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Abstract

A conjecture by Aharoni and Berger states that every family of n matchings
of size n + 1 in a bipartite multigraph contains a rainbow matching of size n. In
this paper we prove that matching sizes of

(
3
2 + o(1)

)
n suffice to guarantee such

a rainbow matching, which is asymptotically the same bound as the best-known
one in the case where we only aim to find a rainbow matching of size n − 1. This
improves previous results by Aharoni, Charbit and Howard, and Kotlar and Ziv.

1 Introduction

In this paper we are concerned with the question which sizes of n matchings in a bipartite
multigraph suffice in order to guarantee a rainbow matching of size n.

One motivation for considering these kinds of problems is due to some well-known
conjectures on Latin squares. A Latin square of order n is an n× n matrix in which each
symbol appears exactly once in every row and exactly once in every column. A partial
transversal in a Latin square is a set of entries with distinct symbols such that from
each row and each column at most one entry is contained in this set. We call a partial
transversal of size n in a Latin square of order n simply a transversal. A famous conjecture
of Ryser [11] states that for every odd integer n any Latin square of order n contains a
transversal. The conjecture is known to be true for n 6 9. Omitting the restriction to odd
numbers yields a false statement. Brualdi [7, 8] and Stein [12] independently formulated
the following conjecture for all orders n.

Conjecture 1. For every n > 1 any Latin square of order n has a partial transversal of
size n− 1.
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A natural way to transfer this problem to graphs is the following. Let L = (`i,j)i,j∈[n]
be a Latin square of order n. We define GL := (A ∪ B,E) as the complete bipartite
edge-coloured graph with partite sets A = {a1, . . . , an} and B = {b1, . . . , bn}, where aibj
is coloured `i,j. That is, A and B represent the columns and rows of L, respectively.
Moreover, a transversal of L corresponds to a perfect matching in GL that uses each
edge colour exactly once, which we call a rainbow matching of size n. Using this notion,
Conjecture 1 is equivalent to the following: For every n > 1 any complete bipartite edge-
coloured graph, the colour classes of which are perfect matchings, contains a rainbow
matching of size n− 1.

One may wonder whether this might even be true in the more general setting of
bipartite edge-coloured multigraphs: Following Aharoni, Charbit and Howard [2], we
define f(n) to be the smallest integerm such that every bipartite edge-coloured multigraph
with exactly n colour classes, each being a matching of size at least m, contains a rainbow
matching of size n. Aharoni and Berger [1] conjectured the following generalization of
Conjecture 1.

Conjecture 2. For every n > 1 we have f(n) = n+ 1.

The first approaches towards this conjecture are given by the bounds f(n) 6
⌊
7
4
n
⌋

due
to Aharoni, Charbit and Howard [2] and f(n) 6

⌊
5
3
n
⌋

due to Kotlar and Ziv [10]. Here,
we give an improved bound, which is asymptotically the same as the best-known bound
on the sizes of the colour classes in the case where we aim to find a rainbow matchings of
size n− 1 [10]. In particular, we prove the following.

Theorem 3. For every ε > 0 there exists an integer n0 > 1 such that for every n > n0

we have f(n) 6
(
3
2

+ ε
)
n.

Subsequently, we use the following notation. Let G be a bipartite multigraph with
partite sets A and B. For sets X ⊆ A and Y ⊆ B we write EG[X, Y ] to denote the set
of edges in G between X and Y . Given some matching R in G, NG(X|R) := {y ∈ B :
∃xy ∈ R with x ∈ X} denotes the neighbourhood of X with respect to R. For the sake
of readability, we omit floor and ceiling signs and do not intend to optimize constants in
the proofs.

2 Proof of Theorem 3

In this section we give a proof of Theorem 3 the idea of which can be summarized as
follows. We start with assuming for a contradiction that a maximum rainbow matching
in the given graph G = (A∪B,E) is of size n−1. A rainbow matching of this size is known
to exist [10]. We fix such a matching R and find two sequences e1, . . . , ek and g1, . . . , gk of
edges, the first consisting of edges from R and the second consisting of edges outside R.
We then show that either we can switch some of the edges between the edge sequences
to produce a rainbow matching of size n (see the proofs of the Claims 4, 5 and 7), or
the matchings represented by the edges e1, . . . , ek need to touch at least n vertices in B
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that are saturated by R, both leading to a contradiction. To make the second case more
precise we additionally introduce certain sequences X1, . . . , Xk ⊆ A and Y1, . . . , Yk ⊆ B
in the proof.

