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Abstract

In a seminal paper, De Loera et. al introduce the algorithm NulLA (Nullstellen-
satz Linear Algebra) and use it to measure the difficulty of determining if a graph
is not 3-colorable. The crux of this relies on a correspondence between 3-colorings
of a graph and solutions to a certain system of polynomial equations over a field k.
In this article, we give a new direct combinatorial characterization of graphs that
can be determined to be non-3-colorable in the first iteration of this algorithm when
k = GF (2). This greatly simplifies the work of De Loera et. al, as we express the
combinatorial characterization directly in terms of the graphs themselves without
introducing superfluous directed graphs. Furthermore, for all graphs on at most 12
vertices, we determine at which iteration NulLA detects a graph is not 3-colorable
when k = GF (2).

1 Introduction

In recent years, combinatorial optimization has flourished from algorithms that fundamen-
tally rely on tools from algebraic geometry and commutative algebra. Work of Lasserre
[9], Lovász-Schrijver [11], Sherali-Adams [13], Gouveia, Parrilo and Thomas [7], and many
others have used polynomials to develop approximation algorithms for optimization prob-
lems. Another recent algorithm akin to those above is the Nullstellensatz Linear Algebra
algorithm (NulLA) of De Loera et. al [4] which addresses feasibility issues in polynomial
optimization. Given a set of polynomials f1, f2, . . . , fs ∈ k[x1, . . . , xn] for some field k,
NulLA’s goal is to certify that the system of equations f1 = 0, f2 = 0, . . . , fs = 0 has no
solution in k, the algebraic closure of k. It exploits Hilbert’s Nullstellensatz, a celebrated
and fundamental theorem in algebraic geometry (see [2]).
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Theorem 1.1 (Hilbert’s Nullstellensatz). Letk be a field and f1, f2, . . . , fs ∈ k[x1, . . . , xn].
The system of polynomial equations

f1 = 0, f2 = 0, . . . , fs = 0

has no solution in k
n

if and only if there are polynomials α1, α2, . . . , αs ∈ k[x1, . . . , xn]
such that

1 = α1f1 + · · ·+ αsfs.

The polynomials α1, α2, . . . , αs are referred to as a Nullstellensatz certificate of infea-
sibility; indeed they are a witness that the polynomial system f1 = 0, f2 = 0, . . . , fs = 0
has no solution. The maximum degree of the α′is is referred to as the Nullstellensatz
degree of the system, and it is a measure of the complexity of certifying that the system
of polynomial equations has no solutions. If a system of polynomial equations is known
to have a Nullstellensatz certificate whose Nullstellensatz degree is a small constant (and
if k is finite), one can find a Nullstellensatz certificate in polynomial time in the number
of variables through a sequence of linear algebra computations (see [4] for details). How-
ever, for general polynomial systems, it is well known that the degree of Nullstellensatz
certificates can grow as a function of the number of variables.

The underlying paradigm in all the above algorithms is the construction of iterative
approximations that are tractably computable at early stages. When applied to combi-
natorial optimization problems, particularly graph theoretic ones, the key problem that
arises is determining the classes of graphs for which a given problem can be resolved in
early iterations. For instance, when applied to the stable set problem, Gouveia, Parrilo
and Thomas [7] show that the first iteration of the theta body hierarchy solves the stable
set problem for perfect graphs. This result was first established by Lovász [10] by exploit-
ing polynomials as well. NulLA itself was originally introduced as a means of unfolding
classes of non-3-colorable graphs that can be detected to be non-3-colorable efficiently
(that is, in polynomial time in the number of variables of a given graph). In particular,
the authors of [4] applied the NulLA algorithm to the following algebraic formulation of
graph 3-colorability due to Bayer. We will refer to this as Bayer’s formulation throughout
the manuscript.

Lemma 1.2 (Bayer [1]). A graph G with vertex set V and edge set E is 3-colorable if
and only if the following system of equations has a solution over an algebraically closed
field k with char(k) relatively prime to 3.

