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Abstract

We prove that a k-tree can be viewed as a subgraph of a special type of (k+ 1)-
tree that corresponds to a stacked polytope and that these “stacked” (k + 1)-trees
admit representations by orthogonal spheres in Rk+1. As a result, we derive lower
bounds for Colin de Verdière’s µ of complements of partial k-trees and prove that
µ(G) + µ(G) > |G| − 2 for all chordal G.

1 Introduction

Yves Colin de Verdière’s graph invariant µ is defined as the maximum nullity over a
special class of real symmetric matrices [4]. Among its many interesting properties are
that µ is minor monotone and µ(G) 6 3 if and only if G is planar. These properties are
collected in a recent survey by László Lovász [17] based on an earlier paper with Hein van
der Holst and Alexander Schrijver [28].

Andrew Kotlov, László Lovász, and Santosh Vempala showed close connections be-
tween µ and certain geometric representations of graphs, including vector representations
and sphere representations [15]. They also conjectured that µ(G) + µ(G) > |G| − 2 for
all graphs G. Such an inequality for a graph parameter defined using the maximum nul-
lity over a class of matrices has been called the “graph complement conjecture” for that
parameter [1]. Inequalities that bound p(G) + p(G) or p(G)p(G) for some parameter p
are also called Nordhaus-Gaddum type for the authors of early results on the chromatic
number of graphs [22]. Recent examples include tw(G) + tw(G) > |G| − 2 [7, 12], where
tw(G) is the tree-width of G, and upper bounds involving a multiple of |G| for Colin
de Verdière type parameters [2]. Leslie Hogben has written a nice survey of Nordhaus-
Gaddum problems for Colin de Verdière type parameters, variants of tree-width, and
related parameters [10].
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In this article, we obtain lower bounds for µ of complements of partial k-trees. In
particular, we obtain one bound for general k-trees and another slightly better one for
k-trees that correspond to stacked polytopes. The study of these “stacked” k-trees is
also suggested by recent calculations of µ for chordal graphs by Shaun Fallat and the
first author [8], which in turn were based on similar patterns appearing in the study of
µ for split graphs by Felix Goldberg and Abraham Berman [9]. We use the results and
connections established by Kotlov, Lovász, and Vempala in order to prove these lower
bounds. Finally, we combine our new lower bounds with the chordal calculations to prove
that µ(G) + µ(G) > |G| − 2 for all chordal G.

Besides the work already cited, polytopes and sphere and vector representations have
featured prominently in other recent work on µ. In particular, Ross Kang, László Lovász,
Tobias Müller, and Edward Scheinerman used sphere representations by tangent spheres1

(coin representations) and properties of µ for planar graphs to study dot product represen-
tations [13]. As for polytopes, Ivan Izmestiev has studied connections between nullspace
representations and skeletons of convex polytopes [11]. In light of those results, perhaps a
natural follow-up to our work would be to consider sphere representations and skeletons
of polytopes.

In Section 2 we introduce k-trees and stacked k-trees. In Section 3 we define µ and
detail how µ is related to vector and sphere representations. In Section 4 we prove our
main results by combining sphere representations and stacked k-trees.

2 Stacked k-Trees

A clique is a subgraph isomorphic to the complete graph Kn on n vertices for some n (note
that we do not assume a clique to be maximal). A vertex v of a graph is simplicial if it,
together with its neighbors, N(v), form a clique. A graph is chordal if it has no induced
cycles of length at least four. All chordal graphs have at least one simplicial vertex [5].

A tree decomposition of a graph G = (V,E) consists of a tree T and a family of subsets
of vertices of G, {Xi}, one for each vertex of T , such that

•
⋃

iXi = V ;

• if uv ∈ E there exists a vertex i of T such that u ∈ Xi and v ∈ Xi; and

• for all vertices i, j, and k of T , if j is on the path from i to k, then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition is one less than the size of a largest Xi. The treewidth
tw(G) of G is the minimum width over all tree decompositions of G.

A k-tree is a (chordal) graph constructed inductively by starting with a complete graph
on k + 1 vertices and connecting each new vertex to the vertices of an existing clique on
k vertices. The maximal cliques of a k-tree are all size k + 1 [24].

1For interested readers, Lovász also has a helpful survey of many types of geometric graph represen-
tations [19] as an update of a paper with Katalin Vesztergombi [20].
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A graph that is a subgraph of a k-tree is a partial k-tree. The treewidth of a graph G
can also be characterized as the smallest k such that G is a partial k-tree [3].

