + β
f→ c, and each vertex v of G distinct from s occurs exactly once

in the sequence. Since c(t) < deg+(t) − 1, there is no firable vertex of c + β in V \X.
This implies that v1 ∈ X. Let j be the smallest index such that vj ∈ X and vj+1 6∈ X,
and d be the configuration reach after the j first vertices have been fired, that is, such

that c
v1,v2,··· ,vj−→ d. Since vj+1 is not firable in c + β and firable in d, there is at least

one vertex vp ∈ {v1, v2, · · · , vj} that gives chips to vj+1 when it is fired. It follows that
there is at least one arc a of G such that a− = vp and a+ = vj+1. Clearly, a 6= e and
a ∈ {e ∈ A : e− ∈ X, e+ 6∈ X}, a contradiction to Lemma 14.

Let H denote G/e, let r denote the vertex of H resulting from replacing s and t in
G/e, and let D denote the set of all recurrent configurations of H with the sink r. We
claim that κ(G) = κ(H). By Lemma 11 we have κ(G) = min{sum(c)−L(G) : c ∈ C} and
κ(H) = min{sum(c) − L(H) : c ∈ D}, where L(G) and L(H) are the numbers of loops
of G and H, respectively. It follows from the above claim and Lemma 12 that the map
µ : D → C, defined by µ(c)(v) = c(v) if v 6= t, and µ(c)(t) = deg+(t) − 1, is a bijection.
Therefore

min
{∑
v 6=s

c(v) : c ∈ C
}
−min

{∑
v 6=s

c(v) : c ∈ D
}

= deg+(t)− 1.

Note that deg+(r) = deg+(s) + deg+(t)− 1. Finally, since e does not have a reverse arc,
we have L(G) = L(H), and the claim follows the fact that sum(c) = deg+(s) +

∑
v 6=s c(v).

We can conclude the proof: for any c ∈ D we have

levelG(µ(c)) = deg+(s) +
∑
v 6=s
µ(c)(v)− κ(G)

= deg+(s) +
∑
v 6=r
c(v) + deg+(t)− 1− κ(H)

= deg+(r) +
∑
v 6=r
c(v)− κ(H)

= levelH(c).

This implies TG(y) = TH(y).

Proposition 7. Let a be a strong bridge of G such that it has a reverse arc b, and let H
denote G/a. Then TG(y) = 1

y
TH(y) and TG(y) = TH\b(y).

As shown on Figure 10, deleting b in H corresponds to erasing the loop created by the
contraction of a.
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Proof. It follows from Lemma 14 that b is the unique reverse arc of a. Let t be the new
vertex in G/a resulting from replacing the two endpoints of a. Let C and D be the sets
of all recurrent configurations of G and H with respect to the sinks s and t, respectively.
The following can be proved by similar arguments as used in the proof of Proposition 6,
noting that b is a loop in G/a.

• L(H) = L(G) + 1.

• the map µ : D → C, defined by µ(c)(v) = c(v) if v 6= a+, and µ(c)(a+) = deg+(a+)−
1, is a bijection.

• κ(H) = κ(G)− 1.

• for any c ∈ D levelH(c) = levelG(µ(c)) + 1.

The assertions above imply that TG(y) = 1
y
TH(y). Since b is a loop in H, it follows from

Proposition 4 that TG(y) = 1
y
TH(y) = 1

y
y TH\b(y) = TH\b(y).

Third, the recursive formula TG(1, y) = TG\e(1, y) +TG/e(1, y) if e is neither a loop nor
a strong bridge has the following generalization.

Proposition 8. Let a be an arc of G such that a is neither a loop nor a strong bridge,
and a has a reverse arc b. Then

TG(y) = y1+κ(G\{a,b})−κ(G) TG\{a,b}(y) + yκ(H)−κ(G) TH(y),

where H denotes G/a. Moreover, if G is undirected then

TG(y) = TG\{a,b}(y) + y− deg(a−,a+)+1 TH\b(y).