Proof. Let ε > 0 be given and whenever necessary we may assume that n is large enough.
Let F = {F0, F1, . . . , Fn−1} be a family of n matchings of size at least (3/2 + ε)n in a
bipartite multigraph G = (A∪B,E) with partite sets A and B. We aim to find a rainbow
matching of size n.

For a contradiction, let us assume that there is no such matching. As shown in [10],
there must exist a rainbow matching R of size n − 1. We may assume without loss of
generality that none of the edges of F0 appears in R. Let t be the smallest positive integer
with 1/(2t − 1) 6 ε. Moreover, let X ⊆ A and Y ⊆ B be the sets of vertices that are
saturated by R, i.e. incident with some edge of R.

In the following we show that for every k ∈ [t] we can construct sequences

(S1) e1, . . . , ek of k distinct edges ei = xiyi in R with xi ∈ X and yi ∈ Y ,

(S2) g1, . . . , gk of k distinct edges gi = ziyi with zi ∈ A \X,

(S3) X1, . . . , Xk of subsets of X,

(S4) Y1 = NG(X1|R), . . . , Yk = NG(Xk|R) of subsets of Y ,

and an injective function π : {0, 1, . . . , k} → {0, 1, . . . , n − 1} with π(0) := 0 such that
the following properties hold:

(P1) for each i ∈ [k] we have ei ∈ Fπ(i),

(P2) for each i ∈ [k] we have gi ∈
⋃i−1
j=0 Fπ(j),

(P3) (e1 ∪ · · · ∪ ek) ∩ (Xk ∪ Yk) = ∅,

(P4) |Xk| = |Yk| = sk := 2kεn+ k(7− 3k)/2,

(P5) for each i ∈ [k] and each j ∈ {0, . . . , n − 1} it holds that if R contains an edge of
the matching Fj between Xi and Yi, then there is also an edge of Fj between xi and
B \ Y ,

(P6) for each i ∈ [k] and each w ∈ Yi\Yi−1 there exists a vertex v ∈ A\(X∪{z1, . . . , zi−1})
such that vw ∈ Fπ(i−1) (where Y0 := ∅), and

(P7) for each i ∈ [k] and each j ∈ [i − 1] it holds that if gi ∈ Fπ(j), then zi ∈ A \ (X ∪
{z1, . . . , zj}).

Let us explain some of the ideas behind Properties (P1)-(P7). Let i ∈ [k], then
Properties (P1), (P2) and (P7) ensure subsequences of the sequences in (S1) and (S2)
such that switching between them produces another rainbow matching of size n−1 where
the matching Fπ(i) is not present. Properties (P5) and (P6) guarantee a large number of
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switchings that produce different rainbow matchings of size n − 1. This will help us to
prove restrictions on where the edges of Fπ(i) can occur in the multigraph. In particular
we show that Fπ(i) cannot have edges between some parts of the graph and the set Yi from
(S4), the size of which increases with i.

Before we start with the construction, let us first observe that by Property (P4) we
have a set Yt ⊆ Y which satisfies 2tεn+ t(7− 3t)/2 = |Yt| 6 |Y | < n. However, for large
enough n and by the choice of t we have that 2tεn+ t(7− 3t)/2 > n, a contradiction.

In order to find the sequences described above, we proceed by induction on k. For the
base case, let us argue why we find edges e1, g1, sets X1, Y1, and an injective function π
with Properties (P1)-(P7). First observe that F0 does not have any edges between A \X
and B \ Y , by assumption on R. As |F0| > (3/2 + ε)n, there are at least (1/2 + ε)n + 1
edges of F0 between A\X and Y . Let N0 ⊆ Y denote a set of size (1/2+ε)n+1 such that
for every vertex w ∈ N0 there exists a vertex v ∈ A \X such that vw ∈ F0. Furthermore,
let X ′1 := NG(N0|R) and let R1 := {Fj ∈ F : Fj ∩ R ∩ EG[X ′1, N0] 6= ∅}, i.e. R1 consists
of all matchings that have an edge in R between X ′1 and N0.

