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Abstract

A chord diagram is a set of chords of a circle such that no pair of chords has a
common endvertex. A chord diagram E with n chords is called an n-crossing if all
chords of E are mutually crossing. A chord diagram FE is called nonintersecting if £
contains no 2-crossing. For a chord diagram E having a 2-crossing S = {x1x3, 224},
the expansion of F with respect to S is to replace E with Ey = (E\S)U{zaxs, v421}
or By = (E\S)U{z1x2, x324}. It is shown that there is a one-to-one correspondence
between the multiset of all nonintersecting chord diagrams generated from an n-
crossing with a finite sequence of expansions and the set of alternating permutations
of order n + 1.

Keywords: chord diagram; alternating permutation; Entringer number; Euler
number; Ptolemy’s theorem

1 Introduction

Let us consider a set of chords of a circle. A set of chords is called a chord diagram, if they
have no common endvertex. If a chord diagram consists of a set of n mutually crossing
chords, it is called an n-crossing. A 2-crossing is simply called a crossing as well. If a
chord diagram contains no crossing, it is called nonintersecting.

Let V be a set of 2n vertices on a circle, and let E be a chord diagram of order n,
where each chord has endvertices of V. We denote the family of all such chord diagrams
by CD(V). Let xy, 29, 3,24 € V be placed on a circle in clockwise order. Let E' € CD(V).
For a crossing S = {zyx3, 2wy} C E, let S; = {xox3, z421}, and Sy = {x129, x324}. The
ezpansion of E with respect to S is defined as a replacement of F with £y = (E'\ S)U S,
or By = (E\ S)U S, (see Figure 1). In this procedure, E is called the predecessor of E;
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Figure 1: The expansion of a chord diagram.

and Es, and E; and E, are called the successors of E. A chord of a chord diagram is
called isolated, if it intersects no other chord.

For £ € CD(V), let us denote the number of 2-crossings of F by ¢(E). Let E' be a
successor of E such that £ = (E'\ S) U S’, where S is an original 2-crossing and S’ is a
pair of additional chords.

We claim that ¢(E’) < ¢(E). Indeed, for e € EN E’, let t (resp. t') be the number of
chords of S (resp. S’) intersecting e.

It is not difficult to see that if ¢t < 1 then we have ¢’ = t, and if t = 2 then we have
t' =2 or t' = 0. Hence, we have t' < t. Since S is a crossing of E which is removed in E’,
we have ¢(E') < ¢(E).

Lemma 1. Let E € CD(V) be a chord diagram. Then beginning from £, the resulting

mutiset of nonintersecting chord diagrams generated by a maximal set of expansions is
uniquely determined.

Proof. We proceed by induction on the number of crossings ¢ of a chord diagram E.

If ¢ = 0 or 1, there is nothing to prove. Let ¢ > 2 and let ¢(F) = ¢. By inductive
hypothesis, for a chord diagram E’ with ¢(E") < ¢—1, we define NCD(E’) as the resulting
multisets of nonintersecting chord diagrams generated by E’. Moreover, for a set of chord
diagrams € such that £’ € € with ¢(E’) < ¢—1, let us denote NCD(E) = Upee NCD(E').

Let S; and S5 be two 2-crossings of E, and let E;; and E;; be two successors of E by
an expansion with respect to S; for i = 1,2. Let & = {E;1, Ein} for i = 1,2. What we
want to show is that NCD(&) = NCD(&s).

Case 1. S; NSy = 0.

For F1; and Ej5, by an expansion with respect to Sy, we have a set £ of four chord
diagrams. Then we have NCD(&;) = NCD(E'). In the same way, for Fy; and Eg, by an
expansion with respect to S, we have £, and we have NCD(&;) = NCD(E'). Hence, we
have NCD(&;) = NCD(&).
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Case 2. S1 NSy # 0.

We may assume S; = {eg,e1} and Sy = {eg, €2}, where e¢; = x;y; for 0 < i < 2. Let
Vo = {xo, 1,22, Y0, Y1, Y2} and let E' = E '\ {eg, €1, e2}. Beginning from &; with i = 1,2,
let us consider expansions with respect to a crossing induced by Vj.

Case 2.1. ey and ey are not crossing.