0 = x3i − 1 ∀i ∈ V (1)

0 = x2i + xixj + x2j ∀vivj ∈ E (2)

The fundamental concern then is determining combinatorial features of non-3-colorable
graphs that dictate the minimum Nullstellensatz degree of infeasibility for the system in
Lemma 1.2, which we denote by Nk(G), is a small constant. In light of this, it is natural
to address the following problem, a variant of which was first asked in [3]:
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Problem 1.3. Given a finite field k, and positive integer d, characterize those graphs
with Nk(G) = d.

Computational evidence (see, for example, Table 1 of [6]) suggests that the minimum
Nullstellensatz degree of a non-3-colorable under Bayer’s formulation is smallest when the
field of coefficients chosen is GF (2) as opposed to GF (p) for primes p > 2, so from a com-
putational complexity perspective, it may be beneficial to begin addressing Problem 1.3
by working with Bayer’s formulation when k = GF (2). A partial answer in this case was
given by De Loera et. al [3] (see their paper for relevant definitions).

Theorem 1.4 (Theorem 2.1 of [3]). For a given simple undirected graph G with vertex
set V = {v1, v2, . . . , vn} and edge set E, the polynomial system over GF (2) encoding the
3-colorability of G

JG = {x3i + 1 = 0, x2i + xixj + x2j = 0 : i ∈ V, vivj ∈ E}

has a degree one Nullstellensatz certificate of infeasibility if and only if there exists a set
C of oriented partial 3-cycles and oriented chordless 4-cycles from Arcs(G) such that

1. |C(vi,vj)|+|C(vj ,vi)|≡ 0 (mod 2) for all vivj ∈ E and

2.
∑

(vi,vj)∈Arcs(G),i<j|C(vi,vj)|≡ 1 (mod 2)

where C(vi,vj) denotes the set of cycles in C in which the arc (vi, vj) ∈ Arcs(G) appears.

This characterization adds directed structure to undirected graphs, and hence does not
fully capture an inherent combinatorial characterization directly from the graphs them-
selves. In this paper, we provide such a direct combinatorial characterization for Bayer’s
formulation when k = GF (2). Before introducing the combinatorial characterization, we
define the following class of graphs that will play a key role.

Definition 1.5. A graph G with vertex set V = {v1, v2, . . . , vn} and edge set E is covered
by length 2 paths if there exists a set C of length 2 paths in G such that

1. each edge in E appears in an even number of paths in C,

2. the number of paths vivjvk in C in which j < i, k or j > i, k is odd, and

3. if vi, vj ∈ V but vivj /∈ E, then the number of paths in C with vi and vj as endpoints
is even.

Example 1.6. Let n be a positive integer. The graph Wn, referred to as the wheel graph,
is the graph whose vertex set is {v1, v2, . . . , vn, vn+1} where the induced subgraph on
V ′ = {v1, v2, . . . , vn} is a cycle and vn+1 is a vertex adjacent to all vertices in V ′. See
Figure 1 for an example.

Without loss of generality, we may assume the cycle whose vertex set is V ′ has edge
set {v1v2, . . . , vn−1vn, vnv1}. When n is odd, the graph Wn is covered by length 2 paths,
as witnessed by the set C = {v1vn+1v2, v2vn+1v3, . . . , vn−1vn+1vn, vnvn+1v1}. Indeed, this
set satisfies all the conditions in Definition 1.5.
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Figure 1: W5, the wheel graph on six total vertices.

We now present the main combinatorial characterization.

Theorem 1.7. Let G be a graph. Under Bayer’s formulation of 3-colorability with co-
efficients in the field k = GF (2), Nk(G) = 1 if and only if G is covered by length 2
paths.

Example 1.8. Let n be an odd positive integer. In Example 1.6, we saw that the graph
Wn is covered by length two paths, so Theorem 1.7 establishes that NulLA (applied to
Bayer’s formulation when k = GF (2)) detects that this graph is non-3-colorable with
a degree 1 Nullstellensatz certificate. Odd wheels are known to be non-3-colorable for
both computational and algebraic reasons, but the ability for NulLA to detect this with
a degree 1 certificate suggests that NulLA has the potential to be used not only as a
computational tool but as a tool for automatic theorem proving.

