
Decompositions of complete graphs

into bipartite 2-regular subgraphs

Darryn Bryant∗

Department of Mathematics
University of Queensland

QLD 4072, Australia

db@maths.uq.edu.au

Andrea Burgess†

Department of Mathematical Sciences
University of New Brunswick

100 Tucker Park Rd. P.O. Box 5050
Saint John, New Brunswick

E2L 4L5, Canada

andrea.burgess@unb.ca

Peter Danziger‡

Department of Mathematics
Ryerson University
Toronto, Ontario

M5B 2K3, Canada

danziger@ryerson.ca

Submitted: Aug 26, 2014; Accepted: Mar 11, 2016; Published: Apr 1, 2016

Mathematics Subject Classifications: 05C51, 05C70, 05B30

Abstract

It is shown that if G is any bipartite 2-regular graph of order at most n
2 or at

least n − 2, then the obvious necessary conditions are sufficient for the existence
of a decomposition of the complete graph of order n into a perfect matching and
edge-disjoint copies of G.

1 Introduction

A decomposition of a graph K is a set {G1, G2, . . . , Gt} of subgraphs of K such that
E(G1) ∪ E(G2) ∪ · · · ∪ E(Gt) = E(K) and E(Gi) ∩ E(Gj) = ∅ for 1 6 i < j 6 t. If G
is a fixed graph and D = {G1, G2, . . . , Gt} is a decomposition such that Gi is isomorphic
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to G for i = 1, 2, . . . , t, then D is called a G-decomposition. See [9] for a survey on
G-decompositions, and see [5, 21] for general asymptotic existence results.

This paper concerns G-decompositions of complete graphs in the case where G is a
2-regular graph. See [1] for a survey of results on G-decompositions of complete graphs.
The complete graph of order n is denoted by Kn, the cycle of order n is denoted by Cn,
and the path of order n is denoted by Pn (so Pn has n − 1 edges). If G is 2-regular and
n is even, then there is no G-decomposition of Kn, and it is common to instead consider
decompositions of Kn− I, where Kn− I denotes the graph obtained from Kn by deleting
the edges of a perfect matching. For each positive integer n, define K∗n to be Kn if n is
odd and Kn − I if n is even. The number of edges in K∗n is given by nbn−1

2
c.

If G is a 2-regular graph of order k and there exists a G-decomposition of K∗n (n > 3),
then it is obvious that

3 6 k 6 n and k divides nbn−1
2
c. (1)

If G is a 2-regular graph of order k, then the conditions given in (1) are called the obvious
necessary conditions for the existence of a G-decomposition of K∗n. The following problem
presents itself.

Problem 1: For each 2-regular graph G and each positive integer n satisfying the obvious
necessary conditions, determine whether there exists a G-decomposition of K∗n.

It is known that if G is a cycle, then the obvious necessary conditions are sufficient
for the existence of a G-decomposition of K∗n [4, 18]. However, when G is 2-regular but
is not a cycle, there are cases where the obvious necessary condition are satisfied but no
G-decomposition of K∗n exists. There is no G-decomposition of K∗n in each of the following
cases (see [9] and [10]).

G = C3 ∪ C3 and n = 6, G = C3 ∪ C3 and n = 9, G = C4 ∪ C5 and n = 9,

G = C3 ∪ C3 ∪ C5 and n = 11, G = C3 ∪ C3 ∪ C3 ∪ C3 and n = 12.

If G has order n, then Problem 1 is precisely the well-known Oberwolfach Problem.
See [10, 11, 20] for more information on the Oberwolfach Problem, and see [12] for a
generalisation of the problem.

Problem 1 has been solved for every 2-regular graph of order at most 10 when n is
odd [2], and various results on Problem 1 have been obtained via graph labellings. For
example, in [3] it is shown that if G has order k and is 2-regular with at most three
components, then there exists a G-decomposition of K2k+1, and in [6] it is shown that if
G is bipartite and 2-regular of order k, then there exists a G-decomposition of K2kx+1 for
each positive integer x. Several strong results have also been obtained on Problem 1 for
the case where G consists of disjoint 3-cycles [13, 14]. These results relate to Kirkman
signal sets which are are used in devising codes for unipolar communication, see [15].

