
Locally 3-arc-transitive regular covers

of complete bipartite graphs

Eric Swartz
Department of Mathematics
College of William and Mary

P.O. Box 8795
Williamsburg, VA 23187, U.S.A.

easwartz@wm.edu

Submitted: Jun 24, 2013; Accepted: Apr 15, 2016; Published: Apr 29, 2016

Mathematics Subject Classifications: 05C25, 05E18

Abstract

In this paper, locally 3-arc-transitive regular covers of complete bipartite graphs
are studied, and results are obtained that apply to arbitrary covering transforma-
tion groups. In particular, methods are obtained for classifying the locally 3-arc-
transitive graphs with a prescribed covering transformation group, and these results
are applied to classify the locally 3-arc-transitive regular covers of complete bipar-
tite graphs with covering transformation group isomorphic to a cyclic group or an
elementary abelian group of order p2.
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1 Introduction

We will assume that all graphs are finite, simple, undirected, and connected, unless oth-
erwise stated. An s-arc of a graph Γ is a sequence of vertices (α0, α1, · · · , αs) such that
αi is adjacent to αi+1 and αi−1 6= αi+1 for all i, 1 6 i 6 s− 1. Note that vertices can be
repeated as long as αi−1 6= αi+1. An automorphism of the graph Γ is a permutation of
the vertices that preserves adjacency and nonadjacency. The set of all automorphisms of
the graph Γ forms a group and is denoted Aut(Γ). Given a subgroup G 6 Aut(Γ), Γ is
(G, s)-arc-transitive if Γ contains an s-arc and any s-arc in Γ can be mapped to any other
s-arc in Γ via an element of G. The graph is locally (G, s)-arc-transitive if Γ contains an
s-arc and, for any vertex α of Γ, any s-arc starting at α can be mapped to any other s-arc
starting at α via an element of G. In the cases that such a group G exists, the graph Γ is
said to be s-arc-transitive or locally s-arc-transitive, respectively. Note that it is possible

the electronic journal of combinatorics 23(2) (2016), #P2.18 1



for a graph to be locally (G, s)-arc-transitive but for G to be intransitive on the set of
vertices. (As an example, one could take the complete bipartite graph K2,3.) On the other
hand, when Γ is locally (G, s)-arc-transitive and every vertex in Γ is adjacent to at least
two other vertices, G is transitive on the edges of Γ.

The study of s-arc-transitive graphs began with Tutte’s seminal studies of cubic graphs
[27, 28]. Tutte proved that if Γ is a cubic (G, s)-arc-transitive graph, then s 6 5 (and that
this upper bound is the best possible). Later, Weiss demonstrated that if the valency is
at least three, then s 6 7 [30]. Whereas Tutte’s result used clever elementary methods,
Weiss’s result relied on the Classification of Finite Simple Groups (CFSG). On the other
hand, locally s-arc-transitive graphs give geometric descriptions of rank 2 amalgams. The
proof that s 6 9 for any locally s-arc-transitive graph with all vertex valencies at least
three [29] relies heavily on knowledge of amalgams and the classification of weak (B,N)-
pairs of rank 2 by Delgado and Stellmacher [2] and further demonstrates the deep link
between the two concepts. Moreover, locally s-arc-transitive graphs arise as incidence
graphs of highly symmetric structures [19, 31] and are important in their study. For
instance, the only examples of Moufang generalized octagons are the Ree-Tits generalized
octagons [26], the incidence graphs of which are locally 9-arc-transitive graphs.

A recent paper by Giudici, Li, and Praeger [11] set forth a program for the study of
locally s-arc-transitive graphs. First, any locally (G, s)-arc-transitive graph that is G-
vertex transitive is a (G, s)-arc-transitive graph, and many have been classified under a
similar program initiated by Praeger in [23]. Second, since any locally (G, s)-arc-transitive
graph of valency at least two is edge transitive, any locally (G, s)-arc-transitive graph
that is vertex intransitive must be bipartite with vertex set V Γ = ∆1 ∪ ∆2 such that
G is transitive on each of ∆1 and ∆2, respectively. Third, there is a characterization of
the graphs containing vertices of valency two [12, Theorem 6.2, Corollary 6.3]. Thus, the
focus is on the graphs with minimum valency at least three that are G-vertex intransitive.

The breakthrough for studying these remaining G-vertex intransitive graphs is the
normal quotient method from [11]. Let Γ be a graph with a group of automorphisms
G. If G has a normal subgroup N that acts intransitively on the vertices of Γ, define
the (normal) quotient graph ΓN to have vertex set the N -orbits of vertices of Γ, and two
N -orbits Σ1 and Σ2 are adjacent in ΓN if and only if there exist vertices α ∈ Σ1 and
β ∈ Σ2 such that α is adjacent to β in Γ. The original graph Γ is said to be a regular cover
of ΓN if each N -orbit Σ2 adjacent to Σ1 contains exactly one vertex adjacent to α in Γ
for each α ∈ Σ1, and in this case N is referred to as the covering transformation group.
(See also Section 2 for different yet equivalent topological definitions.) Giudici, Li, and
Praeger [11] showed that if Γ is a locally (G, s)-arc-transitive graph, then ΓN is a locally
(G/N, s)-arc-transitive graph. This insight led to the following framework for studying
locally s-arc-transitive graphs:

(I) Understand the basic graphs, that is, those for which there is no nondegenerate
normal quotient. A single vertex, a single edge, and a star, i.e., graphs of the form
K1,m for some m > 1 [11, Theorem 1.1], are the degenerate normal quotients in this
context.
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(II) Understand the regular covers of the basic graphs.

