Expansions of a chord diagram and alternating permutations

Tomoki Nakamigawa

Department of Information Science Shonan Institute of Technology Fujisawa, Kanagawa, Japan

nakami@info.shonan-it.ac.jp

Submitted: Mar 20, 2015; Accepted: Jan 4, 2016; Published: Jan 11, 2016 Mathematics Subject Classifications: 05A19, 05A05

Abstract

A chord diagram is a set of chords of a circle such that no pair of chords has a common endvertex. A chord diagram E with n chords is called an n-crossing if all chords of E are mutually crossing. A chord diagram E is called nonintersecting if E contains no 2-crossing. For a chord diagram E having a 2-crossing $S = \{x_1x_3, x_2x_4\}$, the expansion of E with respect to S is to replace E with $E_1 = (E \setminus S) \cup \{x_2x_3, x_4x_1\}$ or $E_2 = (E \setminus S) \cup \{x_1x_2, x_3x_4\}$. It is shown that there is a one-to-one correspondence between the multiset of all nonintersecting chord diagrams generated from an n-crossing with a finite sequence of expansions and the set of alternating permutations of order n + 1.

Keywords: chord diagram; alternating permutation; Entringer number; Euler number; Ptolemy's theorem

1 Introduction

Let us consider a set of chords of a circle. A set of chords is called a *chord diagram*, if they have no common endvertex. If a chord diagram consists of a set of n mutually crossing chords, it is called an *n*-crossing. A 2-crossing is simply called a crossing as well. If a chord diagram contains no crossing, it is called *nonintersecting*.

Let V be a set of 2n vertices on a circle, and let E be a chord diagram of order n, where each chord has endvertices of V. We denote the family of all such chord diagrams by $\mathcal{CD}(V)$. Let $x_1, x_2, x_3, x_4 \in V$ be placed on a circle in clockwise order. Let $E \in \mathcal{CD}(V)$. For a crossing $S = \{x_1x_3, x_2x_4\} \subset E$, let $S_1 = \{x_2x_3, x_4x_1\}$, and $S_2 = \{x_1x_2, x_3x_4\}$. The expansion of E with respect to S is defined as a replacement of E with $E_1 = (E \setminus S) \cup S_1$ or $E_2 = (E \setminus S) \cup S_2$ (see Figure 1). In this procedure, E is called the predecessor of E_1

Figure 1: The expansion of a chord diagram.

and E_2 , and E_1 and E_2 are called the *successors* of E. A chord of a chord diagram is called *isolated*, if it intersects no other chord.

For $E \in \mathcal{CD}(V)$, let us denote the number of 2-crossings of E by c(E). Let E' be a successor of E such that $E' = (E \setminus S) \cup S'$, where S is an original 2-crossing and S' is a pair of additional chords.

We claim that c(E') < c(E). Indeed, for $e \in E \cap E'$, let t (resp. t') be the number of chords of S (resp. S') intersecting e.

It is not difficult to see that if $t \leq 1$ then we have t' = t, and if t = 2 then we have t' = 2 or t' = 0. Hence, we have $t' \leq t$. Since S is a crossing of E which is removed in E', we have c(E') < c(E).

Lemma 1. Let $E \in \mathcal{CD}(V)$ be a chord diagram. Then beginning from E, the resulting mutiset of nonintersecting chord diagrams generated by a maximal set of expansions is uniquely determined.

Proof. We proceed by induction on the number of crossings c of a chord diagram E.

If c = 0 or 1, there is nothing to prove. Let $c \ge 2$ and let c(E) = c. By inductive hypothesis, for a chord diagram E' with $c(E') \le c-1$, we define $\mathcal{NCD}(E')$ as the resulting multisets of nonintersecting chord diagrams generated by E'. Moreover, for a set of chord diagrams \mathcal{E} such that $E' \in \mathcal{E}$ with $c(E') \le c-1$, let us denote $\mathcal{NCD}(\mathcal{E}) = \bigcup_{E' \in \mathcal{E}} \mathcal{NCD}(E')$.

Let S_1 and S_2 be two 2-crossings of E, and let E_{i1} and E_{i2} be two successors of E by an expansion with respect to S_i for i = 1, 2. Let $\mathcal{E}_i = \{E_{i1}, E_{i2}\}$ for i = 1, 2. What we want to show is that $\mathcal{NCD}(\mathcal{E}_1) = \mathcal{NCD}(\mathcal{E}_2)$.

<u>Case 1.</u> $S_1 \cap S_2 = \emptyset$.