As a next step we show that there exists an edge e1 = x1y1 ∈ R ∩ EG[X ′1, N0] such
that there are 2εn + 2 matchings in R1 that have an edge between x1 and B \ Y . The
sets X1 ⊆ X and Y1 = NG(X1|R) will then be defined as the vertices that are incident
with edges in R that are contained in these 2εn+ 2 matchings.

Let F be any matching in R1, let vw be the unique edge in F ∩ R ∩ EG[X ′1, N0] and
let z ∈ A \X be the unique vertex such that zw ∈ F0. Notice that there cannot be any
edge g of F between A \ (X ∪{z}) and B \Y , since otherwise (R \ {vw})∪{zw, g} would
give a rainbow matching of size n, in contradiction with R being a maximum rainbow
matching. Therefore, there are at least (1/2 + ε)n + 1 edges of F between B \ Y and
X ∪ {z}. Since |X ′1| = (1/2 + ε)n + 1, there are at least 2εn + 2 edges of F between
B \ Y and X ′1. Since this is true for any F ∈ R1, we know by the pigeonhole principle
that there is a vertex x1 ∈ X ′1 and a subset X1 ⊆ X ′1 of size 2εn+ 2 such that, for every
Fj ∈ F , if Fj ∩ R ∩ EG[X1, B] 6= ∅, then Fj has an edge between x1 and B \ Y . Note
that x1 /∈ X1. Let e1 = x1y1 be the unique edge in R incident with x1 and let g1 = z1y1
be the unique edge of F0 incident with y1 ∈ N0. Set π(1) to be the unique index j ∈ [k]
such that e1 ∈ Fj. One can easily verify that e1 = x1y1, g1 = z1y1, X1, Y1 := NG(X1|R),
and π satisfy Properties (P1)-(P7).

For the inductive step let us assume that for some k ∈ [t− 1] the above sequences are
given with Properties (P1)-(P7). We now aim to extend these by edges ek+1, gk+1, sets
Xk+1, Yk+1, and a value π(k + 1) while maintaining Properties (P1)-(P7). The approach
that we use is similar to the base case. We start with some useful claims that will
guarantee us in Corollary 6 that the matching Fπ(k) has (1/2+ε)n+1−2k edges between
A \ (X ∪ {z1, . . . , zk}) and Y \ (Yk ∪ {y1, . . . , yk}).
Claim 4. Fπ(k) has no edge between A \ (X ∪ {z1, . . . , zk}) and B \ Y .

Proof of Claim 4. Assume for a contradiction that there exists an edge g ∈ Fπ(k) be-
tween the sets A \ (X ∪ {z1, . . . , zk}) and B \ Y . (See Figure 1 for an illustration.) By
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Property (P2) we find a sequence k > j1 > j2 > · · · > js = 0 with 1 6 s 6 k such that

gk ∈ Fπ(j1),
gji ∈ Fπ(ji+1) for i < s.

Moreover, according to Property (P7) we know that zk, zj1 , . . . , zjs−1 are distinct, and
thus, also using Property (P1), we conclude that

(R \ {ek, ej1 , . . . , ejs−1}) ∪ {gk, gj1 , . . . , gjs−1 , g}

forms a rainbow matching which is larger than R, a contradiction.

X
zk

ekej1

ej2

g

xk

yk

gj1gj2

zj1zj2

Y

. . .

gk

. . .

. . .

. . .

. . .

. . .

A

B

Figure 1: Example with gj2 ∈ Fπ(0) (s = 3). The dotted edges {ek, ej1 , ej2} are replaced by
the edges {gk, gj1 , gj2 , g} to obtain a larger rainbow matching.

Claim 5. Fπ(k) has no edge between A \ (X ∪ {z1, . . . , zk}) and Yk.

Proof of Claim 5. Assume for a contradiction that there is an edge g ∈ Fπ(k) between the
sets A \ (X ∪ {z1, . . . , zk}) and Yk. (See Figure 2 for an illustration.) Let e be the unique
edge in R which is adjacent to g. Observe that e lies between Xk and Yk by assumption.
Let j ∈ [n − 1] be such that e ∈ Fj. By Property (P3) we have e /∈ {e1, . . . , ek}. Thus,
using Property (P1) and the fact that R is a rainbow matching, we can conclude that
j /∈ {π(i) : 1 6 i 6 k}. Now, by Property (P5) it holds that there is an edge e ∈ Fj
between xk and B \ Y . Moreover, by Properties (P2) and (P7), we find a sequence
k > j1 > j2 > · · · > js = 0 with 1 6 s 6 k such that

gk ∈ Fπ(j1),
gji ∈ Fπ(ji+1) for i < s

and all vertices zk, zj1 , . . . , zjs−1 are distinct. Therefore, using Property (P1), we conclude
that