The basic graphs will arise when the group G acting on the graph has no normal
subgroup with more than two orbits. With this in mind, a group G acting transitively on
a set Ω is said to be quasiprimitive if every nontrivial normal subgroup N of G is transitive
on Ω. Given the above definition of a quotient graph, it is clear that quasiprimitive groups
are precisely the groups that give rise to basic graphs. The quasiprimitive groups were
classified by Praeger [23] and refined into the following eight types [24]: holomorph of
abelian group (HA), holomorph simple (HS), compound holomorph (HC), almost simple
(AS), twisted wreath product (TW), simple diagonal (SD), compound diagonal (CD), and
product action (PA). The main distinguishing factor among these different quasiprimitive
actions is the socle of the quasiprimitive group G, which is the subgroup soc(G) of G
generated by all minimal normal subgroups of G. There are four fundamentally different
kinds of basic graphs for vertex intransitive locally (G, s)-arc-transitive graphs, where
s > 2:

[Complete Bipartite] Complete bipartite graphs Km,n, where m 6= n;

[Star Normal Quotient] G acts faithfully on both orbits of vertices ∆1 and ∆2, but
only acts quasiprimitively on ∆1. In this case, the quasiprimitive action of G on ∆1

must be one of HA, HS, AS, PA, or TW [11, Theorem 1.3];

[Same Type] G acts faithfully and quasiprimitively on both orbits of vertices ∆1 and
∆2 with the same quasiprimitive type on each part, and the action of G must be
one of HA, TW, AS, or PA [11, Theorem 1.2];

[Different Type] G acts faithfully and quasiprimitively on both orbits of vertices ∆1

and ∆2 with a different quasiprimitive action on each part. In this case, G must act
with type SD on ∆1 and with type PA on ∆2 [11, Theorem 1.2].

The graphs in [Star Normal Quotient] have a (degenerate) quotient that is isomorphic
to the star K1,m for some m > 1. This is the reason these graphs are collectively referred
to as those with a star normal quotient.

While progress has been made in understanding the basic graphs [9, 10, 11, 12, 13,
19, 25], there has been very little work done toward understanding the regular covers of
locally s-arc-transitive graphs, which constitutes half of the program. The recent work
[1, 8, 20, 21, 22] on regular covers of finite symmetric graphs is limited by only considering
a single graph at a time and restricting to abelian covering transformation groups. The
study of regular covers of large families of symmetric graphs collectively has only been
undertaken in a few specific cases [6, 7, 16], even though studying regular covers of large
classes of graphs is necessary to understanding symmetric graphs as a whole.

In order to introduce the main results of this paper, we need the following notation.
Let α be a vertex of a graph Γ, and let G 6 Aut(Γ). We denote the vertices adjacent to
α in Γ by Γ(α), and the permutation group induced by Gα on Γ(α) will be denoted by
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G
Γ(α)
α . For any two vertices α, β of Γ, we define the distance function d(α, β) to be the

length of the shortest path between α and β in Γ. Given a natural number i, we define

G[i]
α := {g ∈ G | βg = β for all β satisfying d(α, β) 6 i}.

Note that G
[1]
α is a normal subgroup of Gα, and G

Γ(α)
α
∼= Gα/G

[1]
α .

In this paper, we study the locally 3-arc-transitive regular covers of complete bipartite
graphs. In Section 2, we obtain results that apply to locally 3-arc-transitive regular covers
of complete bipartite graphs with arbitrary covering transformation group, culminating
in the following result:

Theorem 1. Let Γ = Km,n with biparts of vertices ∆1 and ∆2, |∆1| = m 6 n = |∆2|, P :
Γ̃→ Γ be a regular covering projection such that H := CT(P) and G 6 Aut(Γ) lifts to G̃
such that Γ̃ is locally (G̃, 3)-arc-transitive. For vertices α, β ∈ ∆i′, define further Kα,β

m,n
∼=

K2,n to be the subgraph induced on {α, β} ∪∆i and Hβ to be the covering transformation
group of Pαβ : Σ̃→ Kα,β

m,n, where Σ̃ is a connected component of P−1(Kα,β
m,n). Then one of

the following must hold for each ∆i:

(1) |∆i| = pf for some prime p and f ∈ N, and Hβ is an elementary abelian group of
order pf , or

(2) There exists X 6 Aut(Hβ) such that X has a 2-transitive action on |∆i| points.

Moreover, in either case, if v ∈ ∆i, then G∆i
αβv is isomorphic to a subgroup of Aut(Hβ).

One inference that we can make from Theorem 1 is that elementary abelian covering
transformation groups are the most likely to yield locally 3-arc-transitive regular covers of
complete bipartite graphs. We apply Theorem 1 to cyclic covering transformation groups
and elementary abelian covering transformation groups in Sections 3 and 4, respectively,
and obtain the following classification results:

Theorem 2. Let Γ = Km,n, m 6 n, P : Γ̃ → Γ be a regular covering projection such
that H := CT(P) 6= 1 is a cyclic group and G 6 Aut(Γ) lifts to G̃ such that Γ̃ is locally
(G̃, 3)-arc-transitive. Then one of the following holds:

(1) m = n = 2 and H ∼= ZN , where N is any positive integer at least 2;

(2) m = 2, n = p for some odd prime p, and H ∼= Zp;

(3) m = n = p for some odd prime p and H ∼= Zp.