Theorem 1.7 also allows us to establish, combinatorially, that a graph does not have
a degree 1 NulLA certificate (under Bayer’s formulation when k = GF (2)).

v6

v2

v4

v1

v5

v3

v7

Figure 2: Moser spindle.

Proposition 1.9. Let G be the Moser spindle (depicted in Figure 2). The graph G does
not have a degree 1 NulLA certificate under Bayer’s formulation when k = GF (2).

Proof. Using Theorem 1.7, we will show that Nk(G) > 1 when k = GF (2). Suppose
otherwise. By Theorem 1.7, G is covered by length 2 paths, which we refer to collectively
as C.
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We claim that the edge v6v7 can not be an edge in any length 2 path in C. Indeed,
assume without loss of generality that the path v6v7vk is in C for some vertex k /∈ {6, 7}.
Since the edge v6v7 is not on a 3-cycle, v6vk is not an edge. Moreover, since the edge v6v7
is not on a 4-cycle, v6v7vk is the only member of C whose endpoints are v6 and vk. But
this is impossible because v6vk is not an edge, so the number of paths in C with v6 and vk
as endpoints must be even. Hence, there are no length 2 paths in C of the form v6v7vk.

Now since v6v7vk is not a member of C for any k, C certifies through Theorem 1.7
that Nk(G\v6v7) = 1. But this is a contradiction because G\v6v7 is 3-colorable. Thus,
no set C with the desired property exists, so Nk(G) 6= 1.

Proposition 1.9 generalizes directly in the following way, providing a combinatorial
obstruction to existence of a degree 1 Nullstellensatz certificate for Bayer’s formulation
when k = GF (2).

Corollary 1.10. Let k = GF (2), and suppose G is a non-3-colorable graph that contains
an edge e for which the following are true:

• G\e is 3-colorable, and

• e is not an edge in a 3-cycle nor a 4-cycle of G.

Then Nk(G) > 1.

Remark 1.11. One of the most celebrated constructions of very hard instances of graph
3-colorability is a construction of Mizuno and Nishihara [12]. Corollary 1.10 is consistent
with their findings. Indeed, in all the graphs they present in Figure 3 (see [12]), the
removal of any edge leaves a 3-colorable graph, and each of these graphs has an edge that
does not lie on 3 or 4-cycle. This implies that when k = GF (2), Nk(G) > 1 for such
graphs G, so computationally determining that they are not 3-colorable is not immediate
under the NulLA paradigm.

Alongside our combinatorial characterization, in Section 3 we begin the program of
determining the Nullstellensatz degree of Bayer’s formulation (with coefficients in GF (2))
for small non-3-colorable graphs. Most notably we prove

Theorem 1.12. If k = GF (2) and |V (G)|≤ 12, then Nk(G) ≤ 4.

2 Characterizing Degree 1 Certificates

This section is dedicated to proving Theorem 1.7, and in particular developing a combi-
natorial characterization of non-3-colorable graphs G for which Nk(G) = 1 (under Bayer’s
formulation with coefficients in GF (2)). We begin with a technical proposition that will
be needed throughout:

Proposition 2.1. For a graph G with vertex set V = {v1, v2, . . . , vn} and edge set E, the
following are equivalent for Bayer’s formulation when k = GF (2):
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1. Nk(G) = 1.

2. 1 is a k-linear combination of

x3i + 1 ∀vi ∈ V (3)

xk(x2i + xixj + x2j) ∀vivj ∈ E, vk ∈ V (4)

3. 1 is a k-linear combination of

x2ixj + xix
2
j + 1 ∀vivj ∈ E (5)

x2ixk + xixjxk + x2jxk ∀vivj ∈ E, vk ∈ V, vi 6= vk 6= vj (6)

4. 1 is a k-linear combination of

x2ixj + xix
2
j + 1 ∀vivj ∈ E (7)

x2ixk + x2jxk + xix
2
j + xix

2
k ∀vivj ∈ E, vjvk ∈ E (8)

The above proposition finds alternate and equivalent sets of polynomials whose solu-
tion sets are the same as that of the system in Lemma 1.2. The last set of polynomials
are particularly useful in uncovering our combinatorial characterization. The equivalence
of the first three sets was proven in Theorem 2.1 of [3]. The equivalence to the last
set of polynomials follows an argument similar to the proof of Theorem 2.1 in [3]. For
completeness, we include a proof of this equivalence in the appendix.