In [16], a simple but powerful idea is used to show that if both n and nbn−1
2
c/k are

even, then there is a G-decomposition of K∗n for every bipartite 2-regular graph G of
order k. Our main result, see Theorem 10, extends this result to the case nbn−1

2
c/k is
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odd, except when n
2
< k < n− 2. The special case of this extension where k = n (that is,

the case corresponding to the Oberwolfach Problem) is the main result in [8].

2 Notation and Preliminary Results

For a given graph K, we define the graph K(2) by V (K(2)) = V (K)× Z2 and E(K(2)) =
{{(x, a), (y, b)} : {x, y} ∈ E(K), a, b ∈ Z2}. If F = {G1, G2, . . . , Gt} is a set of graphs

then we define F (2) = {G(2)
1 , G

(2)
2 , . . . , G

(2)
t }. Observe that if F is a decomposition of K,

then F (2) is a decomposition of K(2).
The following result of Häggkvist [16] is a critical ingredient in many of our construc-

tions.

Theorem 1. (Häggkvist [16]) If G is a bipartite 2-regular graph of order 2m, then there

is a G-decomposition of P
(2)
m+1.

Parker [17] has completely settled the problem of decomposing complete bipartite
graphs into paths of uniform length, and we need the following special case of her result.

Theorem 2. (Parker [17]) If r and a are even with r 6 2a − 2, r 6 2b, and r dividing
ab, then there is a Pr+1-decomposition of Ka,b.

We also need the following result of Tarsi on decompositions of complete graphs into
isomorphic paths [19].

Theorem 3. (Tarsi [19]) There is a Pr+1-decomposition of Kv if and only if v > r + 1
and r divides v(v − 1)/2.

For each even r > 2, let Yr denote any graph isomorphic to the graph with vertex set
{v1, v2, . . . , vr+1} and edge set

{vivi+1 : i = 1, 2, . . . , r} ∪ {v1v3} ∪ {vivi+3 : i = 2, 4, . . . , r − 2}

(E(Y2) = {v1v2, v2v3, v1v3}), and let X2r denote the graph obtained from Y
(2)
r by adding

the edges {(v1, 0), (v1, 1)}, {(v2, 0), (v2, 1)}, . . . , {(vr+1, 0), (vr+1, 1)}.

Lemma 4. For each even r > 2, there exists a decomposition of Kr+1 into r−2
2

Hamilton
paths and a copy of Yr.

Proof. Let r > 2 be even and for i = 0, 1, . . . , r let Mi be the matching with edge set
{{x, y} : x 6= y, x+ y = i} in the complete graph with vertex set Zr+1. Then

{M0 ∪M1 ∪M2,M3 ∪M4,M5 ∪M6, . . . ,Mr−1 ∪Mr}

is the required decomposition.

Lemma 5. If r is even, 2 6 r 6 m−1
2

, and r divides 1
2
m(m − 1) − 3r

2
, then there is a

Pr+1-decomposition of Km − Yr.

the electronic journal of combinatorics 23(2) (2016), #P2.1 3



Proof. By Lemma 4, there is a Pr+1-decomposition of Kr+1 − Yr, so it suffices to show
that there is a Pr+1-decomposition of Km − Kr+1. But Km − Kr+1 can be decomposed
into Kr,m−r−1 and Km−r, so it suffices to prove that Kr,m−r−1 and Km−r each have Pr+1-
decompositions. The former has a Pr+1-decomposition by Theorem 2, and the latter by
Theorem 3. It is routine to check that the hypotheses of these two theorems are satisfied
when r is even, 2 6 r 6 m−1

2
and r divides 1

2
m(m− 1)− 3r

2
.

For each even r > 2 we define the graph J2r (see Figure 1) to be the graph with vertex
set

V (J2r) = {u1, u2, . . . , ur+2} ∪ {v1, v2, . . . , vr+2}

and edge set

E(J2r) = {{ui, vi} : i = 3, 4, . . . , r + 2} ∪
{{ui, ui+1}, {vi, vi+1}, {ui, vi+1}, {vi, ui+1} : i = 2, 3, . . . , r + 1} ∪
{{ui, ui+3}, {vi, vi+3}{ui, vi+3}, {vi, ui+3} : i = 1, 3, . . . , r − 1}.
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Figure 1: The graph J2r

The following result is proved in [8], see Lemma 10 and the proof of Lemma 11.