Moreover, in each case the cover is unique (up to isomorphism of covering projections).

Theorem 3. Let Γ = Km,n with biparts of vertices ∆1 and ∆2, |∆1| = m 6 n = |∆2|,
P : Γ̃ → Γ be a regular covering projection such that H := CT(P) ∼= Zd

p , p prime and

d > 1, is an elementary abelian group and G 6 Aut(Γ) lifts to G̃ such that Γ̃ is locally
(G̃, 3)-arc-transitive. Then one of the following must hold for each ∆i:
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(1) |∆i| = pf for some f 6 d, or

(2) There exists X 6 GLd(p) such that X has a 2-transitive action on |∆i| points.

Moreover, in either case, if v ∈ ∆i, then G∆i
αβv is isomorphic to a subgroup of GLd(p).

We apply this result to covering transformation groups isomorphic to Zp×Zp to obtain
the following classification:

Theorem 4. Let H ∼= Zp×Zp, where p is a prime. The only complete bipartite graphs with
a locally 3-arc-transitive regular cover whose covering transformation group is isomorphic
to a subgroup of H are K2,2, K2,3, K2,p, K2,p2 , K3,p, K3,p2 , Kp,p, Kp,p2 , and Kp2,p2.

Corollary 5. Let Γ = Km,n, m 6 n, P : Γ̃ → Γ be a regular covering projection such
that H := CT(P) ∼= Zp × Zp is an elementary abelian group of order p2 and G 6 Aut(Γ)
lifts to G̃ such that Γ̃ is locally (G̃, 3)-arc-transitive. Then one of the following holds:

(1) m = 2 and n = 3;

(2) m = 2 and n = p2;

(3) m = 3 and n = p;

(4) m = 3 and n = p2;

(5) m = p and n = p2;

(6) m = n = p2.

Moreover, in each case the cover is unique (up to isomorphism of covering projections).

2 Results applicable to general covering transformation groups

A covering projection P : Γ̃ → Γ maps V Γ̃ onto V Γ, preserving adjacency, such that for
any vertex α̃ ∈ V Γ̃, the set of neighbors of α̃ is mapped bijectively onto the neighbors of
P(α̃). For a vertex α of Γ, the set of vertices P−1(α) that are mapped onto α by P is
called the fiber over the vertex α. An automorphism g ∈ Aut(Γ) lifts to g̃ ∈ Aut(Γ̃) if
the following diagram commutes:

Γ̃ Γ̃

Γ Γ

g̃

P P

g
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The lift of the trivial group (identity) is known as the group of covering transformations
and is denoted CT(P). Γ̃ is a regular cover of Γ if CT(P) acts regularly on the set P−1(α)
for all vertices α ∈ V Γ. (Compare these to the equivalent definitions of Section 1.) A

voltage assignment is a map ξ :
−→
EΓ → H, where H is a group, such that ξ(α, β) =

ξ(β, α)−1. For ease of notation, the voltage of the arc (α, β) will be denoted ξαβ. The
derived covering graph Γ̃ of a voltage graph has vertex set V Γ × H, where two vertices
(α, h1) and (β, h2) are adjacent iff α is adjacent to β in Γ and h2 = ξαβh1. The following
theorem exhibits the deep connection between regular covers and derived covering graphs:

Theorem 6 ([15, Theorem 2.4.5, Section 2.5]). Every regular cover Γ̃ of a graph Γ is
a derived cover of a voltage graph. Moreover, if Γ̃ is connected we may assume that the
edges of a (fixed but arbitrary) spanning tree of Γ have been assigned the identity voltage.

Two covering projections P1 : Γ̃1 → Γ1 and P2 : Γ̃2 → Γ2 are said to be isomorphic
if there exist graph isomorphisms σ : Γ1 → Γ2 and σ̃ : Γ̃1 → Γ̃2 such that σP1 = P2σ̃.
The following lemma connects isomorphisms of covers to isomorphisms of the covering
transformation groups:

Lemma 7 ([21, Corollary 3.3]). Let P1 and P2 be two regular covers of a connected graph
Γ, and let H1 = CT(P1) and H2 = CT(P1). The covering projections P1 and P2 are
isomorphic if and only if there exists a group isomorphism τ : H1 → H2 and σ ∈ Aut(Γ)
such that τζ1 = ζ2σ, where, given a fixed vertex α of Γ, ζ1 and ζ2 are considered as
epimorphisms ζ1 : π(Γ, α)→ H1 and ζ2 : π(Γ, ασ)→ H2.

Throughout this section we will assume the following: Γ is the complete bipartite
graph Km,n with biparts ∆1 and ∆2 (|∆1| = m, |∆2| = n), Γ has a regular cover Γ̃ with
covering projection P : Γ̃→ Γ, and the fiber-preserving automorphisms G̃ of Γ̃ act locally
3-arc-transitively on Γ̃. We will identify the vertices of ∆1 with lowercase Greek letters
and vertices of ∆2 simply with the set {0, 1, 2, · · · , n−1}. By Theorem 6, Γ̃ is isomorphic
to the derived graph of a voltage graph, where voltages are assigned to the co-tree edges
with respect to some spanning tree T of Γ. It does not matter which spanning tree we
choose, and so we will choose the “double star” obtained by giving the identity voltage
to all edges incident with either the vertex α ∈ ∆1 or the vertex 0 ∈ ∆2.

