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Abstract

A chord diagram is a set of chords of a circle such that no pair of chords has a
common endvertex. A chord diagram E with n chords is called an n-crossing if all
chords of E are mutually crossing. A chord diagram E is called nonintersecting if E
contains no 2-crossing. For a chord diagram E having a 2-crossing S = {x1x3, x2x4},
the expansion of E with respect to S is to replace E with E1 = (E\S)∪{x2x3, x4x1}
or E2 = (E\S)∪{x1x2, x3x4}. It is shown that there is a one-to-one correspondence
between the multiset of all nonintersecting chord diagrams generated from an n-
crossing with a finite sequence of expansions and the set of alternating permutations
of order n + 1.

Keywords: chord diagram; alternating permutation; Entringer number; Euler
number; Ptolemy’s theorem

1 Introduction

Let us consider a set of chords of a circle. A set of chords is called a chord diagram, if they
have no common endvertex. If a chord diagram consists of a set of n mutually crossing
chords, it is called an n-crossing. A 2-crossing is simply called a crossing as well. If a
chord diagram contains no crossing, it is called nonintersecting.

Let V be a set of 2n vertices on a circle, and let E be a chord diagram of order n,
where each chord has endvertices of V . We denote the family of all such chord diagrams
by CD(V ). Let x1, x2, x3, x4 ∈ V be placed on a circle in clockwise order. Let E ∈ CD(V ).
For a crossing S = {x1x3, x2x4} ⊂ E, let S1 = {x2x3, x4x1}, and S2 = {x1x2, x3x4}. The
expansion of E with respect to S is defined as a replacement of E with E1 = (E \S)∪S1

or E2 = (E \ S) ∪ S2 (see Figure 1). In this procedure, E is called the predecessor of E1
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Figure 1: The expansion of a chord diagram.

and E2, and E1 and E2 are called the successors of E. A chord of a chord diagram is
called isolated, if it intersects no other chord.

For E ∈ CD(V ), let us denote the number of 2-crossings of E by c(E). Let E ′ be a
successor of E such that E ′ = (E \ S) ∪ S ′, where S is an original 2-crossing and S ′ is a
pair of additional chords.

We claim that c(E ′) < c(E). Indeed, for e ∈ E ∩ E ′, let t (resp. t′) be the number of
chords of S (resp. S ′) intersecting e.

It is not difficult to see that if t 6 1 then we have t′ = t, and if t = 2 then we have
t′ = 2 or t′ = 0. Hence, we have t′ 6 t. Since S is a crossing of E which is removed in E ′,
we have c(E ′) < c(E).

Lemma 1. Let E ∈ CD(V ) be a chord diagram. Then beginning from E, the resulting
mutiset of nonintersecting chord diagrams generated by a maximal set of expansions is
uniquely determined.

Proof. We proceed by induction on the number of crossings c of a chord diagram E.
If c = 0 or 1, there is nothing to prove. Let c > 2 and let c(E) = c. By inductive

hypothesis, for a chord diagram E ′ with c(E ′) 6 c−1, we define NCD(E ′) as the resulting
multisets of nonintersecting chord diagrams generated by E ′. Moreover, for a set of chord
diagrams E such that E ′ ∈ E with c(E ′) 6 c−1, let us denote NCD(E) = ∪E′∈ENCD(E ′).

Let S1 and S2 be two 2-crossings of E, and let Ei1 and Ei2 be two successors of E by
an expansion with respect to Si for i = 1, 2. Let Ei = {Ei1, Ei2} for i = 1, 2. What we
want to show is that NCD(E1) = NCD(E2).
Case 1. S1 ∩ S2 = ∅.
For E11 and E12, by an expansion with respect to S2, we have a set E ′ of four chord
diagrams. Then we have NCD(E1) = NCD(E ′). In the same way, for E21 and E22, by an
expansion with respect to S1, we have E ′, and we have NCD(E2) = NCD(E ′). Hence, we
have NCD(E1) = NCD(E2).
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Case 2. S1 ∩ S2 6= ∅.

We may assume S1 = {e0, e1} and S2 = {e0, e2}, where ei = xiyi for 0 6 i 6 2. Let
V0 = {x0, x1, x2, y0, y1, y2} and let E ′ = E \ {e0, e1, e2}. Beginning from Ei with i = 1, 2,
let us consider expansions with respect to a crossing induced by V0.

Case 2.1. e1 and e2 are not crossing.

We may assume x0, x1, x2, y0, y2, y1 are placed on a circle in clockwise order. By
iterating possible expansions, not depending on the order of the expansions, we always
have a set of four chord diagrams E ′ = { E ′ ∪ {x0x1, x2y0, y2y1}, E ′ ∪ {x0x1, x2y1, y0y2},
E ′ ∪ {x0y1, x1y2, x2y0}, E ′ ∪ {x0y1, x1x2, y0y2} }.