Lemma 6. If G is a bipartite 2-regular graph of order 2r where r > 4 is even, then there
is a decomposition {H1, H2, H3, H4} of J2r such that

(1) V (H1) = {u1, u2, . . . , ur} ∪ {v3, v4, . . . , vr+2},

(2) V (H2) = {u3, u4, . . . , ur+2} ∪ {v1, v2, . . . , vr},

(3) V (H3) = {u3, u4, . . . , ur+2} ∪ {v3, v4, . . . , vr+2},

(4) V (H4) = {u3, u4, . . . , ur+2} ∪ {v3, v4, . . . , vr+2},

(5) each of H1, H2 and H3 is isomorphic to G,

(6) H4 is a 1-regular graph of order 2r.

Lemma 7. If r > 2 is even and G is any bipartite 2-regular graph of order 2r, then there
is a decomposition of X2r into three copies of G and a 1-factor.
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Proof. If r = 2, then G is a 4-cycle, X2r is isomorphic to K6 and the result holds. So
assume r > 4. Observe that if the edges {u1, u4}, {u1, v4}, {v1, u4}, {v1, v4} of J2r are
replaced with {u2, u4}, {u2, v4}, {v2, u4}, {v2, v4}, the vertices u1 and v1 are deleted, and
the edge {u2, v2} is added, then the resulting graph is X2r. Let {H1, H2, H3, H4} be
the decomposition of J2r given by Lemma 6, let H ′1 be the graph obtained from H1 by
replacing the edges {u1, u4} and {u1, v4} with {v2, u4} and {v2, v4}, let H ′2 be the graph
obtained from H2 by replacing the edges {v1, u4} and {v1, v4} with {u2, u4} and {u2, v4},
let H ′3 = H3 and let H ′4 be the graph obtained from H4 by adding the edge {u2, v2}
(and the vertices u2 and u4). It is easy to see that {H ′1, H ′2, H ′3, H ′4} is the required
decomposition of X2r.

3 Main Results

Lemma 8. If n > 6 is even and G is any bipartite 2-regular graph of order n − 2, then
there is a G-decomposition of Kn − I.

Proof. Let m = n
2
. If m is even, then let D be a decomposition of Km into m

2
Hamilton

paths, and if m is odd, then let D be a decomposition of Km into m−3
2

Hamilton paths
and a copy of Ym−1. The first of these decompositions exists by Theorem 3 and the second
exists by Lemma 4. In either case let the vertex set of Km be Zm and let I be the 1-regular
graph with V (I) = Zm × Z2 and edge set E(I) = {(v, 0)(v, 1) : v ∈ Zm}.

Thus, D(2) ∪ {I} is a decomposition of Kn into m
2

copies of P
(2)
m and the perfect

matching I when m is even, and is a decomposition of Kn into m−3
2

copies of P
(2)
m , one

copy of Y
(2)
m−1, and the perfect matching I when m is odd. Since the union of the copy of

Y
(2)
m−1 and I is a copy of Xn−2, the result follows by Theorem 1 and Lemma 7.

Lemma 9. Let r > 2. If there is a Pr+1-decomposition of Km or if r is even and there is
a Pr+1-decomposition of Km − Yr, then there is a G-decomposition of K2m − I for every
bipartite 2-regular graph of order 2r.

Proof. Let G be a bipartite 2-regular graph of order 2r, let the vertex set of Km be Zm

and let I be the 1-regular graph with V (I) = Zm ×Z2 and edge set E(I) = {(v, 0)(v, 1) :
v ∈ Zm}.

If there is a Pr+1-decomposition D of Km, then D(2) is a P
(2)
r+1-decomposition of K2m−I.