We will let H = CT(P) and assume that H 6= 1 to assure that we have a nontrivial
cover. Moreover, we will let ξ be the function from the edge set of Γ to H with ξiβ
denoting the voltage assigned to the arc (i, β). The following lemma gives explicit criteria
for an automorphism of a graph to lift.

Lemma 8 ([21, Propositions 3.1, 5.1]). An automorphism g of Γ lifts to an automorphism

g̃ of Γ̃ if and only if there exists a group automorphism g#α ∈ Aut(H) such that ξg
#α

W =
ξW g , where W runs over a generating set for all closed walks based at a single vertex α.
Moreover, if H is abelian, the automorphism g#α does not depend on the choice of base
vertex α.

Note that by Giudici, Li, Praeger [11, Theorem 1.1], if G = G̃/CT(P), then Γ is a
locally (G, 3)-arc-transitive graph, and the group of automorphisms G of Γ lifts to Γ̃.
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At this point, we may associate each voltage ξiγ with the closed walk (α, i, γ, 0, α)
based at α. We note that for any fixed β 6= α ∈ ∆1 and any g ∈ Gαβ, we may use Lemma
8 to define a homomorphism ϕαβ : Gαβ → Aut(H) as follows: for any g ∈ Gαβ, we choose
the lift g̃ of g such that (α, 1)g̃ = (αg, 1). For a given h ∈ H, we may define the induced
automorphism on H by the action of g̃ on H via the mapping (α, h)g̃ = (αg, hϕαβ(g)).

Furthermore, we note that ξ
ϕαβ(g)
iγ = ξ−1

0gγgξigγg , where ξ0δ = 1 for any δ ∈ ∆1.

Lemma 9. For any vertex β 6= α ∈ ∆1, G∆2
αβ is 2-transitive. Moreover, the voltages

assigned to the co-tree edges of Γ must all have the same order, and, for any two distinct
vertices i, j ∈ ∆2, ξiβ 6= ξjβ.

Proof. The fact that G∆2
αβ is 2-transitive follows immediately from local 3-arc-transitivity.

Note that any 3-arc beginning at α and ending at 0, say (α, i, β, 0), defines a unique
4-cycle (α, i, β, 0, α). Since Γ is locally (G, 3)-arc-transitive, for any γ ∈ ∆1 and j ∈ ∆2,
there exists g ∈ G such that (α, i, β, 0)g = (α, j, γ, 0). Hence the voltage of the first walk,
ξiβ, must be mapped to the voltage of the second walk, ξjγ, by the induced action of the
element g on H (i.e., ϕαβ(g) ∈ Aut(H), as defined above). Thus the voltages on co-tree
edges have the same order. Finally, if ξiβ = ξjβ for some i 6= j, then the voltage of the
closed walk (α, i, β, j, α) is trivial. However, for any 0 6= k ∈ ∆2 and α 6= γ ∈ ∆1, there is
g ∈ Gα such that (α, i, β, j)g = (α, k, γ, 0), and so ξkγ = 1ϕαβ(g) = 1, and all co-tree edges
have trivial voltage.

Recall that the socle of a group X, denoted by soc(X) is defined to be the subgroup
generated by all minimal normal subgroups of X. Since G∆2

αβ is a 2-transitive group for

any β 6= α ∈ ∆1, by Burnside’s Theorem (see [4, Theorem 4.1B], for instance), soc(G∆2
αβ )

is either an elementary abelian p-group that acts regularly on ∆2 for some prime p or a
nonabelian simple group that acts nonregularly on ∆2. Moreover, in each case the socle
is the unique minimal normal subgroup. Henceforth we will assume that β 6= α ∈ ∆1 is
fixed and let S := soc(G∆2

αβ ).
We say that a group X is involved in the group Y if there exist subgroups Y1�Y2 6 Y

such that Y2/Y1
∼= X. Let φ : Gαβ → G∆2

αβ be the natural projection with Ker(φ) = G
[1]
αβ.

Since G∆2
αβ has a unique minimal normal subgroup S, by the Correspondence Theorem

there exists a subgroup T �Gαβ such that G
[1]
αβ 6 T and T/G

[1]
αβ
∼= S. Note that, since S

is a minimal normal subgroup of G∆2
αβ , if N < T and N is normal in Gαβ, then N 6 G

[1]
αβ.

Proposition 10. Let P : Γ̃ → Γ be a covering projection with covering transformation
group H. If G̃ is the lift of the group G, the cover Γ̃ is locally (G̃, 3)-arc-transitive, and
S := soc(G∆2

αβ ) is a nonabelian finite simple group, then S is involved in Aut(H).

Proof. Let |∆2| = n. First, we note that the group Gαβ0, the stabilizer of the vertex
0 ∈ ∆2 in the group Gαβ, transitively permutes the vertices 1, 2, . . . , n−1. Since ξiβ is the

voltage of the cycle (α, i, β, 0, α), for any g ∈ Gαβ0, we have ξg
ϕαβ(g)

iβ = ξigβ. By Lemma 9,
ξiβ = ξjβ only if i = j. Hence, for any such g ∈ Gαβ0, if it induces a trivial action on H,

then ig = i for all i, 1 6 i 6 n− 1, which implies that g ∈ G[1]
αβ.
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As noted above, there is T 6 Gαβ such that G
[1]
αβ 6 T and T/G

[1]
αβ
∼= S. If S is

not involved in Aut(H), then T 6 Ker(ϕαβ). However, by the Classification of Finite
Simple Groups [14], the induced action of S0 on {1, . . . , n − 1} is nontrivial. Hence T0

acts nontrivially on {1, . . . , n− 1} and T is not contained in Ker(ϕαβ). This means that

Ker(ϕαβ)∩T 6 G
[1]
αβ. Therefore, ϕαβ(T )/ϕαβ(G

[1]
αβ) ∼= S, and S is involved in Aut(H).

