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Abstract

Suzuki (2004) classified thin weakly distance-regular digraphs and proposed the
project to classify weakly distance-regular digraphs of valency 3. The case of girth 2
was classified by the third author (2004) under the assumption of the commutativity.
In this paper, we continue this project and classify these digraphs with girth more
than 2 and two types of arcs.

Keywords: Weakly distance-regular digraph; Cayley digraph

1 Introduction

A digraph Γ is a pair (X,A) where X is a finite set of vertices and A ⊆ X2 is a set of
arcs. Throughout this paper we use the term ‘digraph’ to mean a finite directed graph
with no loops. We write V Γ for X and AΓ for A. A path of length r from u to v is a finite
sequence of vertices (u = w0, w1, . . . , wr = v) such that (wt−1, wt) ∈ AΓ for t = 1, 2, . . . , r.
A digraph is said to be strongly connected if, for any two distinct vertices x and y, there is
a path from x to y. The length of a shortest path from x to y is called the distance from
x to y in Γ, denoted by ∂Γ(x, y). The diameter of Γ is the maximum value of the distance

function in Γ. Let ∂̃Γ(x, y) = (∂Γ(x, y), ∂Γ(y, x)) and ∂̃(Γ) = {∂̃Γ(x, y) | x, y ∈ V Γ}. If

no confusion occurs, we write ∂(x, y) (resp. ∂̃(x, y)) instead of ∂Γ(x, y) (resp. ∂̃Γ(x, y)).
An arc (u, v) of Γ is of type (1, r) if ∂(v, u) = r. A path (w0, w1, . . . , wr−1) is said to be a
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circuit of length r if ∂(wr−1, w0) = 1. A circuit is undirected if each of its arcs is of type
(1, 1). The girth of Γ is the length of a shortest circuit.

Let Γ = (X,A) and Γ′ = (X ′, A′) be two digraphs. Γ and Γ′ are isomorphic if there is
a bijection σ from X to X ′ such that (x, y) ∈ A if and only if (σ(x), σ(y)) ∈ A′. In this
case, σ is called an isomorphism from Γ to Γ′. An isomorphism from Γ to itself is called
an automorphism of Γ. The set of all automorphisms of Γ forms a group which is called
the automorphism group of Γ and denoted by Aut(Γ). A digraph Γ is vertex transitive if
Aut(Γ) is transitive on V Γ.

Lam [5] introduced a concept of distance-transitive digraphs. A strongly connected
digraph Γ is said to be distance-transitive if, for any vertices x, y, x′ and y′ of Γ satisfying
∂(x, y) = ∂(x′, y′), there exists an automorphism σ of Γ such that x′ = σ(x) and y′ = σ(y).
Damerell [4] generalized this concept to that of distance-regular digraphs. He showed that
the girth g of a distance-regular digraph of diameter d is either 2, d or d + 1, and the
one with d = g is a coclique extension of a distance-regular digraph with d = g − 1.
Bannai, Cameron and Kahn [2] proved that a distance-transitive digraph of odd girth
is a Paley tournament or a directed cycle. Leonard and Nomura [6] proved that except
directed cycles all distance-regular digraphs with d = g − 1 have girth g 6 8. In order
to find ‘better’ classes of digraphs with unbounded diameter, Damerell [4] also proposed
a more natural definition of distance-transitivity, i.e., weakly distance-transitivity. In
[8], Wang and Suzuki introduced weakly distance-regular digraphs as a generalization of
distance-regular digraphs and weakly distance-transitive digraphs.

A strongly connected digraph Γ is said to be weakly distance-transitive if, for any
vertices x, y, x′ and y′ satisfying ∂̃(x, y) = ∂̃(x′, y′), there exists an automorphism σ of Γ
such that x′ = σ(x) and y′ = σ(y). A strongly connected digraph Γ is said to be weakly

distance-regular if, for all h̃, ĩ, j̃ ∈ ∂̃(Γ) and ∂̃(x, y) = h̃, the number ph̃
ĩ,̃j

:= |Pĩ,̃j(x, y)|
depends only on h̃, ĩ, j̃, where

Pĩ,̃j(x, y) = {z ∈ V Γ | ∂̃(x, z) = ĩ and ∂̃(z, y) = j̃}.

The nonnegative integers ph̃
ĩ,̃j

are called the intersection numbers. We say that Γ is com-

mutative (resp. thin) if ph̃
ĩ,̃j

= ph̃
j̃,̃i

(resp. ph̃
ĩ,̃j

6 1) for all ĩ, j̃, h̃ ∈ ∂̃(Γ). Note that a

weakly distance-transitive digraph is weakly distance-regular.
Let G be a finite group and S a subset of G not containing the identity. The Cayley

digraph Γ = Cay(G,S) is a digraph with the vertex set G and the arc set {(x, sx) | x ∈
G, s ∈ S}.

In [8], Wang and Suzuki determined all commutative 2-valent weakly distance-regular
digraphs. In [7], Suzuki determined all thin weakly distance-regular digraphs and proved
the nonexistence of noncommutative weakly distance-regular digraphs of valency 2. More-
over, he proposed the project to classify weakly distance-regular digraphs of valency 3.
In [9], Wang classified all commutative weakly distance-regular digraphs of valency 3 and
girth 2. In this paper, we continue this project, and obtain the following result.

Theorem 1. Let Γ be a weakly distance-regular digraph of valency 3 and girth more than
2. If Γ has two types of arcs, then Γ is isomorphic to one of the following digraphs:
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(i) Cay(Z4 × Zg, {(0, 1), (2, 1), (1, 0)}), where g = 3 or g > 5.

(ii) Γq,2mq,1, Γq,mq+2,q or Γq,2mq−2q+2t,q+1−t in Construction 3, where q > 3, m > 1 and
2 6 t 6 q − 1.

This paper is organized as follows. In Section 2, we construct two families of weakly
distance-regular digraphs of valency 3. In Section 3, we discuss some properties for circuits
of weakly distance-regular digraphs. In Section 4, we prove our main theorem.

2 Constructions

In this section, we construct two families of weakly distance-regular digraphs of valency
3. For any element x in a residue class ring, we assume that x̂ denotes the minimum
nonnegative integer in x. Denote β(w) = (1 + (−1)w+1)/2 for any integer w.