Case 2.2. e1 and e2 are crossing.

We may assume x0, x1, x2, y0, y1, y2 are placed on a circle in clockwise order. By
iterating possible expansions, not depending on the order of the expansions, we always
have a set of five chord diagrams E ′ = { E ′ ∪ {x0x1, x2y0, y1y2}, E ′ ∪ {x0y2, x1x2, y0y1},
E ′ ∪ {x0x1, x2y2, y0y1}, E ′ ∪ {x0y0, x1x2, y1y2}, E ′ ∪ {x0y2, x1y1, x2y0} }.

In any case, we have NCD(Ei) = NCD(E ′) for i = 1, 2, as required.

Let us denote the multiset of nonintersecting chord diagrams generated by E ∈ CD(V )
by NCD(E). For E ∈ CD(V ), let us define f(E) as the cardinality of NCD(E) as a
multiset.

Example 2. Let Cn be an n-crossing. Then we have f(C2) = 2, f(C3) = 5 and f(C4) = 16.
(See Figure 2.)

A background of expansions of a chord diagram is Ptolemy’s theorem and its gener-
alization. For two points x, y on a circle, let xy be the length of a chord xy. Ptolemy’s
theorem states that if E = {x1x3, x2x4} itself is a 2-crossing, then we have x1x3 · x2x4 =
x2x3 · x4x1 + x1x2 · x3x4. In other words, we have∏

e∈E

e =
∏
e∈E1

e+
∏
e∈E2

e, (1)

where E1 and E2 are two successors of E. In general, for a given E ∈ CD(V ), by iterating
expansions with applications of Ptolemy’s theorem, we have∏

e∈E

e =
∑

E′∈NCD(E)

∏
e∈E′

e. (2)

If E is a 3-crossing, the equation (2) is known as Fuhrmann’s Theorem ([2]).

2 Main Results

For two nonnegative integers k and n with k 6 n, we define A(n, k) as a chord diagram of
order n+ 1, in which there is an n-crossing E0 with an extra chord e such that e crosses
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Figure 2: Multisets of nonintersecting chord diagrams generated by a 2-crossing(upper),
a 3-crossing(middle) and a 4-crossing (lower).
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exactly k chords of E0. Note that A(n−1, n−1) is simply an n-crossing, and that A(n, 0)
is a union of an n-crossing and an isolated chord. Hence, we have f(A(n − 1, n − 1)) =
f(A(n, 0)). The values of f(A(n, k)) for small nonnegative integers n and k are shown in
Table 1.

Table 1: f(A(n, k)) for 0 6 k 6 n 6 6.

n \ k 0 1 2 3 4 5 6
0 1
1 1 2
2 2 4 5
3 5 10 14 16
4 16 32 46 56 61
5 61 122 178 224 256 272
6 272 544 800 1024 1202 1324 1385

A permutation σ of [n] = {1, 2, . . . , n} is called an alternating permutation if (σ(i) −
σ(i−1))(σ(i+1)−σ(i)) < 0 for 2 6 i 6 n−1 (see [9] for an excellent survey of alternating
permutations). An alternating permutation σ is called an up-down permutation (resp.
down-up permutation) if σ(1) < σ(2) (resp. σ(1) > σ(2)). Let UDP(n, k) denote the set
of up-down permutations of [n] with the first term at most k. Similarly, let DUP(n, k)
denote the set of down-up permutations of [n] with the first term at least n− k+ 1. Note
that by definition, there is a natural bijection from UDP(n, k) to DUP(n, k).

The main result of the paper is the following theorem.

Theorem 3. For 0 6 k 6 n, there is a bijection from NCD(A(n, k)) to UDP(n+ 2, k+ 1).

For 0 6 k 6 n, Entringer number En,k is defined as the number of down-up permuta-
tions of [n + 1] with the first term k + 1 [1], which equals the cardinality of UDP(n, k).
Since for n > 1, En+1,1 equals Euler number En, the number of down-up permutations of
[n], we have the following Corollary.

Corollary 4. For 0 6 k 6 n, we have f(A(n, k)) = En+2,k+1. In particular, we have
f(A(n, 0)) = En+1.

Several combinatorial interpretations for Entringer numbers are known ([4, 5, 6, 7, 8]).
The generating function for Entringer number is treated in [3] as an exercise, Exer. 6.75.
According to [3], it follows that∑

n>0

∑
k>0

En+k,k
xn

n!

yk

k!
=

cosx+ sin y

cos(x+ y)
.