Proposition 11. Let P : Γ̃ → Γ be a covering projection with covering transformation
group H. If G̃ is the lift of the group G, the cover Γ̃ is locally (G̃, 3)-arc-transitive, and
S := soc(G∆2

αβ ) is an elementary abelian p-group for some prime p, then either S is involved
in Aut(H) or each voltage assigned to a co-tree edge of Γ has order p.

Proof. Assume that S is not involved in Aut(H). As noted above, there is T 6 Gαβ such

that G
[1]
αβ 6 T and T/G

[1]
αβ
∼= S. By the same argument as in the proof of Proposition

10, if g ∈ Gαβ0 and ϕαβ(g) = 1, then g ∈ G[1]
αβ. Hence, if S is not involved in Aut(H),

T 6 Ker(ϕαβ), and T0 = T ∩Gαβ0 6 G
[1]
αβ.

We note that T is transitive on ∆2, so there is s ∈ T such that 0s = 1. Recalling
the epimorphism φ : Gαβ → G∆2

αβ , φ(s) ∈ S and has order p. Thus sp ∈ Ker(φ) = G
[1]
αβ,

and φ(sm) = φ(sn) for 1 6 m,n 6 p − 1 implies m = n. This means that there exist
vertices a2, . . . , ap−1 ∈ ∆2 such that 1s = a2, asm = am+1 for 2 6 m 6 p − 2, and
asp−1 = 0. On the one hand, (α, 1, β, 0, α)s = (α, a2, β, 1, α), and so we have an induced

action ξ
ϕαβ(s)

1β = ξ−1
1β ξa2β. On the other hand, we are assuming that T 6 Ker(ϕαβ), and

so ξ
ϕαβ(s)

iβ = ξiβ. This implies that ξ1β = ξ
ϕαβ(s)

1β = ξ−1
1β ξa2β, and so ξa2β = ξ2

1β. Proceeding
similarly, by induction we see that ξamβ = ξm1β for 1 6 m 6 p− 1.

Moreover, Gαβ is 2-transitive on ∆2, so there exists h ∈ Gαβ such that 0h = 1 and
1h = 0, which implies that hs−1 = r ∈ Gαβ0. Noting that 0r = 0 and 1r = ap−1, we have

an induced action ξ
ϕαβ(h)

1β = ξ−1
1β . On the other hand,

ξ
ϕαβ(h)

1β =
(
ξ
ϕαβ(r)

1β

)ϕαβ(s)

= ξ
ϕαβ(s)

ap−1β
= ξap−1β.

Hence ξ−1
1β = ξap−1β = ξp−1

1β and ξp1β = 1. Since H 6= 1, |ξ1β| = p, and by Lemma 9 the
order of every voltage assigned to a co-tree edge of Γ has order p.

Proposition 12. If the group T has a trivial induced action on H, where φ(T ) = S =

soc(G∆2
αβ ) and G

[1]
αβ 6 T , then each element of an entire elementary abelian group of order

pf , where pf is the size of the bipart ∆2, must be assigned as voltages to the edges incident
with the vertex β 6= α ∈ ∆1.

Proof. By Propositions 10 and 11, if the lift of T acts trivially on H, then G∆2
αβ is an

elementary abelian p-group that acts regularly on ∆2 for some prime p. Thus |∆2| = pf

for some f ∈ N, and by Proposition 11, the order of each voltage assigned to a co-tree
edge is p. For any i ∈ ∆2\{0}, there exists si ∈ T such that 0si = i, and, proceeding as
in the proof of Theorem 11, ξmiβ = ξ

is
m
i β

, and so each power of the voltage ξiβ is assigned
to an edge incident with β.

the electronic journal of combinatorics 23(2) (2016), #P2.18 8



We will next show that ξiβξjβ is the voltage assigned to some edge incident with β,
where i, j are distinct vertices in ∆2\{0}. In particular, ξ−1

iβ = ξp−1
iβ = ξ`β for some ` ∈ ∆2.

Since Gαβ is 2-transitive on ∆2, there is g ∈ Gαβ such that (α, i, β, 0, α)g = (α, j, β, `, α),

and so ξ
ϕαβ(g)

iβ = ξ−1
`β ξjβ = ξiβξjβ. There is also an element s ∈ T such that 0s = `, and so

gs−1 ∈ Gαβ0. Hence

ξiβξjβ = ξ
ϕαβ(g)

iβ =
(
ξ
ϕαβ(gs−1)

iβ

)ϕαβ(s)

= ξ
ϕαβ(s)

igs−1β
= ξigs−1β,

since by assumption T has a trivial induced action on H. Hence all the voltages incident
with β are all distinct, have order p (other than ξ0β, which is assigned the trivial voltage),
and form a subgroup.

Finally, define Hβ to be the group of voltages that are assigned to edges incident
with β. Note that the induced action of Gαβ0 is transitive on ∆2\{0}, and hence for any

i 6= j ∈ ∆2\{0}, there is g ∈ Gαβ0 such that ig = j. This implies that ξ
ϕαβ(g)

iβ = ξjβ, and so
the induced action of Gαβ0 on Hβ\{1} is transitive. On the other hand, Hβ is a p-group,
and so for some z ∈ ∆2\{0}, ξzβ ∈ Z(Hβ). The center is a characteristic subgroup, and
therefore Hβ is elementary abelian.