Proposition 2. Let g > 3. Then Γg := Cay(Z4 × Zg, {(1, 0), (0, 1), (2, 1)}) is a weakly
distance-regular digraph if and only if g 6= 4.

Proof. For any vertex (a, b) distinct with (0, 0), we have

∂̃((0, 0), (a, b)) =

{
(â, 4− â), if b = 0,

(b̂+ β(â), g − b̂+ β(â)), if b 6= 0.

Suppose g 6= 4. We will show that Γg is weakly distance-transitive. Let (a, b) and

(x, y) be any two vertices satisfying ∂̃((0, 0), (a, b)) = ∂̃((0, 0), (x, y)). It suffices to verify
that there exists an automorphism σ of Γg such that σ(0, 0) = (0, 0) and σ(a, b) = (x, y).
If (a, b) = (x, y), then the identity permutation is a desired automorphism. Now suppose
(a, b) 6= (x, y). Then b 6= 0, y 6= 0 and (b̂+ β(â), g − b̂+ β(â)) = (ŷ + β(x̂), g − ŷ + β(x̂)).
It follows that b = y and a− x = 2. Let σ be the permutation on V Γg such that

σ(u, v) =

{
(u, v), if v 6= b,
(u+ 2, v), if v = b.

Routinely, σ is a desired automorphism.
In Γ4, ∂̃((0, 0), (0, 2)) = ∂̃((0, 0), (2, 0)) = (2, 2). But P(1,3),(3,3)((0, 0), (0, 2)) = {(1, 0)}

and P(1,3),(3,3)((0, 0), (2, 0)) = ∅. Hence, Γ4 is not a weakly distance-regular digraph.

Construction 3. Let q, s, k be integers with q > 2, s > 2 and max{1, q−s+2} 6 k 6 q.
Write s = 2mq + p with m > 0 and 0 6 p < 2q. Let Γq,s,k be the digraph with the vertex
set Zq×Zs whose arc set consists of ((a, b), (a+1, b)), ((a, c), (a, c+1)), ((a, d), (a+1, d−1)),
((a,−1), (a− k + 1, 0)) and ((a, 0), (a+ k,−1)), where a ∈ Zq, b, c, d ∈ Zs, ĉ 6= s− 1 and
d 6= 0. See Figure 1.

In the following, we will prove that Γq,s,k is a weakly distance-regular digraph if and
only if one of the following holds:

C1: p = 0 and k = 1.
C2: p = q + 2 or p = 2, and k = q.
C3: 4 6 p 6 2q − 2, p is even and k = q + 1− p/2.

the electronic journal of combinatorics 23(2) (2016), #P2.12 3



(0, 0) (1, 0) (2, 0) (q − 2, 0) (q − 1, 0) (0, 0)

(0, 1) (1, 1) (2, 1) (q − 2, 1) (q − 1, 1) (0, 1)

(0, 2)

(1, s − 2)

(2, 2) (q − 2, 2) (q − 1, 2) (0, 2)

(0, s − 2) (2, s − 2) (q − 2, s − 2) (q − 1, s − 2) (0, s − 2)

(1, 2)

(0, s − 1) (1, s − 1) (2, s − 1) (q − 2, s − 1) (q − 1, s − 1) (0, s − 1)

(q − k + 1, 0) (q − k + 2, 0) (q − k + 3, 0) (q − k + 1, 0)(q − k, 0)(q − k − 1, 0)

Figure 1: The digraph Γq,s,k.

Lemma 4. Γq,s,k is a vertex transitive digraph.

Proof. Pick any vertex (a, b). It suffices to show that there exists an automorphism σ of
Γq,s,k such that σ(0, 0) = (a, b). Let σ be the permutation on V Γq,s,k such that

σ(x, y) =

{
(x+ a, y + b), if ŷ ∈ {0, 1, 2, . . . , s− 1− b̂},
(x+ a− k + 1, y + b), otherwise.

Routinely, σ is a desired automorphism.

For any two integers i and j, we write i ≡ j instead of i ≡ j (mod q). For any vertex
(a, b) of Γq,s,k, let f(a, b), g(a, b) and h(a) be nonnegative integers less than q such that

f(a, b) ≡ â+ b̂− k − p+ 1, g(a, b) ≡ q − â− b̂ and h(a) ≡ k − â− 1. (1)

By the structure of Γq,s,k, we have

∂̃((0, 0), (a, b)) = (min{â+ b̂, s− b̂+ f(a, b)},min{b̂+ g(a, b), s− b̂+ h(a)}). (2)

Lemma 5. Let C1, C2 or C3 hold. In Γq,s,k, ∂((0, 0), (a, b)) = â + b̂ if and only if

∂((a, b), (0, 0)) = b̂+ g(a, b).

Proof. Let M = s − 2b̂ − â + f(a, b), N = s − 2b̂ + h(a) − g(a, b) and b̂ = n′q + r′ with
0 6 r′ < q. By (2), we only need to prove M > 0 if and only if N > 0. From (1), note that
f(a, b) + g(a, b) equals to k− 1 or q+ k− 1, and h(a) equals to k− â− 1 or q+ k− â− 1.
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Case 1. f(a, b) + g(a, b) = k− 1 and h(a) = k− â− 1, or f(a, b) + g(a, b) = q + k− 1
and h(a) = q + k − â− 1.

In this case, it is routine to check M = N , as desired.
Case 2. f(a, b) + g(a, b) = k − 1 and h(a) = q + k − â− 1.
In this case, only C1 or C3 holds by k < â+ 1.
Assume that C1 holds. Then f(a, b) = g(a, b) = 0 and h(a) = q − â, which imply

that â + r′ = 0 or q. Since h(a) < q, one gets â 6= 0. Hence, â + r′ = q. Then
M = 2(m− n′)q − q − r′ > 0 if and only if N = 2(m− n′)q − r′ > 0.