(R \ {ek, ej1 , . . . , ejs−1 , e}) ∪ {gk, gj1 , . . . , gjs−1 , e, g}
forms a rainbow matching which is larger than R, a contradiction.
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g
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B

Figure 2: Example with gj2 ∈ Fπ(0) (s = 3). The dotted edges {ek, ej1 , ej2 , e} are replaced
by the edges {gk, gj1 , gj2 , e, g} to obtain a larger rainbow matching.

Corollary 6. The matching Fπ(k) has at least
(
1
2

+ ε
)
n + 1 − 2k edges between

A \ (X ∪ {z1, . . . , zk}) and Y \ (Yk ∪ {y1, . . . , yk}).

Proof of Corollary 6. As |Fπ(k)| > (3/2 + ε)n and |X ∪ {z1, . . . , zk}| 6 n − 1 + k, we
conclude that at least (1/2 + ε)n + 1 − k edges of Fπ(k) are incident with vertices in
A \ (X ∪ {z1, . . . , zk}). Each of these edges intersects Y \ Yk by the previous claims and
thus the statement follows.

In the following, let Nk ⊆ Y \(Yk∪{y1, . . . , yk}) be a set of size (1/2+ε)n+1−2k such
that for each vertex w ∈ Nk there is a vertex v ∈ A \ (X ∪ {z1, . . . , zk}) with vw ∈ Fπ(k).
Such a set exists by the previous corollary. Moreover, let

Y ′k+1 := Yk ∪Nk

and let X ′k+1 := NG(Y ′k+1|R) be the neighbourhood of Y ′k+1 with respect to R. By Prop-
erty (P4), and as Nk ∩ Yk = ∅, we obtain

|X ′k+1| = |Y ′k+1| = 2kεn+
k(7− 3k)

2
+

(
1

2
+ ε

)
n+ 1− 2k

=
1

2
n+ (2k + 1)εn+

−3k2 + 3k + 2

2
. (∗)

We now look at all matchings that have an edge in R betweenX ′k+1 and Y ′k+1. Formally,
we consider

Rk+1 :=
{
Fj ∈ F : Fj ∩R ∩ EG[X ′k+1, Y

′
k+1] 6= ∅

}
.

Similarly to the base case we now aim to show that there exists an edge ek+1 =
xk+1yk+1 ∈ R ∩ EG[X ′k+1, Y

′
k+1] such that there are sk+1 matchings in Rk+1 that have an

edge between xk+1 and B \ Y . This will follow immediately from the following claim and
is stated in Corollary 8.

Claim 7. Every Fj ∈ Rk+1 has at least sk+1 edges between X ′k+1 and B \ Y .
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Proof of Claim 7. The main argument is similar to that of Claim 4 - Corollary 6. For
Fj ∈ Rk+1 let f = vw, with v ∈ X ′k+1, w ∈ Y ′k+1, denote the unique edge in Fj ∩
R ∩ EG[X ′k+1, Y

′
k+1]. Since Y ′k+1 := Yk ∪ Nk, we either have w ∈ Yk or w ∈ Nk. In

particular, by Property (P3) from the hypothesis and by the definition of Nk, we know
that w /∈ {y1, . . . , yk}, and therefore j /∈ {π(i) : 0 6 i 6 k}.

If w ∈ Yk, then we find an integer j1 ∈ [k] such that w ∈ Yj1 \ Yj1−1 (where Y0 := ∅),
and by Property (P6) there is a vertex z ∈ A\(X∪{z1, . . . , zj1−1}) such that zw ∈ Fπ(j1−1).
If otherwise w ∈ Nk, then we find a vertex z ∈ A\(X∪{z1, . . . , zk}) such that zw ∈ Fπ(k),
by construction of Nk. In either case, let us fix this particular vertex z. We now prove
the claim by showing first that (i) Fj has no edge between A \ (X ∪ {z1, . . . , zk, z}) and
B \ Y , and then we conclude that (ii) the statement holds for Fj.

We start with the discussion of (i). So, assume for a contradiction that Fj has an edge
f between A \ (X ∪ {z1, . . . , zk, z}) and B \ Y .