We may assume xg, x1, T2, Yo, Y2, y1 are placed on a circle in clockwise order. By
iterating possible expansions, not depending on the order of the expansions, we always
have a set of four chord diagrams & = { E' U {xor1, X2v0, Y211}, E' U {xox1, T2y1, Yoya},
E"U{xoyr, 11y, ayo}, B U{xoy1, 2172, Yoy} }-

Case 2.2. e; and ey are crossing.

We may assume xq, x1, T2, Yo, Y1, Yo are placed on a circle in clockwise order. By
iterating possible expansions, not depending on the order of the expansions, we always
have a set of five chord diagrams & = { E' U {zox1, z2y0, y1y2}, E' U {xoys2, T122, Youy1},
E"U{xory, maya, yoyr b, B U{zoyo, T122, Y192}, E' U {zoy2, T1y1, D290} }
In any case, we have NCD(&;) = NCD(E') for i = 1,2, as required. ]
Let us denote the multiset of nonintersecting chord diagrams generated by £ € CD(V)

by NCD(E). For E € CD(V), let us define f(F) as the cardinality of NCD(E) as a
multiset.

Ezample 2. Let C,, be an n-crossing. Then we have f(Cy) = 2, f(C3) =5 and f(Cy) = 16.
(See Figure 2.)

A background of expansions of a chord diagram is Ptolemy’s theorem and its gener-
alization. For two points x,y on a circle, let Ty be the length of a chord xy. Ptolemy’s
theorem states that if F = {x123, xow,} itself is a 2-crossing, then we have T173 - ToZq =
Tol3 - Tal1 + T1Z2 - Tzx4. In other words, we have

IIe = [Iz+]l= (1)

eckE ecFy ecks

where F; and Ey are two successors of E. In general, for a given £ € CD(V'), by iterating
expansions with applications of Ptolemy’s theorem, we have

e = > 1Il= (2)

c€E E'eNCD(E) ecE’

If F is a 3-crossing, the equation (2) is known as Fuhrmann’s Theorem ([2]).

2 Main Results

For two nonnegative integers k and n with k£ < n, we define A(n, k) as a chord diagram of
order n + 1, in which there is an n-crossing Fy with an extra chord e such that e crosses
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Figure 2: Multisets of nonintersecting chord diagrams generated by a 2-crossing(upper),
a 3-crossing(middle) and a 4-crossing (lower).
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exactly k chords of Fy. Note that A(n—1,n—1) is simply an n-crossing, and that A(n,0)
is a union of an n-crossing and an isolated chord. Hence, we have f(A(n —1,n — 1)) =

f(A(n,0)). The values of f(A(n,k)) for small nonnegative integers n and k are shown in
Table 1.

Table 1: f(A(n,k)) for 0 < k < n < 6.

n\kl O 1 2 3 4 5 6
0 1
1 1 2
2 2 4 )
3 ) 10 14 16
4 16 32 46 o6 61
) 61 122 178 224 256 272
6 272 544 800 1024 1202 1324 1385
A permutation o of [n] = {1,2,...,n} is called an alternating permutation if (o (i) —

o(i—1))(o(i+1)—0o(i)) < 0for2 < i< n—1 (see [9] for an excellent survey of alternating
permutations). An alternating permutation o is called an up-down permutation (resp.
down-up permutation) if o(1) < o(2) (resp. o(1) > o(2)). Let UDP(n, k) denote the set
of up-down permutations of [n] with the first term at most k. Similarly, let DUP (n, k)
denote the set of down-up permutations of [n| with the first term at least n — k + 1. Note
that by definition, there is a natural bijection from UDP(n, k) to DUP(n, k).

The main result of the paper is the following theorem.

Theorem 3. For 0 < k < n, there is a bijection from NCD(A(n, k)) to UDP(n+2,k+1).

For 0 < k < n, Entringer number E,, ; is defined as the number of down-up permuta-
tions of [n + 1] with the first term &k 4 1 [1], which equals the cardinality of UDP(n, k).
Since for n > 1, E, 411 equals Euler number E,,, the number of down-up permutations of
[n], we have the following Corollary.

Corollary 4. For 0 < k < n, we have f(A(n,k)) = Eniok+1. In particular, we have
f(A(n,0)) = Enia.
Several combinatorial interpretations for Entringer numbers are known ([4, 5, 6, 7, 8]).