Proposition 13. The stabilizer of a point in G∆2
αβ is involved in Aut(H).

Proof. Suppose g ∈ Gαβ0 and ϕαβ(g) = 1. In particular, for all i ∈ ∆2\{0}, ξiβ =

ξ
ϕαβ(g)

iβ = ξigβ. By Lemma 9, this implies that ig = i for all i ∈ ∆2, and so g ∈ G[1]
αβ. Hence

Ker(ϕαβ) 6 G
[1]
αβ, and so

G∆2
αβ0
∼= ϕαβ(Gαβ0)/ϕαβ(G

[1]
αβ)

is involved in Aut(H).

Corollary 14. If the group T has a nontrivial induced action on H, then G∆2
αβ is involved

in Aut(H).

Proof. Let S = soc(G∆2
αβ ) and K = G∆2

αβ0. Since S is transitive on ∆2 and K is the

stabilizer of a point, G∆2
αβ = SK, and hence, by Propositions 10, 11, and 13,

G∆2
αβ = SK ∼=

(
ϕαβ(T )/ϕαβ(G

[1]
αβ)
)(

ϕαβ(Gαβ0)/ϕαβ(G
[1]
αβ)
)
∼= ϕαβ(Gαβ)/ϕαβ(G

[1]
αβ).

We will next show that there exists a locally 3-arc-transitive regular cover of Km,n

only if there exist locally 3-arc-transitive regular covers of K2,m and K2,n, respectively.
For a complete bipartite graph Km,n with |∆1| = m and |∆2| = n, if γ, δ ∈ ∆1, then we
define Kγ,δ

m,n
∼= K2,n to be the subgraph induced on {γ, δ}∪∆2. The following proof, which

simultaneously simplifies and strengthens results from a previous version of this paper,
comes from an anonymous referee:

Proposition 15. Let P : Γ̃→ Km,n be a regular covering projection, and assume that Γ̃ is
locally (G̃, 3)-arc-transitive, where G̃ is the lift of a group G 6 Aut(Km,n). If α̃ ∈ P−1(α)
and β̃ ∈ P−1(β) are vertices in the same connected component Σ̃ of P−1(Kα,β

m,n), then Σ̃

is locally (G̃{α̃,β̃}, 3)-arc-transitive.
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Proof. It is clear that the graphs Kγ,δ
m,n
∼= K2,n are isomorphic for each choice of γ, δ ∈ ∆1.

Moreover, given a vertex 0 ∈ ∆2, the group G0 is 2-transitive on ∆1, and so for any
γ, δ ∈ ∆1, there is a subgroup of G that takes Kα,β

m,n to Kγ,δ
m,n. Since this group lifts

by assumption, there is an isomorphism κ : P−1(Kα,β
m,n) → P−1(Kγ,δ

m,n) by Lemma 7.
Furthermore, the subgroup of G for which Kα,β

m,n is invariant, namely G{α,β}, is a locally 3-
arc-transitive subgroup of Aut(Kα,β

m,n). Since G{α,β} lifts, by [5, Theorem 3], any connected

component of P−1(Kα,β
m,n) is also locally (G̃, 3)-arc-transitive. The result follows.

Proposition 15 implies that, for a complete bipartite graph Km,n with a locally 3-arc-
transitive regular cover, if |∆1| = m, |∆2| = n, β ∈ ∆1, and Hβ is the group generated
by the voltages assigned to the edges incident with β, then there exists a locally 3-
arc-transitive regular cover of K2,n with covering transformation group isomorphic to Hβ.
Moreover, the voltage assigned to the arc (i, β) in K2,n is the same as that which is assigned
to the arc (i, β) in Kα,β

m,n, i.e., there is an isomorphism of covering projections. Note
further that by Lemma 7, for any vertices β, γ ∈ ∆1\{α}, there is a group isomorphism
τ : Hγ → Hβ, and the group Hβ is independent of the choice of β. We can now prove
Theorem 1.

Proof of Theorem 1. By Proposition 15, if |∆i| = n, then K2,n has a locally (K̃, 3)-arc-
transitive regular cover with covering transformation group Hβ, where K̃ is a lift of the
group K 6 Aut(K2,n). Let ∆ be the bipart of size n in K2,n. Note that Kαβ = K∆

αβ, so

K
[1]
αβ = 1. Let T = soc(Kαβ) and ϕαβ : Kαβ → Aut(Hβ) be the induced action, as above.

If ϕαβ(T ) = 1, then, by Proposition 12, n = pf for some prime p and f ∈ N, and Hβ is
an elementary abelian group of order pf . Otherwise, T has a nontrivial induced action on
Hβ, and, by Corollary 14, Kαβ = K∆

αβ is involved in Aut(Hβ). Moreover, since K
[1]
αβ = 1,

we have ϕαβ(K
[1]
αβ) = 1, and

Kαβ
∼= ϕαβ(Kαβ)/ϕαβ(K

[1]
αβ) ∼= ϕαβ(Kαβ).

In this case, Kαβ, which has a 2-transitive action on n = |∆| = |∆i| elements, is isomorphic
to a subgroup of Aut(Hβ). Using Proposition 13, a similar argument shows that, in either
case, K∆i

αβv
∼= G∆i

αβv is isomorphic to a subgroup of Aut(Hβ) for any v ∈ ∆i. The result
follows.