In this formula, we reduce TG(y) to the sum of the polynomial for G on which both a
and its reverse arc b are removed (corresponding to the bridge deletion of the undirected
case, see Proposition 7) and the polynomial for G on which a is contracted. The terms
yα are used for re-normalizing according to the definition of level.

Proof. We first give names to useful elements, and then prove both statements of the
result one after the other. Let s and t denote a− and a+, respectively. Since a is neither
a loop nor a strong bridge, G\{a, b} is connected. Let C1 be the set of all recurrent
configurations c of G with sink s such that c(t) = deg+(t) − 1, and let C2 be the set of
all recurrent configurations c of G with sink s such that c(t) < deg+(t) − 1. We have
C = C1 ∪C2, and we will see that each element of this partition corresponds to one of the
two terms of the sum. Let r denote the vertex of H resulting from replacing s and t in
G. Let D be the set of all recurrent configurations of H with sink r.

First statement. We begin with
∑

c∈C1 z
levelG(c), corresponding to the second term

of the sum. It follows from Lemma 12 that the map µ : D → C1, defined by µ(c)(v) = c(v)
if v 6= t, and µ(c)(t) = deg+(t)− 1, is bijective. For any c ∈ C1 we have

levelG(c) = deg+(s) +
∑
v 6=s

c(v)− κ(G)
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= deg+(s) + deg+(t)− 1 +
∑
v 6∈{s,t}

c(v)− κ(H) + κ(H)− κ(G)

= deg+(r) +
∑
v 6∈{s,t}

c(v)− κ(H) + κ(H)− κ(G)

= levelH(µ−1(c)) + κ(H)− κ(G).

This implies that
∑

c∈C1 z
levelG(c) = yκ(H)−κ(G) TH(y), which is the second term of the sum.

Regarding
∑

c∈C2 z
levelG(c), it follows from Lemma 13 that C2 is the set of all recurrent

configurations of G\{a, b} with sink s. For any c ∈ C2 we have

levelG(c) = deg+(s) +
∑
v 6=s

c(v)− κ(G)

= 1 + deg+(s) +
∑
v 6=s

c(v)− κ(G\{a, b}) + κ(G\{a, b})− κ(G)

= levelG\{a,b}(c) + 1 + κ(G\{a, b})− κ(G).

This implies that ∑
c∈C2

ylevelG(c) = y1+κ(G\{a,b})−κ(G) TG\{a,b}(y).

Since
TG(y) =

∑
c∈C1

ylevelG(c) +
∑
c∈C2

ylevelG(c),

the first statement follows.
Second statement. G is an undirected graph, so are G\{a, b} and H. Thus 1 +

κ(G\{a, b}) − κ(G) = 1 + |A(G\{a,b})|
2

− |A(G)|
2

= 0. Since b is a loop in H, we have

yκ(H)−κ(G) TH(y) = y1+κ(H)−κ(G) TH\b(y). The second statement is completed by showing
that κ(H)− κ(G) = − deg(s, t). We have

κ(H)− κ(G) =
|A(H)| − L(H)

2
− |A(G)| − L(G)

2

=
|A(H)| − |A(G)|

2
− L(H)− L(G)

2

= −1

2
− (2 deg(s, t)− 1)

2
= − deg(s, t).

Let us present a recursive formula for the partial Tutte polynomial which in the case of
undirected graphs is very likely to be known. However, we are unable to find its existence
in the literature. If G is undirected, then it contains at least one arc that is a loop, or
it satisfies the conditions of Proposition 6, Proposition 7 or Proposition 8. In every case
TG(y) can be defined by a recursive formula on smaller graphs. However, the digraph
given in Figure 11 is an example of Eulerian graph that does not contain any such arc,
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Figure 11: An Eulerian graph that does not satisfy any usual condition

therefore no recursive formula generalizing those of the classical Tutte polynomial can be
applied. Neither of the recursive formulas in Proposition 4, Proposition 6, Proposition
7 and Propostion 8 is useful in this case. The following new recursive formula handles
this case, in order to complete the recursive definitions of TG(y) on the class of general
Eulerian graphs. Note that its intuitive shape comes from the Möbius inversion formula
that is stated as follows.