Assume that C3 holds. Then f(a, b) + g(a, b) = q − p/2 and h(a) = 2q − p/2− â. By
(1), note that g(a, b) = q−â−r′ or 2q−â−r′, and p/2+â > q. Suppose g(a, b) = q−â−r′.
Then f(a, b) = â + r′ − p/2. From â + r′ 6 q, we have 0 < p/2 − r′ < q, which implies
M = 2(m−n′)q+ p/2− r′ > 0 if and only if N = 2(m−n′)q+ q+ p/2− r′ > 0. Suppose
g(a, b) = 2q − â − r′. Since f(a, b) = â − q + r′ − p/2, we have 0 6 r′ − p/2 < q, which
implies M = 2(m− n′)q − q + p/2− r′ > 0 if and only if N = 2(m− n′)q + p/2− r′ > 0.

Case 3. f(a, b) + g(a, b) = q + k − 1 and h(a) = k − â− 1.
In this case, only C1 or C3 holds by f(a, b) + g(a, b) 6 2(q − 1).
Assume that C1 holds. Then h(a) = â = 0 and r′ 6= 0, which imply that f(a, b) = r′

and g(a, b) = q−r′. Then M = 2(m−n′)q−r′ > 0 if and only if N = 2(m−n′)q−q−r′ > 0.
Assume that C3 holds. Then f(a, b) + g(a, b) = 2q − p/2 and h(a) = q − p/2− â. By

(1), note that g(a, b) = q − â − r′ or 2q − â − r′, and p/2 + â 6 q. Suppose g(a, b) =
q − â − r′. Then f(a, b) = q + â + r′ − p/2 and 0 6 q + r′ − p/2 < q, which imply
M = 2(m − n′ + 1)q − q − r′ + p/2 > 0 if and only if N = 2(m − n′)q + p/2 − r′ > 0.
Suppose g(a, b) = 2q− â−r′. Since f(a, b) = â+r′−p/2, we have p/2−r′ 6 â < q, which
implies M = 2(m− n′)q + p/2− r′ > 0 if and only if N = 2(m− n′)q − q + p/2− r′ > 0.

Thus, desired result follows.

Lemma 6. If C1, C2 or C3 holds, then Γq,s,k is a weakly distance-regular digraph.

Proof. We will prove that Γq,s,k is weakly distance-transitive. Let (a, b) and (x, y) be two

vertices satisfying ∂̃((0, 0), (a, b)) = ∂̃((0, 0), (x, y)). It suffices to find σ ∈ Aut(Γq,s,k) such
that σ(0, 0) = (0, 0) and σ(a, b) = (x, y). By (2), we divide the proof into two cases.

Case 1. ∂((0, 0), (a, b)) = â+ b̂.
Suppose ∂((0, 0), (x, y)) = x̂ + ŷ. Then g(a, b) = g(x, y). By Lemma 5, we have

b̂ + g(a, b) = ŷ + g(x, y). This implies that a = x and b = y. Hence, the identity
permutation is a desired automorphism.

Suppose ∂((0, 0), (x, y)) = s− ŷ+ f(x, y). Then â+ b̂ = s− ŷ+ f(x, y), which implies
x̂ ≡ â + b̂ + k − 1 by s ≡ p. Hence, x̂ = f(a, b) and g(a, b) = h(x). From Lemma 5, we
have b̂ + g(a, b) = s − ŷ + h(x). This implies ŷ = s − b̂. Let σ be the permutation on
V Γq,s,k such that

σ(u, v) =

{
(u, v), if v = 0,
(f(u, v),−v), if v 6= 0.

Routinely, σ is a desired automorphism.
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Case 2. ∂((0, 0), (a, b)) = s− b̂+ f(a, b).
Suppose ∂((0, 0), (x, y)) = s − ŷ + f(x, y). Then ŷ − b̂ = f(x, y) − f(a, b). We have

ŷ− b̂ ≡ x̂+ ŷ− â− b̂. This implies x = a. By Lemma 5, one gets s− b̂+h(a) = s− ŷ+h(x),
which implies that y = b. Hence, the identity permutation is a desired automorphism.

Suppose ∂((0, 0), (x, y)) = x̂+ŷ. It is similar to Case 1 and the desired result holds.

By Lemma 4, for vertices (a, b) and (x, y) of Γq,s,k, we have

∂̃((a, b), (x, y)) =

{
∂̃((0, 0), (x− a, y − b)), if ŷ ∈ {b̂, b̂+ 1, . . . , s− 1},
∂̃((0, 0), (x− a+ k − 1, y − b)), otherwise.

Lemma 7. If Γq,s,k is weakly distance-regular, then C1, C2 or C3 holds.

Proof. Suppose for the contrary that C1, C2 and C3 do not hold. Let e = (0, 0), z = (0, 1),
w = (k, s− 1) be the vertices of Γq,s,k, and α(v) = (3 + (−1)v)/4 for v ∈ Z. By (2), note

that ∂̃(e, z) = ∂̃(e, w) = (1, q). To prove this lemma, we would pick proper x, y ∈ V Γq,s,k

such that ∂̃(e, x) = ∂̃(e, y), and

P(1,q),∂̃(z,x)(e, y) = ∅ or P(1,q),∂̃(w,x)(e, y) = ∅, (3)

which contrary to z ∈ P(1,q),∂̃(z,x)(e, x) or w ∈ P(1,q),∂̃(w,x)(e, x).

Case 1. k 6= q and 2k + p > 2(q − α(p) + 2).

Let x = (k, α(s) − 1 + s/2) and y = (k, α(s) + s/2). In this case, ∂̃(e, x) = ∂̃(e, y) =

∂̃(z, y) = ((m + 1)q + 1, (m + 2)q − k) and ∂̃(w, x) = ((m + 1)q,−α(s) + s/2). Since
∂(y, w) = −α(s) + s/2− 1, we have (3) holds.

Case 2. k 6= q, p > q and 2k + p 6 2(q − α(p) + 1).
Let x = (0, α(s) + s/2) and y = (q+α(p) + 1− k− p/2, (m− 1)q+ p+ k− 1). In this

case, ∂̃(e, x) = ∂̃(e, y) = (α(s) + s/2, k−α(s)−1 + s/2) and ∂̃(z, x) = (α(s)−1 + s/2, k−
α(s) + s/2). Since ∂̃(z, y) = (α(s)− 1 + s/2, k−α(s)− 1 + s/2) and ∂(w, y) = α(s) + s/2,
we have (3) holds.