For vertices x and y of a graph G, an x, y-separator is a subset S such that x and y are
in different connected components of G−S. A separator is a subset S of G such that G−S
has more connected components than G does. Chordal graphs are those graphs whose
minimal separators are cliques [6]. It is straightforward that any minimal x, y-separator
of a subgraph S of G is contained in a minimal x, y-separator of G.

Theorem 1 ([25, Theorem 1.1]). A graph G is a k-tree if and only if G is connected, G
has a k-clique but no k + 2 clique, and every minimal x, y-separator of G is a k-clique.

A k-simplex is a k-dimensional convex hull of k + 1 points. Stacked polytopes are
formed by starting from a simplex and then repeatedly gluing simplices onto the faces
of the polytope. A k-tree is the 1-skeleton of a stacked polytope if and only if no three
(k + 1)-vertex cliques have k vertices in common [14].

If H is a clique on n vertices of a graph G, we define the degree of H in G to be the
number of distinct n+1 cliques of G of which H is a subgraph (note this definition agrees
with the usual definition for the degree of a single vertex). A clique of degree one will be
called pendant, and a clique of degree zero is maximal. Using these definitions, a k-tree
is the graph of a stacked polytope if and only if each k-clique has degree at most two. We
will call a chordal graph with treewidth k stacked if each k-clique has degree at most two.

Lemma 2. If T is a stacked k-tree, then each clique on at most k−1 vertices is contained
in at least two pendant k-cliques of T .

Proof. Fix a value for k. We will prove that each (k − 1)-clique is contained in exactly
two pendant k-cliques, and the result will follow from the fact that each clique on at most
k − 1 vertices is contained in a (k − 1)-clique.

The result is true for Kk+1 since every k-clique is pendant. Assume the result is true
for all stacked k-trees on n > k+1 vertices and let T be a stacked k-tree on n+1 vertices.
Let v be a simplicial vertex of T . Then the induction hypothesis applies to T−v and N(v)
is the only k-clique whose degree differs in T −v and T . Also, in T −v, each (k−1)-clique
in N(v) is contained in at least two pendant k-cliques, one of which is N(V ). In T , each
(k − 1)-clique C of N(v) can no longer count N(v) as a pendant k-supergraph, however,
C is now contained in the pendant k-clique v ∪ C. Note that each k-clique of T that
contains v is pendant. So, those (k − 1)-cliques in T that are not subgraphs of T − v,
contain v and are therefore in two pendant k-cliques, namely, {v, x} ∪ C and {v, y} ∪ C
where N(V )− C = {x, y}.

Proposition 3. Suppose that G is a chordal graph with k 6 tw(G) 6 k + 1. If tw(G) =
k + 1, suppose further that G is stacked. Then there exists a stacked (k + 1)-tree H such
that G is a subgraph of H.

Proof. Fix a value for k. If G has at most k+ 2 vertices, then H = Kk+2 suffices. Assume
next that G has more than k+ 2 vertices and that the result holds for all graphs on fewer
vertices.

the electronic journal of combinatorics 23(1) (2016), #P1.9 3



If G is a (k+ 1)-tree, we are done. Suppose G is not a (k+ 1)-tree. If tw(G) = k, then
since G is chordal, G has a minimal separator on at most k vertices. If tw(G) = k+ 1, by
Theorem 1 G has a minimal x, y-separator, and thus a minimal separator, on at most k
vertices. Thus G can be written as the union of two strictly smaller chordal subgraphs G1

and G2 where S = G1∩G2 is a clique on at most k vertices and there are no edges between
G1 − S and G2 − S in G. By the induction hypothesis, there exist stacked (k + 1)-trees
H1 and H2 containing G1 and G2, respectively. Let S1 and S2 denote the copies of S in
G1 and G2, respectively.

For each i, add k + 1 − |S| > 0 new vertices to Hi in the following way: make each
new vertex, by Lemma 2, adjacent to a pendant (k + 1)-clique including both Si and
the previously added vertices. The result will be a new graph H ′

i with a new pendant
(k + 1)-clique S ′

i consisting of the new vertices and Si. Let H be the union of H ′
1 and H ′

2

along S ′
1 and S ′

2 preserving the identification of S1 and S2.
By construction and since S ′

1 and S ′
2 were pendant, H is a stacked (k + 1)-tree con-

taining G.

A linear k-tree is a k-tree that is either complete or that has exactly two vertices with
degree k. The proper pathwidth of a graph G is the smallest k such that G is a subgraph
of a linear k-tree. One might hope that a result similar to Proposition 3 is true for linear
k-trees as well. In general, however, k-trees (even 1-trees) can have arbitrarily large proper
pathwidth [27], and thus in general cannot be embedded in linear (k + 1)-trees.