Möbius inversion formula. Let X be a non-empty finite set and f : 2X → Z. We
define g : 2X → Z by g(A) =

∑
A⊆Y

f(Y ). Then for every A ∈ 2X we have

f(A) =
∑
A⊆Y

(−1)|Y |−|A|g(Y ).

Proposition 9. Let G be an Eulerian graph, s be a vertex of G, and N be the set of all
out-neighbors of s. Then

TG(y) =
∑
W⊆N
W 6=∅

(−1)|W |+1yκ(G/W∪{s})−κ(G)−deg(s,W ) 1

(1− y)|W |

∏
v∈W

(
1− ydeg(s,v)

)
TG/W∪{s}(y),

where deg(s,W ) denotes the number of arcs e of G such that e− = s and e+ ∈ W .

Note that the number of vertices of the digraph G/W ∪ {s} is strictly smaller than
G. Moreover the digraph G/W ∪ {s} is likely to have more loops than G, hence we could
apply Proposition 4 to remove the loops in G/W ∪ {s}.

Proof. Let C be the set of all recurrent configurations of G with sink s. For each c ∈ C,
let NF (c) be the set of out-neighbors of s that, from the configuration c, become firable
when s is fired, formally NF (c) = {v ∈ N : c(v) > deg+(v)− deg(s, v)}. We define

PW (y) =
∑
c∈C

W⊆NF (c)

ylevelG(c),

so that TG(y) = P∅(y). We will give thereafter a closed formula for PW (y), which is not
interesting if W = ∅. In order to overcome this issue, let us express P∅(y) in terms of
PW (y) for W 6= ∅, using the Möbius inversion formula.
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We define QW (y) =
∑
c∈C

W=NF (c)

ylevelG(c) so that PW (y) =
∑

W⊆S⊆N
QS(y). Moreover, from

the Burning algorithm (Lemma 5) it follows that {c ∈ C : NF (c) = ∅} = ∅, therefore
Q∅(y) = 0. Applying the Möbius inversion formula for the Boolean lattice 2N we have

0 = Q∅(y) =
∑
W⊆N

(−1)|W |PW (y),

which allows to express P∅(y) in terms of the other components of the sum,

TG(y) = P∅(y) =
∑
W⊆N
W 6=∅

(−1)|W |+1PW (y).

For the second part of the proof, we claim that

PW (y) = yκ(H)−κ(G)−deg(s,W ) 1

(1− y)|W |

∏
v∈W

(
1− ydeg(s,v)

)
TH(y),

where H denotes G/W ∪ {s}.
The vertices in W are denoted by w1, w2, · · · , wp for some p, and let D be the set of all

recurrent configurations of H with sink t, where t is the new vertex in H resulting from
replacing the vertices in W ∪ {s}. It follows from Lemma 12 and the definition of level
that

PW (y) =
∑
c∈C

W⊆NF (c)

ylevelG(c) =
∑
c∈D

∑
d∈C

d|V \(W∪{s})=c

ylevelG(d)

=
∑
c∈D

y−κ(G)+deg+(s)
( ∑

d∈C
d|V \(W∪{s})=c

y

∑
v∈W

d(v))
y

∑
v 6∈(W∪{s})

c(v)

 .