If w ∈ Yk, then by the definition of z we have zw ∈ Fπ(j1−1), with j1 being defined

above. We can assume that j1 > 1, as otherwise zw ∈ F0 and thus (R \ {f}) ∪ {f, zw}
forms a full rainbow matching, in contradiction to our main assumption. Now, using
Property (P2), we find a sequence j1 − 1 > j2 > · · · > js = 0 with 2 6 s < k such that

gj1−1 ∈ Fπ(j2),
gji ∈ Fπ(ji+1) for 2 6 i 6 s− 1

By Property (P7) and since z ∈ A\(X∪{z1, . . . , zj1−1}), the vertices z, zj1−1, zj2 , . . . , zjs−1

are distinct. We thus find the rainbow matching

(R \ {ej1−1, ej2 , . . . , ejs−1 , f}) ∪ {gj1−1, gj2 , . . . , gjs−1 , f , zw}

which is larger than R, a contradiction.

X

Yk

Xk

. . .

z

fej1−1

ej2
f

v

w

gj1−1gj2

zj1−1zj2

Y

. . .

. . .

. . .A

B

Figure 3: Example with gj2 ∈ Fπ(0), in case w ∈ Yk. The dotted edges {ej1−1, ej2 , f} are

replaced by the edges {gj1−1, gj2 , f , zw} to obtain a larger rainbow matching.

If otherwise w ∈ Nk, then zw ∈ Fπ(k). Analogously we find a sequence k > j1 > j2 >
· · · > js = 0 with 1 6 s 6 k such that gk ∈ Fπ(j1) and gji ∈ Fπ(ji+1) for i < s, and we
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obtain a contradiction as

(R \ {ek, ej1 , . . . , ejs , f}) ∪ {gk, gj1 , . . . , gjs , f , zw}

forms a rainbow matching which is larger than R. Thus, we are done with part (i).
Let us proceed with (ii): Fj needs to saturate at least (1/2 + ε)n+ 1 vertices of B \Y ,

as |Fj| > (3/2 + ε)n and |Y | 6 n− 1. Thus, by part (i), we have at least (1/2 + ε)n + 1
edges of Fj between X ∪ {z1, . . . , zk, z} and B \ Y . Using (∗), we further calculate that

|X ∪ {z1, . . . , zk, z}| − |X ′k+1| 6 (n+ k)−
(

1

2
n+ (2k + 1)εn+

−3k2 + 3k + 2

2

)
=

1

2
n− (2k + 1)εn+

3k2 − k − 2

2
.

Thus, the number of edges in Fj between X ′k+1 and B \ Y needs to be at least(
1

2
+ ε

)
n+ 1−

(
1

2
n− (2k + 1)εn+

3k2 − k − 2

2

)
= sk+1,

as claimed.

We now proceed with the construction of the edges ek+1, gk+1 and the sets Xk+1, Yk+1,
and afterwards we show that all required properties are maintained. The next corollary
is by the pigeonhole principle an immediate consequence of Claim 7.

Corollary 8. There exists a vertex xk+1 ∈ X ′k+1, a set Xk+1 ⊆ X ′k+1 of size sk+1 and
its neighborhood Yk+1 ⊆ Y ′k+1 with respect to R such that the following holds for every
j ∈ [n− 1]: If Fj ∩R∩EG[Xk+1, Yk+1] 6= ∅, then Fj has an edge between xk+1 and B \Y .

To extend the sequences, choose Xk+1 and Yk+1 according to Corollary 8, and let
ek+1 = xk+1yk+1 be the unique edge in R that is incident with xk+1. Note that xk+1 /∈
Xk+1, as otherwise xk+1 would need to be incident to two edges of the same matching Fj.

Observe that yk+1 /∈ {y1, . . . , yk}. Indeed, yk+1 ∈ Y ′k+1 = Yk ∪Nk, and by construction
we have Nk ∩ {y1, . . . , yk} = ∅, while Yk ∩ {y1, . . . , yk} = ∅ holds by Property (P3).

Now, let ek+1 ∈ Fj. As ek+1 ∈ R \ {e1, . . . , ek}, we have j /∈ {π(i) : 0 6 i 6 k}. We
extend the injective function π with π(k + 1) = j.