3 Locally 3-arc-transitive regular covers of complete bipartite
graphs with cyclic covering transformation group

Let Γ = Km,n have biparts ∆1 and ∆2, and assume that Γ has a locally 3-arc-transitive
regular cover Γ̃ with covering projection P : Γ̃→ Γ. We will also assume that the group
of covering transformations is cyclic, i.e., let H = CT(P) = 〈ξ〉 ∼= ZN for some integer
N ∈ N, N > 1, where the cyclic group will be viewed additively. As in the previous section,
we fix β 6= α ∈ ∆1, let G be the group of automorphisms that lift, and let T = Tαβ be

the subgroup of Gαβ that contains G
[1]
αβ and T/G

[1]
αβ
∼= soc(G∆2

αβ ). Furthermore, Gαβ has
an induced action on H given by ϕαβ : Gαβ → Aut(H).
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Lemma 16. If |∆2| > 2, then the induced action of the group T on H is trivial, i.e.,
ϕαβ(T ) = 1.

Proof. By Theorem 1, if the induced action of T on H is not trivial, then there exists
X 6 Aut(Hβ) with a 2-transitive action on |∆2| elements. On the other hand, H is cyclic
and generated by the voltages assigned to the edges of Γ, and so Hβ 6 H is also cyclic.
(Actually, by Lemma 9, the voltages assigned to the edges of Γ all have the same order,
so Hβ = H.) Thus Aut(Hβ) is isomorphic to the group of units of Hβ, which is abelian.
When |∆i| > 2, no 2-transitive group on ∆i is abelian, and so no such group X can exist,
a contradiction.

Lemma 17. If |∆2| > 2, then G∆2
αβ
∼= Zp:Zp−1 and H ∼= Zp.

Proof. By Lemma 16, the group T has trivial induced action on H, i.e., T 6 Ker(ϕαβ).
By Theorem 1, the group of covering transformations H must be isomorphic to Zfp , where
p is a prime and f ∈ N. Since H is cyclic, H ∼= Zp and |∆2| = p. Moreover, by Proposition
12, soc(G∆2

αβ ) ∼= Zp, and hence G∆2
αβ
∼= Zp : Zp−1.

Proposition 18. The only possibilities for Γ = Km,n are K2,p and Kp,p, where p is a
prime.

Proof. By Lemma 17, we may assume that |∆2| = n = p for some prime p. On the other
hand, using the same reasoning, |∆1| = p′ for some prime p′. If both p, p′ > 2, then by
Lemma 17 it is impossible for all edges to have voltages from both Zp and Zp′ unless
p = p′. Hence the only possibilities are K2,p and Kp,p, where p is a prime.

Proof of Theorem 2. First, we note that Proposition 18 implies that K2,2, K2,p, and Kp,p

are the only three possibilities; all that remains is to show that unique covers actually
exist in each listed case.

We note that K2,2 is a four cycle, and the cover of K2,2 derived from the group ZN
is a 4N -cycle. Moreover, for any two covering transformation groups H1

∼= H2
∼= ZN ,

there is an obvious isomorphism, and so by Lemma 7, there is a unique such cover up to
isomorphism of covering projections.

Suppose now that |∆1| = m = 2 and |∆2| = n = p, where p is an odd prime. By
Lemma 17, N = p. Continuing with the notation above, let ∆1 = {α, β} and ∆2 =
{0, 1, . . . , p − 1}. By Lemma 9, the voltages assigned to the co-tree arcs (i, β), where
1 6 i 6 p− 1, must be distinct non-identity elements of Zp. Up to relabeling the vertices,
i.e., up to an automorphism of Γ = K2,p, there is a unique way to assign voltages to the
edges. By Lemma 7, there is at most one such cover of K2,p up to isomorphism of covering
projections.

It only remains to show that this covering projection has the desired properties. Let
H = 〈ξ〉, viewed additively, and without a loss of generality assume that ξiβ = iξ for all
i. Note that the closed walks based at the vertex α are generated by the closed walks of
the form (α, i, β, 0, α), 1 6 i 6 p− 1. Thus by Lemma 8 an automorphism g of Γ = K2,p

lifts to g̃ if and only if there exists a solution to the equations ξg
#

iβ = ξW g
i

for all i, where

Wi = (α, i, β, 0, α) and g# ∈ Aut(H).
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Given a primitive element t of the field GF(p), let g be the (p−1)-cycle (1 t t2 . . . tp−2)
in Sym(∆2), and assume that g fixes both α and β. Then, for all i > 0, assuming that

i ≡ tki (mod p), ξg
#

iβ = ξg
#

tkiβ
= (tkiξ)g

#
; on the other hand, ξW g

i
= ξ(tki )gβ = (tki)gξ =

tki+1ξ. Indeed, these equations are satisfied by the outer automorphism ν of H given by
ν : ξ 7→ tξ, and so the (p− 1)-cycle g lifts.

Let h be the p-cycle (0 1 . . . (p − 1)) in Sym(∆2). Then ξh
#

iβ = (iξ)h
#

; on the other
hand, ξWh

i
= −ξ1β+ξ(i+1)β = −ξ+(i+1)ξ = iξ. These equations are satisfied by the trivial

automorphism of H, and so h lifts. The group generated by h and g acts 2-transitively
on ∆2 while leaving all of ∆1 fixed.