In proving Theorem 1.7, we will repeatedly appeal to the following immediate propo-
sition:

Proposition 2.2. Let G be a graph with vertex set V = {v1, v2, . . . , vn} and edge set
E, and suppose G is covered by a set C of length 2 paths. The following statements are
equivalent:

1. The number of pairs vi, vj ∈ V with i < j for which there are an odd number of
paths in C containing vi with vj as an endpoint, is itself an odd number.

2. The sum over all pairs i < j of the number of paths in C containing vi with vj as
an endpoint is odd.

3. The number of paths vivjvk in C in which j < i, k or j > i, k is odd.

We omit the proof of Proposition 2.2 but illustrate an example. Consider the wheel
graph W5 as depicted in Figure 1, and the set C = {v1v6v2, v2v6v3, v3v6v4, v4v6v5, v5v6v1}
of length 2 paths that G is covered by. All three conditions in Proposition 2.2 are satisfied.
For condition 1, the pairs {v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v1, v5} each have exactly 1
path in C as their endpoints, and all other pairs have 0 paths as their endpoints, so the
total number of pairs in question is 5. For condition 2, the pairs {i, j}, with i < j, for which
there are paths containing vi with vj as an endpoint are {1, 2}, {2, 3}, {3, 4},{4, 5}, {1, 5},
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so that total in question is also 5. This follows directly from condition 1 because v6 is
never an endpoint of a path. Finally, every path in vivjvk in C has j > i, k, so the total
in question here is also 5.

We now move on to the main result:

Proof. (of Theorem 1.7) Throughout this proof, for any set of polynomials S in a polyno-
mial ring whose coefficients are in k, we denote by 〈S〉k the linear span of S over k. Let
F be the following set of polynomials:

x2ixj + xix
2
j + 1 ∀vivj ∈ E (9)

x2ixk + x2jxk + xix
2
j + xix

2
k ∀vivj ∈ E, vjvk ∈ E (10)

By Proposition 2.1, we know that Nk(G) = 1 if and only if 1 ∈ 〈F 〉k, so we must show
that 1 ∈ 〈F 〉k if and only if G is covered by a set C of length 2 paths.

First suppose G is covered by a set of length 2 paths C. Consider the set H ⊂ F
consisting of the following polynomials:

1. x2ixk + x2jxk + xix
2
j + xix

2
k for each path vivjvk ∈ C, and

2. xix
2
j +xjx

2
i +1 for each vi, vj ∈ V with i < j such that the number of length 2 paths

in C containing vi and having vj as an endpoint is odd.

We claim 1 ∈ 〈H〉
k

and hence 1 ∈ 〈F 〉
k
. Observe that the non-constant monomials

appearing in F (and hence in H) are all of the form x2rxs, where vr, vs ∈ V are arbitrary.
We start by showing that the coefficient of x2rxs in

∑
h∈H h is 0 in k, and so all non-

constant terms in
∑

h∈H h vanish. An x2rxs term appears in one of four ways:

(a) one x2rxs term for each path in C with vr and vs as endpoints,

(b) one x2rxs term for each path in C with vr as the middle vertex and vs as an endpoint,

(c) one x2rxs term if there are an odd number of paths in C containing vr with vs as an
endpoint,

(d) one x2rxs term if there are an odd number of paths in C containing vs with vr as an
endpoint.