For each i ∈ [1..p], let Ii = {deg+(wi)−deg(s, wi), deg+(wi)−deg(s, wi)+1, · · · , deg+(wi)−
1}. It follows from Lemma 12 that the map µ : I1 × I2 × · · · × Ip × D → C, defined by
µ(i1, i2, · · · , ip, c)(v) is equal to c(v) if v 6∈ W , and equal to ij if v = wj, is bijective, which
means that, for a configuration c ∈ D, the configurations on the graph G constructed from
c by putting any number of chips in Ii to wi produces the whole set C. As a consequence,

PW (y) =
∑
c∈D

(
y−κ(G)+deg+(s)

( ∏
16i6p

∑
j∈Ii

yj
)
y

∑
v 6∈(W∪{s})

c(v)
)

= y−κ(G)+deg+(s)
( ∏
16i6p

∑
j∈Ii

yj
) ∑

c∈D

y

∑
v 6∈(W∪{s})

c(v)

= y−κ(G)+deg+(s)
∏
w∈W

ydeg
+(w)−deg(s,w)

∏
w∈W

(
1− ydeg(s,w)

)
1− y

∑
c∈D

y

∑
v 6∈(W∪{s})

c(v)

the electronic journal of combinatorics 23(1) (2016), #P1.57 29



= y−κ(G)−deg(s,W )y

∑
v∈W∪{s}

deg+(v) 1

(1− y)|W |

∏
w∈W

(
1− ydeg(s,w)

)∑
c∈D

y

∑
v 6∈W∪{s}

c(v)

= y−κ(G)−deg(s,W )ydeg
+(t) 1

(1− y)|W |

∏
w∈W

(
1− ydeg(s,w)

)∑
c∈D

y

∑
v 6=W∪{s}

c(v)

= yκ(H)−κ(G)−deg(s,W ) 1

(1− y)|W |

∏
w∈W

(
1− ydeg(s,w)

)∑
c∈D

y
deg+(t)+

∑
v 6∈W∪{s}

c(v)−κ(H)

= yκ(H)−κ(G)−deg(s,W ) 1

(1− y)|W |

∏
w∈W

(
1− ydeg(s,w)

)∑
c∈D

ylevelH(c)

= yκ(H)−κ(G)−deg(s,W ) 1

(1− y)|W |

∏
w∈W

(
1− ydeg(s,w)

)
TH(y),

which proves our claim and finishes the proof.

5 Some open problems

In this paper we defined a natural analogue of the Tutte polynomial in one variable, for
the class of general Eulerian graphs. From a sink-independence property of the generating
function of the set of recurrent configurations of the Chip-firing game, it turns out that this
polynomial TG(y) is characteristic of the support graph itself, regardless of the chosen sink.
Most interestingly, this polynomial is equal to the well-known Tutte polynomial TG(1, y)
on undirected graphs. We presented evaluations of TG(y) generalizing the evaluations of
TG(1, y), and we hope that new objects counted by evaluations of TG(y) will be discovered.
Finally, we showed recursive formulas for this polynomial, which again account for natural
generalization of those of the Tutte polynomial on undirected graphs. We ended up with
a new recursive formula for TG(y) in order to get a complete set of recursive formulas
defining this polynomial.

It is now natural to ask whether there exists such a natural generalization of TG(1, y)
to the class of connected digraphs. We believe there is such a generalization to the class
of strongly connected digraphs by the following surprising conjecture.

Let G = (V,E) be a strongly connected digraph and s be a vertex of G. We denote by
G\s+ the digraph constructed from G by removing all out-going arcs of s. Clearly, G\s+
has a global sink s. Fix a linear order v1 ≺ v2 ≺ · · · ≺ vn−1 on the set of all vertices of G
distinct from s, where n = |V |. Let r1, r2, · · · , rn−1 ∈ Zn−1 be given by ri,j = deg(vi, vj)
if i 6= j, and ri,i = deg+(vi), and let β = (β1, β2, · · · , βn−1) ∈ Zn−1 be given by βi =
deg(s, vi). We define an equivalence relation ∼ on the set C of all recurrent configurations
of G\s+ by c1 ∼ c2 if and only if c1 − c2 ∈ 〈r1, r2, · · · , rn−1, β〉, where 〈r1, r2, · · · , rn−1, β〉
is the subgroup of (Zn−1,+) generated by r1, r2, · · · , rn−1, β. Note that if G is Eulerian
then β ∈ 〈r1, r2, · · · , rn−1〉, therefore 〈r1, r2, · · · , rn−1, β〉 = 〈r1, r2, · · · , rn−1〉. This implies
that if G is Eulerian, each equivalence class contains exactly one recurrent configuration.
For each B ∈ C/∼ let sum(B) denote max{deg+(s) +