For each k > 1, let Tk be the unique infinite k-tree where each k-clique has degree
two.

Proposition 4. Each finite stacked k-tree is a subgraph of Tk.

Proof. The result is clearly true for Kk+1. Let G be a stacked k-tree on k + 2 or more
vertices, and assume the result holds for all such graphs on one fewer vertex. Let v be a
simplicial vertex of G. By the induction hypothesis, G− v is a subgraph of Tk. Since G
is stacked and |G| > k+ 1, the vertices of N(v) have exactly two common neighbors in G
and exactly one common neighbor in G− v. Thus the vertex of Tk that is adjacent to all
the vertices of N(v) but not part of the image of G− v may be identified with v.

3 Vector and Sphere Representations

In this section, we present µ and a parameter ν associated with vector and sphere repre-
sentations.

For a simple graph (no loops or multiple edges) G = (V,E) on vertices 1, 2, . . . , n, the
Colin de Verdière number of G, µ(G), is the maximum corank among all symmetric n×n
matrices M = [mij] satisfying the following properties:

M1: mij < 0 if ij ∈ E and mij = 0 if ij /∈ E (diagonal entries are not restricted);

M2: M has exactly one negative eigenvalue; and
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M3: If X = [xij] is a symmetric n × n matrix with zero diagonal such that xij = 0 for
ij ∈ E and MX = 0, then X = 0.

Condition M3 is often called the Strong Arnold Property or Strong Arnold Hypothesis.
For the same graph G, let ν(G) be the smallest dimension d such that there exists a

vector labeling {ui}i∈V in Rd that satisfies the following conditions:

U1: for i 6= j, the dot product ui · uj = 1 if ij ∈ E and ui · uj < 1 if ij /∈ E (so ui · ui is
not explicitly restricted); and

U2: if X = [xij] is a symmetric n-by-n matrix such that xij = 0 for ij /∈ E and∑
j xijuj = 0 for every node i, then X = 0.

We will call such a labeling a vector representation2 of G [23], and ν is related to µ by
the following theorem:

Theorem 5 ([15, Theorem 3.3]). For every graph G different from K2, ν(G) = n−µ(G)−
1.

Given (d− 1)-spheres S1 and S2 in Rd, define the function

a(S1, S2) =
ρ2 − (r1 + r2)

2

ρ2 − (r1 − r2)2

where r1 and r2 are the respective radii and ρ is the distance between the centers of S1

and S2. Then a(S1, S2) = a(S2, S1), and a(S1, S2) is preserved by conformal mappings
Rd → Rd. A similar definition for caps in Sd (spheres together with one of the two regions
in Sd that they bound) means that a(S1, S2) is also preserved by conformal mappings
Rd → Sd [15, p. 502].

If S1 and S2 intersect at an angle α, then ρ2 = r21 + r22 − 2r1r2 cosα. Thus S1 and S2

are orthogonal spheres, which we will denote by S1 ⊥ S2, if and only if a(S1, S2) = −1 if
and only if ρ2 = r21 + r22.

An orthogonal sphere representation of a graph G = (V,E) in Rd is a labeling of each
vertex i with a (d− 1)-dimensional sphere Si so that, for i 6= j, a(Si, Sj) = −1 if ij ∈ E
and a(Si, Sj) > −1 if ij /∈ E. Orthogonal cap representations in Sd are defined similarly,
and, by the remark above, given an orthogonal sphere labeling of G in Rd, one can project
each sphere into Sd (chosen large enough so that no interior of a sphere is mapped to a
hemisphere or more) [15, p. 503]. Moreover, an orthogonal cap representation of a graph
in Sd yields a vector labeling of G in Rd+1 by associating each cap with the center of the
unique sphere in Rd+1 that is orthogonal to the unit sphere and whose intersection with
Sd (viewed as the unit sphere) is the cap. Thus

2This type of vector representation is similar to a dot product representation, which requires a modified
form of the first condition (ui · uj > 1 if ij ∈ E) but does not require the second condition. Orthogonal
vector representations, such as those famously used in Lovász’s calculation of the Shannon capacity of
the cycle C5 [18], are significantly different and are more closely related to the other Colin de Verdière
parameter.
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Theorem 6 ([15, Lemma 6.2]). If a graph G has an orthogonal sphere representation in
Rd, then there exists a vector labeling of G in Rd+1 satisfying condition U1.

Proposition 7. Let G be a k-tree. Suppose that a vector labeling {ui} of G satisfies
condition U1 and the vectors corresponding to the vertices of any clique of G are linearly
independent. Then {ui} is a vector representation of G.