Case 3. k 6= q, p < q and 2(α(p) + 1) < 2k + p 6 2(q − α(p) + 1).
Let x = (0, α(s) + s/2) and y = (q + α(p) + 1 − k − p/2, (m − 1)q + p + k − 1). In

this case, ∂̃(e, x) = ∂̃(e, y) = (α(s) + s/2, k−α(s)− 1 + s/2) and ∂(w, y) = α(s) + s/2. If

p = 2(1−α(p)), then ∂̃(z, x) = (α(s)− 1 + s/2, α(s)− 1 + s/2) and ∂̃(z, y) = (α(s)− 1 +

s/2, (m−1)q+p+k−2); if p 6= 2(1−α(p)), then ∂̃(z, x) = (α(s)−1+s/2, k−α(s)+s/2)

and ∂̃(z, y) = (α(s)− 1 + s/2, k − α(s)− 1 + s/2). Hence, (3) holds.
Case 4. k 6= q, p < q and 2k + p 6 2(α(p) + 1).

Let x = (k, α(s) − 1 + s/2) and y = (k, α(s) + s/2). In this case, ∂̃(e, x) = ∂̃(e, y) =

∂̃(z, y) = (mq + 1, q − α(s)− 1 + s/2) and ∂̃(w, x) = (mq,−α(s) + s/2). Since ∂(y, w) =
−α(s)− 1 + s/2, we have (3) holds.

Case 5. k = q and p > q + 3.
Let x = (q − 1, (m− 1)q + p) and y = (0, (m + 1)q). In this case, ∂̃(e, x) = ∂̃(e, y) =

((m + 1)q, (m + 1)q) and ∂(z, x) = mq + p − 2. Since ∂(z, y) = (m + 1)q − 1 and
∂(w, y) = (m+ 1)q, we have (3) holds.
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Case 6. k = q and 3 6 p 6 q + 1.
Let x = (q − 2,mq + 2) and y = (q − 2,mq + 1). In this case, ∂̃(e, x) = ∂̃(e, y) =

∂̃(z, x) = ((m+1)q−1,mq+2). Since ∂̃(z, y) = ((m+1)q−2,mq+2) and ∂(y, w) = mq+3,
we have (3) holds.

Case 7. k = q and p 6 1.
Let x = (q − 1,mq + p) and y = (0,mq). In this case, ∂̃(e, x) = ∂̃(e, y) = (mq,mq)

and ∂(z, x) = (m + 1)q + p − 2. Since ∂(z, y) = mq − 1 and ∂(w, y) = mq, we have (3)
holds.

Therefore, the desired result holds.

Combining Lemmas 6 and 7, we obtain the following theorem.

Theorem 8. Γq,s,k is weakly distance-regular, if and only if C1, C2 or C3 holds.

Finally, we shall show that every weakly distance-regular digraph Γq,s,k is a Cayley
digraph.

Proposition 9. Let d = p
2gcd(q,p)

, l = max{w | 2w divides gcd(q, p)}, h = s
2l

, i = 2{d}
and u be an integer such that 2iq divides (up−gcd(q, p)), where {d} denotes the fractional
part of d and gcd(q, p) denotes the greatest common divisor of q and p.

(i) If C1 holds, then Γq,s,k is isomorphic to Cay(Zq×Z2mq, {(1, 0), (0, 1), (1, 2mq−1)}),
m > 1 and q > 3.

(ii) If C2 holds, then Γq,s,k is isomorphic to Cay(Z(mq+2)q, {1,mq + 2,mq + 1}), m > 1
and q > 3.

(iii) If C3 holds, then Γq,s,k is isomorphic to Cay(Z2iq × Z2−i(2mq+p), {(2iud, 1), (2i −
2iud, ih− 1), (2i, ih)}), where q > 3, m > 0, 4 6 p 6 2q − 2 and p is even.

Proof. If C1 holds, then (i) is obvious. If C2 holds, then the mapping σ from Γq,s,k to the

digraph in (ii) satisfying σ(a, b) = â(mq + 2) + b̂ is an isomorphism.
Now suppose C3 holds. Let σ be the mapping from Γq,s,k to the digraph in (iii) such

that σ(a, b) = (2iâ+ 2iudb̂, ihâ+ b̂). Note that σ is well defined.
We will show that σ is injective. It is clear for i = 0. If i = 1, by 2|p, then l > 1. Assume

that σ(x1, y1) = σ(x2, y2) for (x1, y1), (x2, y2) ∈ V Γq,s,k. Let x = 2ud(ŷ2− ŷ1)− 2(x̂1− x̂2)
and y = (ŷ2− ŷ1)−h(x̂1− x̂2). Since σ(x1, y1) = σ(x2, y2), we have 2q|x and (mq+p/2)|y,
which imply 2l−1h|y by s = 2mq + p. Hence, h|(ŷ2 − ŷ1).

We claim 2j|(ŷ2− ŷ1) for 1 6 j 6 l. By 2q|(up−gcd(q, p)), we get (2q/gcd(q, p))|(2ud−
1), which implies 2ud is odd. Since 2q|x, one obtains 2|(ŷ2− ŷ1). Suppose 2j|(ŷ2− ŷ1) for
some j < l. From 2j|(mq+p/2), we have 2j|y and 2j|(x̂1− x̂2), which imply 2j+1|(ŷ2− ŷ1)
by 2j+1|x. So our claim is valid.

By gcd(2l, h) = 1, we obtain (2mq + p)|(ŷ2 − ŷ1). Thus, y1 = y2 and x1 = x2.
Therefore σ is a bijection. One can verify that ((x1, y1), (x2, y2)) is an arc if and only if
(σ(x1, y1), σ(x2, y2)) is an arc. Hence, σ is an isomorphism.
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3 Circuits

In this section, we will discuss some properties for circuits of weakly distance-regular
digraphs.