The generating function for Entringer number is treated in [3] as an exercise, Exer. 6.75.
According to [3], it follows that

" yF cos T +siny
Z Z EnJrkkmE T cos(z+y)
n>0 k>0 o Y
By Corollary 4, we have

7L

k
S s k5L - 2 (zzmm k)

n=0 k>0 n=0 k>0
coS T + siny

cos(x +y)(1 —sin(x +y))
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A(n k1) An-1,n-k)

Figure 3: Two successors of A(n, k), where n =7 and k = 3.

3 Proof of Theorem 3

For two chord diagrams F; € CD(V;) for i = 1,2, let F/ € CD(V/) be a chord diagram
such that F! consists of the set of all nonisolated chords of F;. Suppose that |F]| = |F3|.
Let V) = {v, Vi1, -, Vig2w—1}, and the vertices are placed on a circle in clockwise order
for each ¢ = 1,2. Suppose that v} ,v} 5 € F] holds if and only if vy ,v5 5 € F; holds.
Then we say that F] and Fj are isomorphic, and furthermore we say that F} and F, are
isomorphic as well.

In order to prove Theorem 3, we will recursively construct a bijection from NCD(A(n, k))
toUDP(n+2,k+1) for 0 < k < n.

Firstly, we will show a recurrence for NCD(A(n, k)), which is a key ingredient for the
proof of Theorem 3.

Lemma 5. For 1 < k < n, we have a bijection between NCD(A(n, k)) and NCD(A(n, k —
1))UNCD(A(n—1,n—k)). In particular, we have f(A(n,k)) = f(A(n,k—1))+ f(A(n—
1,n—k)).

Proof. Let E be a chord diagram isomorphic to A(n, k). We may assume E contains an
n-crossing Fy and an extra edge e = xz such that e crosses exactly k edges of Ej.

Let f = yw be an edge of Ej such that (1) x,y, z, w are placed on a circle in clockwise
order and (2) there is no endvertex of Ey between x and y. (See Figure 3.)

Put S = {zz,yw}. Let us expand E with respect to S. We have two successors E;, Es
of E, where By = (E'\ S)U{yz,wz} and Ey = (E'\ S)U{xy, zw}. Then E} is isomorphic
to A(n,k—1) and Es is isomorphic to A(n—1,n—k). Hence, we have a bijection between

NCD(A(n,k)) and NCD(A(n,k — 1)) UNCD(A(n — 1,n — k)). []
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For the sake of completeness, we recall the well-known recurrence relation for UDP (n, k).

Lemma 6. For 1 < k < n, we have a bijection between UDP(n + 2,k + 1) and UDP(n +
2,k)UUDP(n+1,n—k+1).

Proof. By the definition, UDP(n + 2,k + 1) is a set of up-down permutations of [n + 2]
with the first term at most £+ 1. UDP(n + 2,k + 1) is partitioned into UDP(n + 2, k)
and T =UDP(n+2,k+ 1) \UDP(n+2,k), where T is a set of up-down permutations
of [n + 2] with the first term & + 1.

For o € T, let us remove the first term of . The resulting permutation ¢’ is a down-
up permutation of [n + 2|\ {k + 1} with the first term at least k& + 2. Hence, there is a
natural bijection from 7 to DUP(n+1,n—k+1), which has a one-to-one correspondence
toUDP(n+1,n—k+1). [

Now, we return to the proof of Theorem 3.

For n =0 and k = 0, a set of a single chord of NCD(A(0,0)) clearly corresponds to a
single permutation 12 of UDP(2,1).

Let n > 1 and £ > 0. By the inductive hypothesis, we have a bijection from
NCD(A(n,K')) toUDP(n' + 2,k + 1) for n’ <norn =nand k' < k.

For k = 0, A(n,0) is isomorphic to A(n — 1,n — 1). Hence, there is a bijection from
NCD(A(n,0)) to NCD(A(n — 1,n — 1)). On the other hand, let 0 € UDP(n +2,1). By
removing the first term of o, we have a down-up permutation ¢’ of [n + 2]\ {1}. Hence,
there is a natural bijection from UDP(n+2,1) to DUP(n+ 1,n), which has a one-to-one
correspondence to UDP(n + 1,n). Therefore, we have a bijection from NCD(A(n,0)) to
UDP(n+2,1).

Let £ > 1. In this case, by Lemma 5 and Lemma 6, we can recursively construct a
bijection from NCD(A(n,k)) to UDP(n+ 2,k + 1).

This completes the proof. ]
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