The coefficient of the x2rxs in the combined contribution from the terms in (a) and
(b) is the parity of the number of paths in C containing vr with vs as an endpoint. By
our assumption on C, there are even number of paths in C containing vrvs as an edge,
so the coefficient of the x2rxs in the combined contribution from (a) and (b) is the parity
of the number of paths in C containing vr and vs as endpoints. The coefficient of x2rxs
in the combined contribution from the terms in (c) and (d) is the number of paths in C
containing vr and vs. By our assumption on C, this is again the parity of the number
of paths in C containing vr and vs as endpoints. Thus, the coefficient of x2rxs in the
combined contribution from the terms in (a),(b),(c),(d) is 0 in k. Finally we need to
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discern the constant term of
∑

h∈H h. The constant term is the parity of the number of
summands of the form (2). But this is immediately 1 by condition (2) of Definition 1.5
and Proposition 2.2, so the constant term in

∑
h∈H h over k is 1.

We must now show that if Nk(G) = 1, then such a set C exists. In that light,
Proposition 2.1 asserts the existence of a set H of polynomials of the form (9) and (10)
with

∑
h∈H h = 1. Let H∗ be the restriction of H to the polynomials in (10). Construct

C to consist of the paths vivjvk for which x2ixk + x2jxk + xix
2
j + xix

2
k appears in

∑
h∈H∗ h

with a non-zero coefficient.
Suppose vrvs ∈ E, define Sr,s to be the sum (in k) of the coefficients of the monomials

x2rxs and xrx
2
s appearing in

∑
h∈H∗ h. Since

∑
h∈H h = 1, and the only other summand of∑

h∈H h not in
∑

h∈H∗ h is x2rxs + xrx
2
s + 1, Sr,s is 0 in k. However, the contribution of a

single summand x2ixk + x2jxk + xix
2
j + xix

2
k in

∑
h∈H∗ h to Sr,s is 1 precisely when vrvs is

an edge on the path vivjvk, 2 if vr and vs are endpoints of vivjvk, and 0 otherwise. Since
Sr,s is 0 in k, we deduce that the edge vrvs lies on an even number of paths in C.

If vr, vs ∈ V but vrvs 6∈ E, then any x2rxs term in
∑

h∈H h appears in
∑

h∈H∗ h, so the
coefficient of x2rxs in

∑
h∈H∗ h is 0 in k. But x2rxs appears once in the summand of H∗

corresponding to the path vivjvk precisely when vr and vs are endpoints of vivjvk. Thus,
the number of paths whose endpoints are vr and vs is even.

Each edge vivj with i < j contributes a 1 to the sum
∑

h∈H h. Moreover, for such pairs
i, j the monomial x2ixj appears an odd number of times in H∗. We know x2ixj appears
in H∗ once for each path in C whose endpoints are vi and vj and once for each path in
C with vi as a midpoint and vj as an endpoint. This is equivalent to x2ixj appearing in
H∗ once for each path in C containing vi with vj as an endpoint. Since the number of 1s
appearing in

∑
h∈H h is odd, there are an odd number of i, j pairs with i < j such that

the number of paths in C containing i with j as an endpoint is odd. By Proposition 2.2,
this establishes condition (2) of Definition 1.5.

3 NulLA on Small Graphs and Future Directions

Section 2 equipped us with a complete combinatorial understanding of the graphs G for
which Nk(G) = 1 when k = GF (2). By Theorem 2.1 of [6], Nk(G) ≡ 1 (mod 3), so in
investigating Problem 1.3, the next natural step is determining when Nk(G) = 4. This
section is devoted to a systematic study of this for small graphs. We first remark that, in
order to find graphs with low minimum Nullstellensatz degree, we only need to focus on
a subclass of non-3-colorable graphs.

Definition 3.1 (Definition 5.1.4 of [14]). A non-3-colorable graph G is 4-critical if for
any edge e ∈ E(G), G\e is 3-colorable.

The following observation is fundamental for our purposes. See Chapter 5 of [14] for
a discussion of this.

Lemma 3.2 ([14]). Every non-3-colorable graph has a 4-critical subgraph.
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|V | Nk(G) = 1 Nk(G) = 4 Total 4-critical graphs
4 1 0 1
5 0 0 0
6 1 0 1
7 1 1 2
8 2 3 5
9 5 16 21
10 13 137 150
11 38 1183 1221
12 141 14440 14581

Total 202 15780 15982

Table 1: Nk(G) for 4-critical graphs on at most 12 vertices when k = GF (2).