Let Γ be a digraph. Let R = {Γĩ | ĩ ∈ ∂̃(Γ)}, where Γĩ = {(x, y) ∈ V Γ × V Γ |
∂̃(x, y) = ĩ}. If Γ is weakly distance-regular, then (V Γ, R) is an association scheme. For
more information about association schemes, see [3, 11]. For two nonempty subsets E,
F ⊆ R, define

EF := {Γh̃ |
∑
Γĩ∈E

∑
Γj̃∈F

ph̃
ĩ,̃j
6= 0},

and write ΓĩΓj̃ instead of {Γĩ}{Γj̃}. For each nonempty subset F of R, define 〈F 〉 to be
the minimal equivalence relation containing F . Let

V Γ/F := {F (x) | x ∈ V Γ} and ΓF
ĩ

:= {(F (x), F (y)) | y ∈ FΓĩF (x)},

where F (x) := {y ∈ V Γ | (x, y) ∈ ∪f∈Ff}. The digraph (V Γ/F, ∪(1,s)∈∂̃(Γ)Γ
F
1,s) is said

to be the quotient digraph of Γ over F , denoted by Γ/F . The size of Γĩ(x) := {y ∈ V Γ |
∂̃(x, y) = ĩ} depends only on ĩ, denoted by kĩ. For any (a, b) ∈ ∂̃(Γ), we usually write ka,b
(resp. Γa,b) instead of k(a,b) (resp. Γ(a,b)).

Now we shall introduce some basic results which are used frequently in this paper.

Lemma 10. Let Γ be a weakly distance-regular digraph. For each ĩ := (a, b) ∈ ∂̃(Γ),
define ĩ∗ = (b, a).

(i) kh̃ p
h̃
ĩ,̃j

= kĩ p̃
i
h̃,̃j∗

= kj̃ p
j̃

ĩ∗,h̃
.

(ii) kĩ kj̃ =
∑

h̃∈∂̃(Γ) kh̃ p
h̃
ĩ,̃j

.

(iii) |Γĩ Γj̃| 6 gcd(kĩ, kj̃).

Proof. See Proposition 2.2 in [3, pp. 55-56] and Proposition 5.1 in [1].

In the remaining of this paper, we assume that Γ is a weakly distance-regular digraph
of valency 3 satisfying k1,q−1 = 1 and k1,g−1 = 2, where q, g > 3 and q 6= g. Let Ai,j

denote a binary matrix with rows and columns indexed by V Γ such that (Ai,j)x,y = 1 if

and only if ∂̃(x, y) = (i, j).

Lemma 11. The following hold:

A1,q−1A1,g−1 = A1,g−1A1,q−1, (4)

A1,g−1Ag−1,1 = Ag−1,1A1,g−1. (5)

Proof. By Lemma 10 (iii), we may assume that

A1,g−1A1,q−1 = Ai,j and A1,q−1A1,g−1 = As,t, i, s ∈ {1, 2}.
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We claim that i = s = 2. Suppose i = 1. Then j = g−1 because of k1,q−1 = 1. By Lemma

10 (i), we get p
(1,q−1)
(g−1,1),(1,g−1) = 2p

(1,g−1)
(1,g−1),(1,q−1) = 2. By Lemma 10 (iii), Ag−1,1A1,g−1 =

2I + 2A1,q−1, contrary to the fact that Ag−1,1A1,g−1 is a symmetric matrix. Hence, i = 2.
Similarly, s = 2 and our claim is valid.

Pick a path (x0, x1, x2) with ∂̃(x0, x1) = (1, g − 1) and ∂̃(x1, x2) = (1, q − 1). Then
∂(x2, x0) = j. We may choose a path (x2, x3, . . . , xj+1, x0). Since Γ has just two types

of arcs, there exists an i ∈ {1, 2, . . . , j + 1} such that ∂̃(xi, xi+1) = (1, q − 1) and

∂̃(xi+1, xi+2) = (1, g − 1), where xj+2 = x0 and xj+3 = x1. Since ∂̃(xi, xi+2) = (2, t),
one has t 6 j. Similarly, j 6 t. Hence, j = t and (4) holds.

In view of Lemma 10 (iii), we have

A1,g−1Ag−1,1 = 2I + p
(s,s)
(1,g−1),(g−1,1) As,s, s > 2, (6)

Ag−1,1A1,g−1 = 2I + p
(t,t)
(g−1,1),(1,g−1) At,t, t > 2. (7)

By Lemma 10 (ii), we have ks,sp
(s,s)
(1,g−1),(g−1,1) = kt,tp

(t,t)
(g−1,1),(1,g−1) = 2, which implies that

p
(s,s)
(1,g−1),(g−1,1), p

(t,t)
(g−1,1),(1,g−1) ∈ {1, 2}. Let x0 and xs be two vertices satisfying ∂̃(x0, xs) =

(s, s). Suppose p
(s,s)
(1,g−1),(g−1,1) = 2. Pick two distinct vertices x, y ∈ P(1,g−1),(g−1,1)(x0, xs).

By x0 ∈ P(g−1,1),(1,g−1)(x, y) and (7), ∂̃(x, y) = (t, t). It follows that p
(t,t)
(g−1,1),(1,g−1) = 2.

Similarly, if p
(t,t)
(g−1,1),(1,g−1) = 2, then p

(s,s)
(1,g−1),(g−1,1) = 2 by (6). Hence, p

(s,s)
(1,g−1),(g−1,1) =

p
(t,t)
(g−1,1),(1,g−1). In order to show (5), we shall prove s = t. Pick x ∈ P(1,g−1),(g−1,1)(x0, xs)

and a path P := (x0, x1, . . . , xs).
Case 1. P contains an arc of type (1, g − 1).

By (4), without loss of generality, we may assume that ∂̃(x0, x1) = (1, g − 1). Pick
y ∈ Γ1,g−1(xs) \ {x}. In view of (7), if x 6= x1, from x0 ∈ P(g−1,1),(1,g−1)(x1, x), then
∂(x1, x) = t 6 s; if x = x1, from x0 ∈ P(g−1,1),(1,g−1)(x, y), then ∂(x, y) = t 6 s.

Case 2. P only contains arcs of type (1, q − 1).
In this case, As

1,q−1 6= I. By (4), there exists a path (x0, y1, y2, . . . , ys, x) containing the
unique arc (x0, y1) of type (1, g − 1). If x = y1, by Lemma 10 (iii), we have As

1,q−1 = I, a
contradiction. Therefore, x 6= y1. By x0 ∈ P(g−1,1),(1,g−1)(y1, x) and (7), one has ∂(y1, x) =
t 6 s.