For E_{11} and E_{12} , by an expansion with respect to S_2 , we have a set \mathcal{E}' of four chord diagrams. Then we have $\mathcal{NCD}(\mathcal{E}_1) = \mathcal{NCD}(\mathcal{E}')$. In the same way, for E_{21} and E_{22} , by an expansion with respect to S_1 , we have \mathcal{E}' , and we have $\mathcal{NCD}(\mathcal{E}_2) = \mathcal{NCD}(\mathcal{E}')$. Hence, we have $\mathcal{NCD}(\mathcal{E}_1) = \mathcal{NCD}(\mathcal{E}_2)$. <u>Case 2.</u> $S_1 \cap S_2 \neq \emptyset$.

We may assume $S_1 = \{e_0, e_1\}$ and $S_2 = \{e_0, e_2\}$, where $e_i = x_i y_i$ for $0 \leq i \leq 2$. Let $V_0 = \{x_0, x_1, x_2, y_0, y_1, y_2\}$ and let $E' = E \setminus \{e_0, e_1, e_2\}$. Beginning from \mathcal{E}_i with i = 1, 2, let us consider expansions with respect to a crossing induced by V_0 .

<u>Case 2.1.</u> e_1 and e_2 are not crossing.

We may assume $x_0, x_1, x_2, y_0, y_2, y_1$ are placed on a circle in clockwise order. By iterating possible expansions, not depending on the order of the expansions, we always have a set of four chord diagrams $\mathcal{E}' = \{ E' \cup \{x_0x_1, x_2y_0, y_2y_1\}, E' \cup \{x_0x_1, x_2y_1, y_0y_2\}, E' \cup \{x_0y_1, x_1y_2, x_2y_0\}, E' \cup \{x_0y_1, x_1x_2, y_0y_2\} \}.$

<u>Case 2.2.</u> e_1 and e_2 are crossing.

We may assume x_0 , x_1 , x_2 , y_0 , y_1 , y_2 are placed on a circle in clockwise order. By iterating possible expansions, not depending on the order of the expansions, we always have a set of five chord diagrams $\mathcal{E}' = \{ E' \cup \{x_0x_1, x_2y_0, y_1y_2\}, E' \cup \{x_0y_2, x_1x_2, y_0y_1\}, E' \cup \{x_0y_0, x_1x_2, y_1y_2\}, E' \cup \{x_0y_2, x_1y_1, x_2y_0\} \}$.

In any case, we have $\mathcal{NCD}(\mathcal{E}_i) = \mathcal{NCD}(\mathcal{E}')$ for i = 1, 2, as required.

Let us denote the multiset of nonintersecting chord diagrams generated by $E \in \mathcal{CD}(V)$ by $\mathcal{NCD}(E)$. For $E \in \mathcal{CD}(V)$, let us define f(E) as the cardinality of $\mathcal{NCD}(E)$ as a multiset.

Example 2. Let C_n be an *n*-crossing. Then we have $f(C_2) = 2$, $f(C_3) = 5$ and $f(C_4) = 16$. (See Figure 2.)

A background of expansions of a chord diagram is Ptolemy's theorem and its generalization. For two points x, y on a circle, let \overline{xy} be the length of a chord xy. Ptolemy's theorem states that if $E = \{x_1x_3, x_2x_4\}$ itself is a 2-crossing, then we have $\overline{x_1x_3} \cdot \overline{x_2x_4} = \overline{x_2x_3} \cdot \overline{x_4x_1} + \overline{x_1x_2} \cdot \overline{x_3x_4}$. In other words, we have

$$\prod_{e \in E} \overline{e} = \prod_{e \in E_1} \overline{e} + \prod_{e \in E_2} \overline{e}, \tag{1}$$

where E_1 and E_2 are two successors of E. In general, for a given $E \in \mathcal{CD}(V)$, by iterating expansions with applications of Ptolemy's theorem, we have

$$\prod_{e \in E} \overline{e} = \sum_{E' \in \mathcal{NCD}(E)} \prod_{e \in E'} \overline{e}.$$
(2)

If E is a 3-crossing, the equation (2) is known as Fuhrmann's Theorem ([2]).

2 Main Results

For two nonnegative integers k and n with $k \leq n$, we define A(n, k) as a chord diagram of order n + 1, in which there is an n-crossing E_0 with an extra chord e such that e crosses

Figure 2: Multisets of nonintersecting chord diagrams generated by a 2-crossing(upper), a 3-crossing(middle) and a 4-crossing (lower).

exactly k chords of E_0 . Note that A(n-1, n-1) is simply an n-crossing, and that A(n, 0) is a union of an n-crossing and an isolated chord. Hence, we have f(A(n-1, n-1)) = f(A(n, 0)). The values of f(A(n, k)) for small nonnegative integers n and k are shown in Table 1.

Table 1:
$$f(A(n,k))$$
 for $0 \le k \le n \le 6$.