∑
v 6=s
c(v) : c ∈ B}. By simulation

experiment we make the following conjecture.

the electronic journal of combinatorics 23(1) (2016), #P1.57 30



Conjecture 1. The sequence (sum(B))B ∈C/∼ is independent of the choice of s, up to a
permutation on the entries.

Note that the cardinality of C/∼ is independent of the choice of s since |C/∼| = |({x ∈
Zn :

∑
16i6n xi = 0},+)/〈∆1,∆2, . . . ,∆n〉|, where ∆ is the Laplacian matrix of G and

∆i denotes the ith row of ∆. For an Eulerian graph each equivalence class of ∼ contains
exactly one recurrent configuration. Theorem 1 implies that the conjecture holds for the
class of Eulerian graphs. If the conjecture holds in general, we have a generalization of
TG(1, y) to the class of strongly connected digraphs.

It is also important to ask whether there is a generalization of the Tutte polynomial
in two variables to the class of Eulerian graphs. The bijection presented in [8] gives a
promising direction for this problem, that is, to look for its generalization to the class of
Eulerian graphs. In addition, one has to generalize the concepts of internal and external
activities to the class of Eulerian graphs. This task is hard, but the generalization of
bridge presented in this paper may give insights to address the question.

This question could be addressed by looking for an alternative recursive formula for
the Tutte polynomial in two variables on undirected graphs so that it works on Eulerian
graphs, possibly for general digraphs. The new recursive formula in Proposition 9 could
suggest such a formula since it uses only the vertex contraction in its recursive terms,
and the notion of vertex contraction has a natural generalization to general digraphs.
Moreover, the following conjecture makes us believe that such a generalization exists.

Conjecture 2. Let G be a connected undirected graph, s a vertex of G, and N the
set of all neighbors of s (not including s). Then TG(x, y) is in the ideal generated by
{TG/W∪{s}(x, y) : ∅ ( W ⊆ N} in Q[x, y], where H denotes H in which all loops have
been removed.

Equivalently, the conjecture means that there exist polynomials PW (x, y) ∈ Q[x, y],
with ∅ ( W ⊆ N , such that

TG(x, y) =
∑
∅(W⊆N

PW (x, y)TG/W∪{s}
(x, y).

Let us give an illustrative example for the explanation of this conjecture. The first graph
in Figure 12 shows an undirected graph G with a chosen vertex s. The remaining graphs
are the graphs which are obtained from G by contracting vertex sets {s} ∪ W , where
W is a non-empty subset of {u, v}, and then removing the resulting loops. The vertices
x in the contracted graphs are the new vertices which are from the vertex contractions.
The Tutte polynomials are shown below the corresponding graphs. By using a Gröbner
basis we can verify that the first polynomial is in the ideal generated by the remaining
polynomials.
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v

u s v

x

3x+ 8x2 + 8x3 + 4x4+
x5 + 3y + 11xy + 9x2y+

2x3y + 6y2 + 7xy2+
x2y2 + 4y3 + xy3 + y4

3x+ 6x2 + 4x3 + x4+
3y + 9xy + 4x2y+

6y2 + 4xy2 + 4y3 + y4

x

u

x

3x+ 6x2 + 4x3 + x4+
3y + 9xy + 4x2y+

6y2 + 4xy2 + 4y3 + y4

x+ 2x2 + x3 + y+
4xy + 2x2y + 3y2+

3xy2 + 3y3 + y4

Figure 12: An undirected graph and its vertex contractions
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