Similarly, t > s, which implies s = t, as desired.

In the following, let F = 〈Γ1,g−1〉 and fix x ∈ V Γ. Then Γ/F is isomorphic to a circuit
Cm of length m. Let ∆ be a digraph with the vertex set F (x) such that (y, z) is an arc of
∆ if (y, z) is an arc of type (1, g − 1) in Γ.

Lemma 12. Suppose that every circuit of length g contains arcs of the same type in Γ.
Then ∆t,g−t(x0) = Γt,g−t(x0) for each x0 ∈ F (x) and t ∈ {1, 2, . . . , g − 1}.

Proof. Note that every arc of type (1, g − 1) is contained in a circuit of length g with
all arcs of type (1, g − 1). It follows that, for any such circuit (x0, x1, . . . , xg−1), we have
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∂̃Γ(x0, xi) = (i, g − i), where 1 6 i 6 g − 1. Then every arc of ∆ is contained in a circuit
of length g in ∆.

For any xt ∈ Γt,g−t(x0), there exists a circuit Cg := (x0, x1, . . . , xt, . . . , xg−1) in Γ.
Hence, Cg only contains the arcs of same type. Suppose that each arc of Cg is of type
(1, q − 1). Then, q < g and every circuit of length q in Γ only contains arcs of type
(1, q − 1). It follows that Aq

1,q−1 = I. Since x0 6= xl for 1 6 l 6 g − 1, k1,q−1 = 1
implies that g is the minimum positive integer such that Ag

1,q−1 = I, a contradiction.
Consequently, each arc of Cg is of type (1, g − 1). Therefore, (x0, xt) ∈ ∆t,g−t; and
so Γt,g−t(x0) ⊆ ∆t,g−t(x0). Conversely, pick any xt ∈ ∆t,g−t(x0). Then, in Γ, there
exists a circuit (x0, x1, . . . , xt, . . . , xg−1) each of whose arcs is of type (1, g − 1). Hence,
(x0, xt) ∈ Γt,g−t; and so ∆t,g−t(x0) ⊆ Γt,g−t(x0). Thus, the desired result holds.

Lemma 13. If F (x) = V Γ, then there exists a circuit of length g containing different
types of arcs.

Proof. Suppose for the contrary that every circuit of length g contains the same type
of arcs. By the Lemma 12, Γt,g−t = ∆t,g−t for any 1 6 t 6 g − 1. By (5), the proof
of Proposition 4.3 in [8] implies that ∆ is isomorphic to Γ1 := Cay(Z2g, {1, g + 1}) or
Γ2 := Cay(Zg × Zg, {(0, 1), (1, 0)}).

Case 1. ∆ ' Γ1.
Choose y ∈ Z2g \{0, 1, g+1} and t ∈ Z2g such that ∂̃Γ(0, y) = (1, q−1), t̂ ≡ ŷ (mod g)

and t̂ ∈ {0, 2, 3, . . . , g − 1}. Since (y + 1, y + 2, . . . , y − t+ g − 1, 0, y) is a path of length
g − t̂, ∂Γ(y + 1, y) = g − 1 6 g − t̂. It follows that t = 0, and so ŷ = g. Therefore,

∂̃Γ(0, g) = (1, q − 1). Similarly, ∂̃Γ(g, 0) = (1, q − 1). Hence, q = 2, a contradiction.
Case 2. ∆ ' Γ2.
Pick (i, j) ∈ Γ1,q−1(0, 0). Since ∂̃∆((0, 0), (0, j)) = (ĵ, g − ĵ), by Lemma 12, we

have ∂̃Γ((0, 0), (0, j)) = (ĵ, g − ĵ). It follows that i 6= 0. By Lemma 10 (i), one

gets p
(1,q−1)

(̂i,g−î),(ĵ,g−ĵ) = kî,g−î p
(̂i,g−î)
(1,q−1),(g−ĵ,ĵ). Since (i, j) ∈ P(1,q−1),(g−ĵ,ĵ)((0, 0), (i, 0)) in Γ,

p
(̂i,g−î)
(1,q−1),(g−ĵ,ĵ) = 1, which implies that p

(1,q−1)

(̂i,g−î),(ĵ,g−ĵ) = kî,g−î.

Let ((a, b), (a′, b′)) be an arc of type (1, q − 1). Then P(̂i,g−î),(ĵ,g−ĵ)((a, b), (a
′, b′)) =

Γî,g−î(a, b). Since (a+ i, b), (a, b+ i) ∈ ∆î,g−î(a, b), by Lemma 12, (a′, b′) ∈ Γĵ,g−ĵ(a+ i, b)∩
Γĵ,g−ĵ(a, b+ i). By Lemma 12 again,

(a′, b′) ∈ {(a+ i+ j, b), (a+ i, b+ j)} ∩ {(a+ j, b+ i), (a, b+ i+ j)}.

Since i 6= 0, we have (a′, b′) = (a+ i, b+ j) = (a+ j, b+ i), which implies that i = j. Thus,
Γ ' Cay(Zg × Zg, {(1, 0), (0, 1), (i, i)}). Since g 6= q, one gets i 6= 1. Let g = nî + r with

0 6 r 6 î − 1. If r 6= 0, then ∂̃Γ((0, 0), (1, 1)) = ∂̃Γ((0, 0), (i, i + 1)) = (2, n + 2r − 2); if

r = 0, then ∂̃Γ((0, 0), (1, 1)) = ∂̃Γ((0, 0), (i, i + 1)) = (2, n + 2̂i− 3). But we have (1, 0) ∈
P(1,g−1),(1,g−1)((0, 0), (1, 1)) and P(1,g−1),(1,g−1)((0, 0), (i, i+1)) = ∅ in Γ, a contradiction.