In light of the previous lemma, the following lemma tells us that 4-critical graphs
provide upper bounds for the minimum Nullstellensatz degree of general non-3-colorable
graphs.

Lemma 3.3 (Lemma 3.14 of [5]). If H and G are non-3-colorable graphs with H a
subgraph of G, then Nk(H) ≥ Nk(G).

Lemma 3.2 and Lemma 3.3 suggest that we solely focus on minimum degree Nullstel-
lensatz certificates for 4-critical graphs. We computed minimum degree Nullstellensatz
certificates for all such graphs on at most 12 vertices. A summary of the results is illus-
trated in Table 1. Some of the graphs represented in the data table are ones we have seen
so far. For instance, the only 4-critical graph G with |V (G)|= 4 is the complete graph on
four vertices, which is the wheel W3. The graph on the fewest number of vertices whose
minimum degree Nullstellensatz certificate is 4 is the Moser spindle. One particular degree
4 certificate, consistent with the vertex labeling in Figure 2 is the following:

1 = (x1x2x6 + x1x2x7 + x1x4x6 + x1x4x7 + x2x6x7 + x4x6x7)(x
3
1 + 1)

+ (x21x6 + x21x7 + x1x6x7)(x
3
2 + 1) + (1)(x33 + 1)

+ (x4 + x7 + x21x4x6 + x21x4x7 + x1x4x6x7)(x
2
1 + x1x2 + x22)

+ (x1)(x
2
1 + x1x3 + x23) + (x1 + x6 + x7 + x21x2x6 + x21x2x7 + x1x2x6x7)(x

2
1 + x1x4 + x24)

+(x3+x7)(x
2
1+x1x5+x25)+(x1+x2+x6+x21x2x6+x21x2x7+x1x2x6x7)(x

2
2+x2x4+x24)

+ (x1 + x2 + x7)(x
2
2 + x2x6 + x26) + (x1 + x7)(x

2
3 + x3x5 + x25) + (x3)(x

2
3 + x3x7 + x27)

+ (x2 + x7)(x
2
4 + x4x6 + x26) + (x1 + x3)(x

2
5 + x5x7 + x27) + (x1)(x

2
6 + x6x7 + x27)

These observations now allow us to prove Theorem 1.12.

Proof. (of Theorem 1.12) By Lemma 3.2, every non-3-colorable graph G on at most 12
vertices has a 4-critical subgraph H. By Table 1, Nk(H) ∈ {1, 4}. Lemma 3.3 implies
Nk(G) ≤ Nk(H). The result then follows by Theorem 2.1 of [6].
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Many pertinent questions arise from our study of the minimum Nullstellensatz degree
of graphs under Bayer’s formulation. First and foremost, unless P=NP, one should expect
to find a family of graphs for which the minimum Nullstellensatz degree grows arbitrarily
large (see Lemma 3.2 of [5] for a discussion of this). As evidenced by Table 1, an exhaustive
search of the almost 16,000 4-critical graphs on at most 12 vertices indicates that a first
step in this direction is to address the following problem:

Problem 3.4. For any positive integer t, find a graph G for which Nk(G) > t.

After exhaustive experimentation, the authors of [5] have yet to see an example re-
solving Problem 3.4 when t = 4 for any finite field k. One possible method for addressing
Problem 3.4 is understanding what happens to the minimum Nullstellensatz degree un-
der the famous Hajós construction. In his seminal paper [8], Hajós defined a recursively
constructed class of graphs, which he called 4-constructible, in the following way:

i) K4 is 4-constructible.

ii) For any two non-adjacent vertices u and v in a 4-constructible graph G, the graph
obtained from G by adding an edge e incident to u and v and contracting e is also
4-constructible.

iii) (Hajós Construction) For any two 4-constructible graphs G and H, with vw an edge
of G, and xy an edge of H, the graph obtained by identifying v and x, removing vw
and xy, and adding the edge wy is also 4-constructible.