Finally, we choose gk+1 as follows: If yk+1 ∈ Nk, then by construction of Nk there is a
vertex zk+1 ∈ A \ (X ∪ {z1, . . . , zk}) with zk+1yk+1 ∈ Fπ(k). Otherwise, if yk+1 ∈ Yk, then
there is an i ∈ [k] with yk+1 ∈ Yi \ Yi−1, and by Property (P6) there is a vertex zk+1 ∈
A\ (X∪{z1, . . . , zi−1}) such that zk+1yk+1 ∈ Fπ(i−1). In any case, we set gk+1 := zk+1yk+1.

Claim 9. The extended sequences satisfy Properties (P1)-(P7).

Proof of Claim 9. Properties (P1) and (P2) follow immediately from the induction hy-
pothesis and from the definition of π(k + 1) and gk+1. By construction, we have Yk+1 ⊆
Y ′k+1 = Yk ∪ Nk. By Property (P3) of the induction hypothesis and by the definition of
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Nk, we have {y1, . . . , yk} ∩ Yk+1 = ∅. It follows from the construction of Xk+1 (Corol-
lary 8) that yk+1 /∈ Yk+1. By symmetry, we have {e1, . . . , ek+1} ∩ (Xk+1 ∪ Yk+1) = ∅,
which shows Property (P3). Properties (P4) and (P5) hold by Corollary 8 and by Prop-
erty (P5) of the induction hypothesis. Recall that Yk+1 \ Yk ⊆ Nk. This means that for
every w ∈ Yk+1 \ Yk there exists a vertex v ∈ A \ (X ∪ {z1, . . . , zk}) such that vw ∈ Fπ(k),
proving Property (P6). Finally, Property (P7) holds by the induction hypothesis and
since we chose zk+1 from a set A \ (X ∪ {z1, . . . , zi−1}) such that zk+1yk+1 ∈ Fπ(i−1) for
the appropriate i ∈ [k + 1]. Consequently, all Properties (P1)-(P7) are fulfilled by the
extended sequences.

Claim 9 concludes the induction and thus the proof of Theorem 3.

3 Open problems and concluding remarks

In this paper we proved that a collection of n matchings of size (3/2 + o(1))n in a bipartite
multigraph guarantees a rainbow matching of size n. For smaller matching sizes it is even
unknown whether a rainbow matching of size n−1 exists. More generally, as suggested by
Tibor Szabó (private communication), it would be interesting to determine upper bounds
on the smallest integer µ(n, `) such that every family of n matchings of size µ(n, `) in
a bipartite multigraph guarantees a rainbow matching of size n − `. One can verify
that µ(n, l) 6 l+2

l+1
n. Moreover, it holds that µ(n,

√
n) 6 n, which is a generalization

(see e.g. [3]) of a result proved in the context of Latin squares by Woolbright [13], and
independently by Brouwer, de Vries and Wieringa [6].

In order to approach Conjecture 2, one can also increase the number of matchings
and fix their sizes to be equal to n instead of considering families of n matchings of sizes
greater than n. Drisko [9] proved that a collection of 2n − 1 matchings of size n in a
bipartite multigraph with partite sets of size n guarantees a rainbow matching of size n.
He also showed that this result is sharp. This problem was investigated in the following
two directions. Does the statement also hold if we omit the restriction on the sizes of
the vertex classes? And how many matchings do we need to find a rainbow matching of
size n− ` for every ` > 1? Aharoni and Berger [1] affirmed the first question by showing
that for any integers s 6 t, the maximal number of matchings of size t in a bipartite
multigraph that do not contain a rainbow matching of size s is equal to 2(s − 1). The
second question was studied recently by Barát, Gyárfás and Sárközy in [4]. They proved
that for every ` > 1 any bipartite multigraph with

⌊
`+2
`+1

n
⌋
− (` + 1) matchings of size n

has a rainbow matching of size n − `. This result is sharp for ` = 0 and bn/2c 6 ` < n.
For ` = b√nc it extends the result µ(n,

√
n) 6 n to the setting of multigraphs.

Finally, in case Conjecture 2 turns out to be true, it is of interest to see how sharp it
is. As shown by Barat and Wanless [5], one can find constructions of n matchings with⌊
n
2

⌋
− 1 matchings of size n+ 1 and the remaining ones being of size n such that there is

no rainbow matching of size n. We wonder whether the expression
⌊
n
2

⌋
− 1 above could

also be replaced by (1− o(1))n.
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