$n \setminus k$	0	1	2	3	4	5	6
0	1						
1	1	2					
2	2	4	5				
3	5	10	14	16			
4	16	32	46	56	61		
5	61	122	178	224	256	272	
6	272	544	800	1024	1202	1324	1385

A permutation σ of $[n] = \{1, 2, ..., n\}$ is called an *alternating permutation* if $(\sigma(i) - \sigma(i-1))(\sigma(i+1) - \sigma(i)) < 0$ for $2 \leq i \leq n-1$ (see [9] for an excellent survey of alternating permutations). An alternating permutation σ is called an *up-down permutation* (resp. *down-up permutation*) if $\sigma(1) < \sigma(2)$ (resp. $\sigma(1) > \sigma(2)$). Let $\mathcal{UDP}(n, k)$ denote the set of up-down permutations of [n] with the first term at most k. Similarly, let $\mathcal{DUP}(n, k)$ denote the set of down-up permutations of [n] with the first term at least n - k + 1. Note that by definition, there is a natural bijection from $\mathcal{UDP}(n, k)$ to $\mathcal{DUP}(n, k)$.

The main result of the paper is the following theorem.

Theorem 3. For $0 \leq k \leq n$, there is a bijection from $\mathcal{NCD}(A(n,k))$ to $\mathcal{UDP}(n+2,k+1)$.

For $0 \leq k \leq n$, Entringer number $E_{n,k}$ is defined as the number of down-up permutations of [n + 1] with the first term k + 1 [1], which equals the cardinality of $\mathcal{UDP}(n,k)$. Since for $n \geq 1$, $E_{n+1,1}$ equals Euler number E_n , the number of down-up permutations of [n], we have the following Corollary.

Corollary 4. For $0 \leq k \leq n$, we have $f(A(n,k)) = E_{n+2,k+1}$. In particular, we have $f(A(n,0)) = E_{n+1}$.

Several combinatorial interpretations for Entringer numbers are known ([4, 5, 6, 7, 8]). The generating function for Entringer number is treated in [3] as an exercise, Exer. 6.75. According to [3], it follows that

$$\sum_{n \ge 0} \sum_{k \ge 0} E_{n+k,k} \frac{x^n}{n!} \frac{y^k}{k!} = \frac{\cos x + \sin y}{\cos(x+y)}.$$

By Corollary 4, we have

$$\sum_{n \ge 0} \sum_{k \ge 0} f(A(n+k,k)) \frac{x^n}{n!} \frac{y^k}{k!} = \frac{\partial^2}{\partial x \partial y} \left(\sum_{n \ge 0} \sum_{k \ge 0} E_{n+k,k} \frac{x^n}{n!} \frac{y^k}{k!} \right)$$
$$= \frac{\cos x + \sin y}{\cos(x+y)(1-\sin(x+y))}.$$

The electronic journal of combinatorics 23(1) (2016), #P1.7

Figure 3: Two successors of A(n, k), where n = 7 and k = 3.

3 Proof of Theorem 3

For two chord diagrams $F_i \in \mathcal{CD}(V_i)$ for i = 1, 2, let $F'_i \in \mathcal{CD}(V'_i)$ be a chord diagram such that F'_i consists of the set of all nonisolated chords of F_i . Suppose that $|F'_1| = |F'_2|$. Let $V'_i = \{v'_{i,0}, v'_{i,1}, \ldots, v_{i,2n'-1}\}$, and the vertices are placed on a circle in clockwise order for each i = 1, 2. Suppose that $v'_{1,\alpha}v'_{1,\beta} \in F'_1$ holds if and only if $v'_{2,\alpha}v'_{2,\beta} \in F'_2$ holds. Then we say that F'_1 and F'_2 are isomorphic, and furthermore we say that F_1 and F_2 are isomorphic as well.

In order to prove Theorem 3, we will recursively construct a bijection from $\mathcal{NCD}(A(n,k))$ to $\mathcal{UDP}(n+2, k+1)$ for $0 \leq k \leq n$.

Firstly, we will show a recurrence for $\mathcal{NCD}(A(n,k))$, which is a key ingredient for the proof of Theorem 3.

Lemma 5. For $1 \leq k \leq n$, we have a bijection between $\mathcal{NCD}(A(n,k))$ and $\mathcal{NCD}(A(n,k-1)) \cup \mathcal{NCD}(A(n-1,n-k))$. In particular, we have f(A(n,k)) = f(A(n,k-1)) + f(A(n-1,n-k)).

Proof. Let *E* be a chord diagram isomorphic to A(n, k). We may assume *E* contains an *n*-crossing E_0 and an extra edge e = xz such that *e* crosses exactly *k* edges of E_0 .