By Theorem 1, we can decompose each copy of P
(2)
r+1 in D(2) into two copies of G, thereby

obtaining a G-decomposition of K2m − I.
Thus, we can assume r is even and there is a Pr+1-decomposition of Km − Yr, and

hence a decomposition D of Km into one copy of Yr and (
(
m
2

)
− 3r

2
)/r copies of Pr+1. It

follows that D(2) ∪ {I} is a decomposition of K2m into one copy of Y
(2)
r , (

(
m
2

)
− 3r

2
)/r

copies of P
(2)
r+1, and a perfect matching. There are r+ 1 edges of I which form a 1-regular

graph on the vertex set of the copy of Y
(2)
r , and the union of this 1-regular graph with

the copy of Y
(2)
r is a copy of X2r. Thus, we have a decomposition of K2m into one copy
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of X2r, (
(
m
2

)
− 3r

2
)/r copies of P

(2)
r+1, and a matching M with m− (r+ 1) edges (such that

M and the copy of X2r are vertex-disjoint).

By Theorem 1, we can decompose each copy of P
(2)
r+1 in D(2) into two copies of G. Let

DP be the union of all of these decompositions. By Lemma 7, there is a decomposition
DX ∪ {M ′} of the copy of X2r where DX contains three copies of G and M ′ is a perfect
matching in the copy of X2r. This means that the union of M and M ′ is a perfect matching
in K2m. It follows that DP ∪ DX is a G-decomposition of K2m − I.

Theorem 10. Let G be a bipartite 2-regular graph, let k be the order of G, and let n > 4
be even. There exists a G-decomposition of Kn− I if and only if 3 6 k 6 n and k divides
n(n−2)

2
, except possibly when n

2
< k < n− 2 and n(n−2)

2k
is odd both hold.

Proof. The conditions 3 6 k 6 n and k divides n(n−2)
2

are clearly necessary for the
existence of a G-decomposition of Kn−I. The case k = n is covered by the main theorem
in [8] and the case k = n − 2 is covered by Lemma 8. If k = n − 1, then k does not

divide n(n−2)
2

so there is nothing to prove. Thus, it remains only to show that there is a

G-decomposition of Kn − I when 3 6 k 6 n
2

and k divides n(n−2)
2

.
Let m = n

2
and let r = k

2
(since G is bipartite, k is even and r > 2 is an integer). By

Lemma 9, it suffices to show that there is a Pr+1-decomposition of Km or that r is even
and there is a Pr+1-decomposition of Km − Yr. If 2m(m − 1)/k is even, then r divides
m(m− 1)/2 and so by Theorem 3, there is a Pr+1-decomposition of Km. If 2m(m− 1)/k
is odd, then it follows that r is even, r divides 1

2
m(m− 1)− 3r

2
, and k 6= m. So r 6 m−1

2

and there is a Pr+1-decomposition of Km − Yr by Lemma 5.

Lemma 9 gives a possible approach to settling the possible exceptions in Theorem 10.
The missing ingredient is Pr+1-decompositions of Km − Yr for m

2
< r < m − 1 where

r = k
2

and m = n
2
. The first few possible exceptions in Theorem 10 are (k, n) = (12, 20),

(20, 30), (24, 42), (28, 44), (36, 54), (40, 72), (44, 68), (48, 80), (52, 78), (56, 72), (60, 92),
(60, 102) and (60, 110).

It is worth remarking that the constructions used to prove Theorem 10 can be easily
generalised as follows. In the proof of Lemma 9, each copy of P

(2)
r+1 can be decomposed

independently, resulting in decompositions of Kn − I into 2-regular graphs which are not
all isomorphic. Although each copy of P

(2)
r+1 produces two isomorphic 2-regular graphs in

the final decomposition, and the copy of X2r, when it is present, produces three isomorphic
2-regular graphs in the final decomposition, this construction can produce a wide variety
of different combinations of 2-regular graphs in the final decomposition.

The 2-regular graphs given by the construction of the preceding paragraph will all
have the same order, namely k = 2r, but it is also possible to get around this constraint.
Instead of using a Pr+1-decomposition of Km or Km−Yr, one may use a decomposition of
Km or Km−Yr into paths which are not necessarily all isomorphic. In [7] it is shown that
the obvious necessary conditions are sufficient for the existence of a decomposition of Km

into paths of any specified lengths. This facilitates the construction of decompositions of
Kn − I into many combinations of 2-regular graphs of many different orders.
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