Hajós proved that the set of 4-constructible graphs is precisely the set of 4-critical
graphs, so it is fundamental for us to determine what changes in the minimum Nullstel-
lensatz degree of graphs when applying these constructions. Observe Nk(K4) = 1, and
by Lemma 3.14 of [5], the minimum Nullstellensatz degree will not increase by applying
construction ii). This leads us to the following fundamental question:

Problem 3.5. Let G and H be 4-critical graphs. What is the relationship between Nk(G),
Nk(H) and the minimum Nullstellensatz degree of the graph obtained from G and H by
applying the Hajós construction?
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A Appendix

Here, we give a complete proof of Proposition 2.1. The equivalence of the first three
sets of polynomials was proven in Theorem 2.1 of [3], so we proceed by establishing the
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equivalence of the fourth set of polynomials with the third. First, suppose we are given a
polynomial x2ixk + x2jxk + xix

2
j + xix

2
k in (8). Observe that

x2ixk + x2jxk + xix
2
j + xix

2
k = (x2ixk + xixjxk + x2jxk) + (x2jxi + xjxkxi + x2kxi)

since char(k)=2. The two summands on the right are polynomials in (6) because vivj and
vjvk lie in E, so any polynomial in (8) is a k-linear combination of polynomials in (6),
and hence the fourth condition implies the third.

Now suppose the third condition holds, and we expressed 1 as a k-linear combination
of the polynomials in (5) and (6) as follows:

1 =
∑

vivj∈E

αij(x
2
ixj + xix

2
j + 1) +

∑
vivj∈E

vk /∈{vi,vj}, k∈V

βijk(x2ixk + xixjxk + x2jxk). (11)

Fix vertices vi, vj, vk ∈ V with vivj ∈ E. When the right-hand side of (11) is expanded,
the coefficient of xixjxk must be 0. We now focus on the contribution of the polynomials
in (5) and (6) to coefficient of xixjxk on the right-hand side for a fixed set of vertices
{vi, vj, vk}. Without loss of generality, we can demand vivj ∈ E.

First, suppose neither vivk nor vjvk are edges of G. Then the coefficient of xixjxk is
βijk. Comparing both sides of (11) implies βijk = 0, and hence the polynomial x2ixk +
xixjxk + x2jxk does not appear at all on the right-hand side of (11).

Now suppose all three of vivj, vjvk, vivk are all in E. The polynomials in (5) and (6)
that contain xixjxk are

x2ixk + xixjxk + x2jxk, x2kxi + xixjxk + x2jxi, x2ixj + xixjxk + x2kxj,

so if any of these appear as summands of the right-hand side of (11), then exactly two
of them do (since char(k)=2). If none appear, we do not have to address this case, so
assume exactly two appear, and without loss of generality assume they are the latter
two. Then the combined contribution of these summands to the right-hand side of (11)
is (x2kxi + xixjxk + x2jxi) + (x2ixj + xixjxk + x2kxj). But observe

(x2kxi + xixjxk + x2jxi) + (x2ixj + xixjxk + x2kxj) = x2ixj + x2kxj + xix
2
j + xix

2
k

which is a polynomial in (8) since vivk, vkvj ∈ E.
Finally, suppose vivk /∈ E, vjvk ∈ E. This is the only remaining case since the case

when vivk ∈ E, vjvk /∈ E follows by symmetry. In this case, the only polynomials in (5)
and (6) that contain xixjxk as a summand are

x2ixk + xixjxk + x2jxk, x2jxi + xixjxk + x2kxi.

Again, since the coefficient of xixjxk must be 0, either neither of these appear as summands
in (11) or both do. Again, we only need consider the case when both appear. In this
case, again since k = GF (2), βijk = βkij = 1. Observe then that the contribution of such
polynomials to the right hand side of (11) is

(x2ixk + xixjxk + x2jxk) + (x2jxi + xixjxk + x2kxi) = x2jxi + x2kxi + xkx
2
i + xkx

2
j ,

and the latter polynomial is a polynomial in (8) since vivj, vjvk ∈ E. Thus if 1 is a k-linear
combination of polynomials in (6) then it is a k-linear combination of polynomials in (8).
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