Let f = yw be an edge of E_0 such that (1) x, y, z, w are placed on a circle in clockwise order and (2) there is no endvertex of E_0 between x and y. (See Figure 3.)

Put $S = \{xz, yw\}$. Let us expand E with respect to S. We have two successors E_1, E_2 of E, where $E_1 = (E \setminus S) \cup \{yz, wx\}$ and $E_2 = (E \setminus S) \cup \{xy, zw\}$. Then E_1 is isomorphic to A(n, k-1) and E_2 is isomorphic to A(n-1, n-k). Hence, we have a bijection between $\mathcal{NCD}(A(n, k))$ and $\mathcal{NCD}(A(n, k-1)) \cup \mathcal{NCD}(A(n-1, n-k))$.

For the sake of completeness, we recall the well-known recurrence relation for $\mathcal{UDP}(n, k)$. Lemma 6. For $1 \leq k \leq n$, we have a bijection between $\mathcal{UDP}(n+2, k+1)$ and $\mathcal{UDP}(n+2, k) \cup \mathcal{UDP}(n+1, n-k+1)$.

Proof. By the definition, $\mathcal{UDP}(n+2, k+1)$ is a set of up-down permutations of [n+2] with the first term at most k+1. $\mathcal{UDP}(n+2, k+1)$ is partitioned into $\mathcal{UDP}(n+2, k)$ and $\mathcal{T} = \mathcal{UDP}(n+2, k+1) \setminus \mathcal{UDP}(n+2, k)$, where \mathcal{T} is a set of up-down permutations of [n+2] with the first term k+1.

For $\sigma \in \mathcal{T}$, let us remove the first term of σ . The resulting permutation σ' is a downup permutation of $[n+2] \setminus \{k+1\}$ with the first term at least k+2. Hence, there is a natural bijection from \mathcal{T} to $\mathcal{DUP}(n+1, n-k+1)$, which has a one-to-one correspondence to $\mathcal{UDP}(n+1, n-k+1)$.

Now, we return to the proof of Theorem 3.

For n = 0 and k = 0, a set of a single chord of $\mathcal{NCD}(A(0,0))$ clearly corresponds to a single permutation 12 of $\mathcal{UDP}(2,1)$.

Let $n \ge 1$ and $k \ge 0$. By the inductive hypothesis, we have a bijection from $\mathcal{NCD}(A(n',k'))$ to $\mathcal{UDP}(n'+2,k'+1)$ for n' < n or n' = n and k' < k.

For k = 0, A(n, 0) is isomorphic to A(n - 1, n - 1). Hence, there is a bijection from $\mathcal{NCD}(A(n, 0))$ to $\mathcal{NCD}(A(n - 1, n - 1))$. On the other hand, let $\sigma \in \mathcal{UDP}(n + 2, 1)$. By removing the first term of σ , we have a down-up permutation σ' of $[n + 2] \setminus \{1\}$. Hence, there is a natural bijection from $\mathcal{UDP}(n + 2, 1)$ to $\mathcal{DUP}(n + 1, n)$, which has a one-to-one correspondence to $\mathcal{UDP}(n + 1, n)$. Therefore, we have a bijection from $\mathcal{NCD}(A(n, 0))$ to $\mathcal{UDP}(n + 2, 1)$.

Let $k \ge 1$. In this case, by Lemma 5 and Lemma 6, we can recursively construct a bijection from $\mathcal{NCD}(A(n,k))$ to $\mathcal{UDP}(n+2,k+1)$.

This completes the proof.

Acknowledgments

I thank an anonymous reviewer for his/her valuable suggestions. In particular, the proof of the main theorem was greatly simplified.

References

- R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw. Arch. Wisk. 14 (1966), 241–246.
- [2] W. Fuhrmann, Synthetische Beweise Planimetrischer Sätze, Berlin, 1890.
- [3] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, MA, 1994.
- [4] Y. Gelineau, H. Shin, and J. Zeng, Bijections for Entringer families, Europ. J. Combinatorics, 32 (2011), 100–115.
- [5] A. G. Kuznetsov, I. M. Pak, and A. E. Postnikov, Increasing trees and alternating permutations, Uspekhi Mat. Nauk, 49 (1994), 79–110.

- [6] J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the boustrophedon transform, J. Combinatorial Theory, Series A, **76** (1996), 44–54.
- [7] C. Poupard, De nouvelles significations énumératives des nombres d'Entringer, Discrete Math., 38 (1982), 265–271.
- [8] C. Poupard, Two other interpretations of the Entringer numbers, Europ. J. Combinatorics, 18 (1997), 939–943.
- [9] R. P. Stanley, A survey of alternating permutations, Comtemporary Mathematics, 531 (2010), 165–196.