Proof. The result is true for a graph on one vertex as the corresponding vector must
be nonzero. Suppose the result holds for k-trees on n vertices and let G be a k-tree
with n + 1 vertices. Let X = [xij] be a symmetric n-by-n matrix such that xij = 0 for
ij /∈ E and

∑
j xijuj = 0 for every vertex i. Let v be a simplicial vertex of G, so that

the neighbors of v form a clique, and thus the vectors corresponding to those vertices are
linearly independent by assumption. Therefore,∑

j

xvjuj =
∑
vj∈E

xvjuj = 0

implies that xvj = 0 for all j. Since X is symmetric, both the row and column of X
corresponding to v are zero. Applying the induction hypothesis to G − v, {ui}i 6=v, and
the submatrix of X obtained by deleting the row and column corresponding to v, we may
conclude that X = 0, as desired.

Corollary 8. Let G be a k-tree other than K2. If {ui} is a vector labeling in Rd of G
satisfying condition U1 such that ‖ui‖ > 1 for each i, then µ(G) 6 n− d− 1.

Proof. The Gram matrix of the ui corresponding to a clique C in G can be written as
the sum of a positive definite diagonal matrix and the (positive semidefinite) matrix of
all ones, thus has full rank, and so the ui corresponding to C are linearly independent.
The result now follows from Theorem 6 and Proposition 7.

4 Main Results

We are now in a position to bound µ for complements of k-trees by constructing orthogonal
sphere representations.

Lemma 9. Let S1 and S2 be nontrivial n-spheres in Rn+1 and let P be a copy of Rk in
Rn+1 for some k > 1 such that S1 ∩ P and S2 ∩ P are nontrivial. Suppose that either
S1 ⊥ S2 or (S1 ∩ P ) ⊥ (S2 ∩ P ). Then S1 ⊥ S2 and (S1 ∩ P ) ⊥ (S2 ∩ P ) if and only if P
contains either the center of S1 or the center of S2.

Proof. Let r1, r
′
1, r2, and r′2 and c1, c

′
1, c2, and c′2 be the radii and centers of S1, S1∩P , S2,

and S2∩P , respectively. Then di = ‖ci− c′i‖ gives the distance from ci to P , and we have
r2i = d2i +(r′i)

2 for each i. Set ρ = ‖c1−c2‖ and ρ′ = ‖c′1−c′2‖. Then ρ2 = (d1±d2)2+(ρ′)2

(with ± depending on how c1 and c2 relate to P ), so that

ρ2 − r21 − r22 = (d1 ± d2)2 + (ρ′)2 − (r′1)
2 − d21 − (r′2)

2 − d22 = (ρ′)2 − (r′1)
2 − (r′2)

2 ± 2d1d2.

Thus if either S1 ⊥ S2 or (S1 ∩ P ) ⊥ (S2 ∩ P ), the other can only happen if either d1 or
d2 is zero.
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S1

S2

S3

P

Figure 1: Three orthogonal circles as in Lemma 10.

Lemma 10. Given orthogonal n-spheres S1 and S2 in Rn+1, S1 ∩S2 is an (n− 1)-sphere
that lies in a unique n-dimensional hyperplane H. A third n-sphere S3 is orthogonal to
both S1 and S2 if and only if the center of S3 lies on H and S1 ∩ S2 and S3 ∩ H are
orthogonal (n− 1)-spheres.

Proof. Since S1 and S2 are orthogonal, S1∩S2 is nonempty and does not consist of a single
point. Thus S1 ∩ S2 is an (n− 1)-sphere lying in a unique hyperplane H of dimension n.
Since S1 ∩H = S2 ∩H = S1 ∩ S2, the result follows by applying Lemma 9 to S3 and S1

and to S3 and S2.

Lemma 11. Given n mutually orthogonal (n−1)-spheres S1, . . . , Sn in Rn,
⋂

i Si consists
of two points. Let L be the line through those two points and let U be the union of the
interiors of the spheres. Given any point p on L \ clU , there exists an (n − 1)-sphere,
S(p), that is orthogonal to each Si and has center p. Furthermore, the radius of S(p)
approaches 0 as p approaches U along L.