Lemma 14. Every circuit of length q in Γ only contains the arcs of the same type. In
particular,

A2
1,q−1 = A2,q−2. (8)
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Proof. If F (x) = V Γ, then q < g by Lemma 13 and the desired result follows. Suppose
F (x) 6= V Γ. Assume the contrary, namely, there exists a circuit (x0, x1, . . . , xq−1) contain-
ing arcs of different types. Since Γ/F ' Cm with m > 2, there exist at least two arcs of

type (1, q−1) in this circuit. By (4), we may assume that ∂̃(x0, x1) = ∂̃(x1, x2) = (1, q−1)

and ∂̃(xq−1, x0) = (1, g − 1). By the claim in Lemma 11, ∂̃(xq−1, x1) = (2, q − 2). Since

k1,q−1 = 1, by Lemma 10 (ii), one has k∂̃(x0,x2) = 1. Therefore, ∂̃(x0, x2) = (2, q − 2). But

P(1,q−1),(1,q−1)(x0, x2) = {x1} and P(1,q−1),(1,q−1)(xq−1, x1) = ∅, a contradiction. Lemma 10
(iii) implies (8).

Lemma 15. For any circuit (x0, x1, . . . , xl−1) with ∂̃(xl−1, x0) = (1, g − 1), there exists

i ∈ {0, 1, . . . , l − 2} such that ∂̃(xi, xi+1) = (1, g − 1).

Proof. Suppose for the contradiction that ∂̃(xi, xi+1) = (1, q−1) for any i = 0, 1, . . . , l−2.
By Lemma 10 (iii), we have Ag−1,1 = Al−1

1,q−1. Then Ag−1,1 is a permutation matrix, a
contradiction.

Lemma 16. F (x) 6= V Γ if and only if every circuit of length g in Γ only contains the
arcs of the same type.

Proof. Suppose F (x) 6= V Γ. Assume the contrary, namely, (x0, x1, . . . , xg−1) is a circuit

containing arcs of different types such that ∂̃(x0, x1) = (1, g−1). By (4) and Lemma 15, we

may assume that ∂̃(x1, x2) = (1, q−1) and ∂̃(xg−1, x0) = (1, g−1). By the claim in Lemma

11, ∂̃(x0, x2) = (2, g−2). If ∂(xg−1, x1) = 1, from F (x) 6= V Γ, then ∂̃(xg−1, x1) = (1, g−1),
which implies (x1, x2, . . . , xg−1) is a circuit of length g − 1 containing an arc of type

(1, g − 1), a contradiction. Hence, ∂̃(xg−1, x1) = (2, g − 2). The fact that x2 /∈ F (x0)
implies that P(1,g−1),(1,g−1)(x0, x2) = ∅, contradicting to x0 ∈ P(1,g−1),(1,g−1)(xg−1, x1).

The converse is true by Lemma 13.

4 The proof of Theorem 1

In this section, we assume that F = 〈Γ1,g−1〉 and x is a fixed vertex of Γ.

Lemma 17. If F (x) 6= V Γ, then Γ/F ' C2.

Proof. Suppose for the contradiction that Γ/F ' Cm with m > 3. Choose a path

(x0, x1, x2, x3) such that ∂̃(x0, x1) = ∂̃(x1, x2) = (1, q − 1) and ∂̃(x2, x3) = (1, g − 1).

Since ∂(F (x0), F (x2)) = 2, k1,q−1 = 1 implies that ∂̃(x0, x3) = (3, l) for some l. Then there
exists a shortest path (x3, x4, y2, . . . , xl+2, x0). By Lemma 15 and (4), we may assume that

∂̃(x3, x4) = (1, g − 1). Since ∂(F (x1), F (x4)) = 1 and k1,q−1 = 1, we have ∂(x1, x4) = 2

or 3. If ∂(x1, x4) = 2, by F (x) 6= V Γ, then ∂̃(x2, x4) = (1, g − 1), which implies g = 2

by x2 ∈ P(g−1,1),(1,g−1)(x3, x4) and (7), a contradiction. Hence, ∂̃(x1, x4) = (3, t) for
some t 6 l. From m > 3 and (4), there exists a path (x4, y1, y2, . . . , yt−2, x0, x1). Then
(x3, x4, y1, y2, . . . , yt−2, x0) is a path of length t; and so l 6 t. Hence, l = t. By (8),
x2 ∈ P(2,q−2),(1,g−1)(x0, x3). Then there exists y ∈ P(2,q−2),(1,g−1)(x1, x4). From k1,q−1 = 1,

∂̃(x2, y) = (1, q − 1), which implies Γ1,q−1 ∈ F , a contradiction.
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Proposition 18. If F (x) 6= V Γ, then Γ is isomorphic to one of the digraphs in Theorem 1
(i).

Proof. By Lemma 17, V Γ has a partition F (x)∪̇F (x′). Let ∆ and ∆′ be the subdigraphs
of Γ induced on F (x) and F (x′), respectively. By (4) and k1,q−1 = 1, σ : F (x) → F (x′),
y 7→ y′ is an isomorphism mapping from ∆ to ∆′, where y′ ∈ Γ1,q−1(y). By Lemmas 12
and 16, Γr,g−r(y) = ∆r,g−r(y) for each y ∈ F (x) and r ∈ {1, 2, . . . , g−1}. By (5), the proof
of Proposition 4.3 in [8] implies that ∆ is isomorphic to Γ1 := Cay(Zg×Zg, {(1, 0), (0, 1)})
or Γ2 := Cay(Z2g, {1, g + 1}). Suppose that τi is an isomorphism from Γi to ∆ if Γi is
isomorphic to ∆.

We claim that ∆ ' Γ2. Suppose for the contrary that ∆ ' Γ1. Write τ1(a, b) = (a, b, 0)
and σ(a, b, 0) = (a, b, 1) for each (a, b) ∈ Zg ×Zg. Let ((0, 0, 1), (c, d, 0)) be an arc of type

(1, q − 1). By (8), ∂̃Γ((0, 0, 0), (c, d, 0)) = (2, q − 2). Lemma 12 implies that c 6= 0
and d 6= 0. By Lemma 12 again, we have (c, d, 0) ∈ P(2,q−2),(g−d̂,d̂)((0, 0, 0), (c, 0, 0))

and ∂̃Γ((0, 0, 0), (c, 0, 0)) = ∂̃Γ((0, 0, 0), (0, c, 0)). By k2,q−2 = 1, we have (0, c, 0) ∈
Γg−d̂,d̂(c, d, 0). Then (0, c, 0) ∈ {(c, 0, 0), (c− d, d, 0)} by Lemma 12. Hence, c = d.