By Corollary 4, we have∑
n>0

∑
k>0

f(A(n+ k, k))
xn

n!

yk

k!
=

∂2

∂x∂y

(∑
n>0

∑
k>0

En+k,k
xn

n!

yk

k!

)

=
cosx+ sin y

cos(x+ y)(1− sin(x+ y))
.
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Figure 3: Two successors of A(n, k), where n = 7 and k = 3.

3 Proof of Theorem 3

For two chord diagrams Fi ∈ CD(Vi) for i = 1, 2, let F ′i ∈ CD(V ′i ) be a chord diagram
such that F ′i consists of the set of all nonisolated chords of Fi. Suppose that |F ′1| = |F ′2|.
Let V ′i = {v′i,0, v′i,1, . . . , vi,2n′−1}, and the vertices are placed on a circle in clockwise order
for each i = 1, 2. Suppose that v′1,αv

′
1,β ∈ F ′1 holds if and only if v′2,αv

′
2,β ∈ F ′2 holds.

Then we say that F ′1 and F ′2 are isomorphic, and furthermore we say that F1 and F2 are
isomorphic as well.

In order to prove Theorem 3, we will recursively construct a bijection fromNCD(A(n, k))
to UDP(n+ 2, k + 1) for 0 6 k 6 n.

Firstly, we will show a recurrence for NCD(A(n, k)), which is a key ingredient for the
proof of Theorem 3.

Lemma 5. For 1 6 k 6 n, we have a bijection between NCD(A(n, k)) and NCD(A(n, k−
1))∪NCD(A(n−1, n−k)). In particular, we have f(A(n, k)) = f(A(n, k−1))+f(A(n−
1, n− k)).

Proof. Let E be a chord diagram isomorphic to A(n, k). We may assume E contains an
n-crossing E0 and an extra edge e = xz such that e crosses exactly k edges of E0.

Let f = yw be an edge of E0 such that (1) x, y, z, w are placed on a circle in clockwise
order and (2) there is no endvertex of E0 between x and y. (See Figure 3.)

Put S = {xz, yw}. Let us expand E with respect to S. We have two successors E1, E2

of E, where E1 = (E \S)∪{yz, wx} and E2 = (E \S)∪{xy, zw}. Then E1 is isomorphic
to A(n, k−1) and E2 is isomorphic to A(n−1, n−k). Hence, we have a bijection between
NCD(A(n, k)) and NCD(A(n, k − 1)) ∪NCD(A(n− 1, n− k)).
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For the sake of completeness, we recall the well-known recurrence relation for UDP(n, k).

Lemma 6. For 1 6 k 6 n, we have a bijection between UDP(n+ 2, k + 1) and UDP(n+
2, k) ∪ UDP(n+ 1, n− k + 1).

Proof. By the definition, UDP(n+ 2, k + 1) is a set of up-down permutations of [n+ 2]
with the first term at most k + 1. UDP(n + 2, k + 1) is partitioned into UDP(n + 2, k)
and T = UDP(n+ 2, k + 1) \ UDP(n+ 2, k), where T is a set of up-down permutations
of [n+ 2] with the first term k + 1.

For σ ∈ T , let us remove the first term of σ. The resulting permutation σ′ is a down-
up permutation of [n + 2] \ {k + 1} with the first term at least k + 2. Hence, there is a
natural bijection from T to DUP(n+1, n−k+1), which has a one-to-one correspondence
to UDP(n+ 1, n− k + 1).

Now, we return to the proof of Theorem 3.
For n = 0 and k = 0, a set of a single chord of NCD(A(0, 0)) clearly corresponds to a

single permutation 12 of UDP(2, 1).
Let n > 1 and k > 0. By the inductive hypothesis, we have a bijection from

NCD(A(n′, k′)) to UDP(n′ + 2, k′ + 1) for n′ < n or n′ = n and k′ < k.
For k = 0, A(n, 0) is isomorphic to A(n − 1, n − 1). Hence, there is a bijection from

NCD(A(n, 0)) to NCD(A(n− 1, n− 1)). On the other hand, let σ ∈ UDP(n+ 2, 1). By
removing the first term of σ, we have a down-up permutation σ′ of [n + 2] \ {1}. Hence,
there is a natural bijection from UDP(n+ 2, 1) to DUP(n+ 1, n), which has a one-to-one
correspondence to UDP(n+ 1, n). Therefore, we have a bijection from NCD(A(n, 0)) to
UDP(n+ 2, 1).

Let k > 1. In this case, by Lemma 5 and Lemma 6, we can recursively construct a
bijection from NCD(A(n, k)) to UDP(n+ 2, k + 1).

This completes the proof.
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