Proof. We use induction on n. In R, a single 0-sphere consists of two points c ± r, and
given any point p outside of the interval [c − r, c + r] there is a positive solution to
r21 = (c − p)2 − r2. Assume the result is true for all n 6 k for some k, and suppose
n = k + 1. Suppose we have mutually orthogonal k-spheres S1, . . . , Sk+1 in Rk+1. By
Lemma 10, Sk ∩ Sk+1 defines a hyperplane H ≈ Rk. For each i 6 k, let Ri = Si ∩ H.
Note that Rk = Sk ∩ Sk+1 and therefore

⋂
{Ri : i 6 k} =

⋂
{Sj : j 6 k + 1}. Again by

Lemma 10, R1, . . . , Rk are mutually orthogonal (k − 1)-spheres in H. By the induction
hypothesis,

⋂
{Ri : i 6 k} consists of two points. Let L and U be as in the statement of

the Lemma (for the Si). By definition, L ⊂ H. Let p ∈ L \ clU = L \ cl(U ∩H). Again
by the induction hypothesis, there exists a k − 1-sphere S ′(p) with center at p such that
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S ′(p) is orthogonal to each Ri. Let S(p) be the k-sphere with the same center and radius
as S ′(p). Denote the radii of S(p) and S1 as rp and r1 respectively. Let c1 be the center
of S1 and let ρp be the distance between p and c1. Since S(p) and S1 are orthogonal
r2p + r21 = ρ2p. Hence as p approaches U along L, p approaches S1, ρp approaches r1, and
therefore rp approaches 0.

Proposition 12. Each Tk has an orthogonal sphere representation in Rk with spheres of
positive radius.

Proof. We construct a nested sequence of representations, (S i
k), of finite subtrees of Tk

inductively and then we set Sk =
⋃∞

i=1 S i
k. Let T 0

k = Kk+1 and let T i+1
k be the graph

obtained from T i
k by adding a new vertex to each pendant k-clique. Assuming we have

defined a representation S i
k for T i

k, for a vertex v of T i
k let s(v) be the corresponding

(k − 1)-sphere in S i
k and let D(v) be the closed k-ball with boundary s(v).

Represent T 0
k by starting with a set, S0

k , of k+1 mutually orthogonal nontrivial (k−1)-
spheres in Rk. Note that for each pendant k-clique C of T 0

k there exists a point p(C) of⋂
v∈C s(v) that is not in

⋃
v/∈C D(v). Note also that distinct elements of S0

k are either
orthogonal or disjoint.

Assume that we have a representation S i
k for T i

k such that for each pendant k-clique C
of T i

k there exists a point p(C) of
⋂

v∈C s(v) that is not in
⋃

v/∈C D(v) and further suppose
the elements of S i

k are either orthogonal or disjoint. Then for each pendant clique Cj there
exists an open neighborhood U(Cj) of p(Cj) that does not intersect

⋃
v/∈Cj

D(v). We may

choose the U(Cj) to be pairwise disjoint. By Lemma 11, for each j choose a new sphere
Sj inside U(Cj) orthogonal to each element of {s(v) : v ∈ Cj}. Let S i+1

k = S i
k ∪ {Sj}j.

By construction and by our choices of the U(Cj), S i+1
k represents T i+1

k , and two distinct
elements of S i+1

k are either orthogonal or disjoint. Let C be a pendant k-clique of T i+1
k and

let w /∈ C be the additional vertex of the maximal clique containing C. By Lemma 11,⋂
v∈C s(v) consists of two points, one of which, p(C), does not lie in the interior of D(w).

By our choice of U((C ∩ T i
k) ∪ {w}), p(C) is not in D(v) for any v not in C.

Corollary 13. If G is the complement of a partial k-tree, then µ(G) > n− k − 3.

Proof. By assumption, G is a subgraph of a k-tree G′. Thus G′ is a subgraph of a stacked
(k+ 1)-tree, H, by Proposition 3. If H 6= K2, then µ(H) = n− ν(H)− 1, by Theorem 5.
If H = K2, then µ(H) = 1 > −2 [17, Example 2.7]. By Proposition 3, Proposition 4, and
Proposition 12, H has an orthogonal sphere representation in Rk+1. By Theorem 6 and
Proposition 7, H has a vector representation in Rk+2. Thus ν(H) 6 k + 2.

Corollary 14. If G is the complement of a subgraph of a stacked k-tree, then µ(G) >
n− k − 2.

Proof. The proof is the same as that of Corollary 13 except now H may be assumed to
be stacked.

Theorem 15 ([8, Theorem 5.7]). If G is a stacked chordal graph, then µ(G) = tw(G). If
G is a chordal graph that is not stacked, then µ(G) = tw(G) + 1.
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U(S)

S

U(D)

D

Figure 2: First three stages of construction for T2 in Proposition 12.

Proposition 16. For a chordal graph G, µ(G) + µ(G) > n− 2.

Proof. Let tw(G) = k. Then G is a partial k-tree. If G is stacked, then µ(G) = k by
Theorem 15 and µ(G) > n−k−2 by Corollary 14. If G is not stacked, then µ(G) = k+1
by Theorem 15 and µ(G) > n− k − 3 by Corollary 13.
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