Suppose ĉ = g − 1. Since ((0, 0, 1), (−1,−1, 0), (0,−1, 0), (0, 0, 0)) is a shortest path,

q = 4, contrary to Lemma 14. Suppose ĉ 6= g − 1. Then ∂̃Γ((0, 0, 0), (c, c + 1, 0)) = (3, l)
for some l. Pick a path ((c, c + 1, 0), x1, x2, . . . , xl−1, (0, 0, 0)). By Lemma 15 and (4),

we may assume that ∂̃Γ((c, c + 1, 0), x1) = (1, g − 1). By (7), we have ∂̃Γ((0, 0, 1), x1) =
(3, t) for some t 6 l. Since F (x) 6= V Γ, k1,q−1 = 1 implies that there exists a path
(x1, y1, y2, . . . , yt−2, (0, 0, 0), (0, 0, 1)). Then ((c, c + 1, 0), x1, y1, y2, . . . , yt−2, (0, 0, 0)) is a
path of length t; and so l 6 t. Hence l = t. By (8) and x1 ∈ V∆, one has (c, c, 0) ∈
P(2,q−2),(1,g−1)((0, 0, 0), (c, c+1, 0)) and P(2,q−2),(1,g−1)((0, 0, 1), x1) = ∅ in Γ, a contradiction.
Therefore, our claim is valid.

Write τ2(a) = (a, 0) and σ(a, 0) = (a, 1) for each a ∈ Z2g. Let ((a, 1), (a+ka, 0)) be an

arc of type (1, q−1). Then ka 6= 0. By (8), ∂̃Γ((a, 0), (a+ka, 0)) = (2, q−2). By Lemma 12,

∂̃∆((a, 0), (a+ka, 0)) 6= (t, g− t) for any t ∈ {1, 2, . . . , g−1}. Since
⋃

16t6g−1 ∆t,g−t(a, 0) =

V∆ \ {(a, 0), (a + g, 0)}, one has k̂a = g. Then, Γ ' Cay(Z4 × Zg, {(0, 1), (1, 0), (2, 1)})
and the result holds by Proposition 2.

Lemma 19. If F (x) = V Γ, then p
(1,q−1)
(1,g−1),(1,g−1) = 2.

Proof. By Lemma 13, there exists a circuit of length g with different types of arcs. Let
C := (x0, x1, . . . , xg−1) be such a circuit with the minimum number of arcs of type (1, g−1).
Suppose C contains t arcs of types (1, g−1). Lemma 15 implies that t > 2. By (4), we may

assume that ∂̃(xi, xi+1) = (1, g − 1) for 0 6 i 6 t. We claim that ∂̃(x0, x2) = (1, q − 1).

Suppose not. By the claim in Lemma 11 and (7), we have ∂̃(xg−1, x1) = ∂̃(x0, x2) =
(2, g − 2). Since x0 ∈ P(1,q−1),(1,g−1)(xg−1, x1), there exists x′1 ∈ P(1,q−1),(1,g−1)(x0, x2). The
circuit C ′ := (x0, x

′
1, x2, . . . , xg−1) contains just t−1 arcs of type (1, g−1), a contradiction.

Thus, our claim is valid. It follows that p
(1,g−1)
(1,q−1),(g−1,1) = 1. By Lemma 10 (i), the desired

result holds.
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Let H = 〈Γ1,q−1〉 and H(x0,0), H(x0,1), . . . , H(x0,s−1) be all pairwise distinct vertices
of Γ/H. Since q < g, the subdigraph induced on each H(x0,j) is a circuit of length q with
arcs of type (1, q − 1), say (x0,j, x1,j, . . . , xq−1,j). It follows that s > 2.

Proposition 20. If F (x) = V Γ, then Γ is isomorphic to one of the digraphs in Theorem 1
(ii).

Proof. Suppose ∂(H(x0,0), H(x0,1)) = 1. By (4), we may assume that ∂̃(x0,0, x0,1) = (1, g−
1). By Lemma 19, one has ∂̃(x0,1, x1,0) = (1, g−1), which implies ∂(H(x0,1), H(x0,0)) = 1.
Since F (x) = V Γ, Γ/H is a connected undirected graph. By k1,g−1 = 2, Γ/H is an
undirected circuit of length s. Suppose s = 2. Pick y ∈ Γ1,g−1(x0,1)\{x1,0}. Then y = xi,0
for some i > 2, and (x0,1, y, xi+1,0, . . . , xq−1,0, x0,0) is a path of length q − i + 1 from x0,1

to x0,0, contrary to the fact ∂(x0,1, x0,0) = g − 1. Hence, s > 3.
Let (H(x0,0), H(x0,1), . . . , H(x0,s−1)) be an undirected circuit. By (4), we may as-

sume that (x0,0, x0,1, . . . , x0,s−1) is a path with arcs of type (1, g − 1). By Lemma 19,
(x0,j, x0,j+1, x1,j, x1,j+1, x2,j, . . . , xq−1,j, xq−1,j+1) is a circuit with arcs of type (1, g− 1) for

j = 0, 1, . . . , s − 2. Hence, there exists k ∈ {1, 2, . . . , q} such that ∂̃(x0,s−1, xq−k+1,0) =
(1, g − 1), where the first subscription of x are taken modulo q. By Lemma 19 again, we

obtain ∂̃(xi,s−1, xi−k+1,0) = ∂̃(xi−k+1,0, xi+1,s−1) = (1, g − 1) for each i. Since

(x0,0, x0,1, . . . , x0,s−1, xq−k+1,0, xq−k+2,0, . . . , xq−1,0)

is a circuit of length s+k−1 with different types of arcs, by Lemma 14, we get s+k−1 > q.
From Theorem 8, the desired result follows.

Combining Propositions 18 and 20, we complete the proof of Theorem 1.

In the forthcoming paper [10], we shall classify cubic commutative weakly distance-
regular digraphs with one type of arcs.
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