Next, let x be the automorphism of K2,p that interchanges α and β but fixes all other
vertices. We will now associate the voltage ξiβ with the closed walk Ui := (0, α, i, β, 0)

based at 0. In order for x to lift, there must exist x# ∈ Aut(H) such that ξx
#

iβ = ξUxi = ξ−1
iβ

for all i ∈ ∆2\{0}. This corresponds to the outer automorphism ζ : ξ 7→ −ξ, and so x lifts
as well. The group generated by x acts 2-transitively on ∆1 while leaving all of ∆2 fixed.
It is easy to see that the group G = 〈g, h, x〉 lifts and Γ is locally (G, 3)-arc-transitive.
By [5, Theorem 3], this unique cover (up to isomorphism of covers) will be a locally
3-arc-transitive graph.

Finally, we suppose that m = n = p, where p is an odd prime. By Lemma 17, H ∼= Zp.
By Lemma 9, the voltages assigned to the edges incident with a single vertex are distinct
and all come from Zp. Up to relabeling the vertices, i.e., up to an automorphism of
Kp,p, there is a unique way to do this. Namely, if we let ∆1 = {α0, α1, . . . , αp−1}, let
∆2 = {0, 1, . . . , p− 1}, and assume that the spanning tree with identity voltages consists
of all edges incident with either α0 or 0, we will assign voltages to co-tree edges by letting
ξiαj be the (i, j)-entry of the following (p− 1)× (p− 1) matrix:

ξ 2ξ 3ξ . . . (p− 1)ξ
2ξ 2(2ξ) 3(2ξ) . . . (p− 1)(2ξ)
3ξ 2(3ξ) 3(3ξ) . . . (p− 1)(3ξ)
...

...
...

...
(p− 1)ξ 2((p− 1)ξ) 3((p− 1)ξ) . . . (p− 1)((p− 1)ξ)


It is clear that each row and each column of the matrix contains each nonidentity

element of 〈ξ〉 exactly once. Hence we have a voltage assignment which satisfies all the
above lemmas, and, up to permuting the vertices of Kp,p, this assignment is unique.
Arguing again as in the K2,p case, we see that the desired automorphisms lift, and so
we again get a cover of the desired type that is unique up to isomorphism of covering
projections.

4 Locally 3-arc-transitive regular covers of complete bipartite
graphs with elementary abelian covering group

In this section, we will assume that the group of covering transformations is elementary
abelian; that is, we will assume that H := CT(P) ∼= Zdp, where p is a prime and d > 2
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(the case d = 1 falls under the cyclic case). We begin by proving Theorem 3, which is
essentially a corollary of Theorem 1:

Proof of Theorem 3. In this case, Hβ
∼= Zfp for some f 6 d. Thus Aut(Hβ) ∼= GLf (p) .

GLd(p), and the result follows.

By Theorem 1, the process of finding the locally 3-arc-transitive covers of Km,n comes
down to finding locally 3-arc-transitive covers of K2,m and K2,n. While it can be extremely
difficult to determine which K2,m have lifts in full generality, there are certain cases that
are not so difficult.

Proposition 19. Up to isomorphism of covering projections, Γ = K2,pf has a unique

locally 3-arc-transitive regular cover Γ̃ with covering projection P : Γ̃ → Γ such that
H = CT(P) ∼= Zfp .

Proof. By Lemma 9, a different nonidentity element of H must be assigned as a voltage
to each co-tree edge of Γ. Up to relabeling the vertices, i.e., up to an automorphism of Γ,
there is a unique way to do this, and so, by Lemma 7, there is at most one such cover.

Let the biparts of Γ be ∆1 = {α, β} and ∆2 = {0, 1, . . . , pf − 1}. Define Wi to be the
closed walk (α, i, β, 0, α), 1 6 i 6 pf − 1. The Wi form a generating set for all closed
walks based at α. We will show that this particular voltage assignment results in a locally
3-arc-transitive regular cover Γ̃. First, let h ∈ Aut(Γ) be the automorphism that fixes ∆2

but interchanges α and β. Thus

ξWh
i
↔ (α, i, β, 0, α)h = (β, i, α, 0, β)↔ −ξiβ = −ξWi

.

Since there is always an automorphism inverting all elements of an abelian group, by
Lemma 8, h lifts.

We will view H additively as a vector space, and we label the elements of H as
−→
0 , . . . ,

−−−−−→
(pf − 1), where

−→
i is the voltage of the arc (i, β). The Wi generate a set of closed

walks based at α, and the voltage of Wi is
−→
i . Suppose g ∈ Aut(Γ) such that g fixes α,

β, and 0. Then

ξW g
i
↔ (α, i, β, 0, α)g = (α, ig, β, 0, α)↔

−→
ig .

Thus any g ∈ Aut(Γ) that acts on {1, . . . , pf − 1} as an element of GLf (p) acts on

{−→1 , . . . ,
−−−→
pf − 1} will lift to an automorphism of Γ̃.

Now, let gi, 0 6 i 6 pf − 1, be defined to be the permutation of {0, . . . , pf − 1} such

that 0gi = i and jgi = k, where ξkβ has voltage corresponding to
−→
i +

−→
j . Since the

voltages on edges incident with β are all distinct, this is well-defined permutation. Hence

ξW gi
j
↔ (α, j, β, 0, α)gi = (α, k, β, i, α)↔ −−→i +

−→
i +
−→
j =

−→
j = ξWj

.

Since ξ
g#i
Wj

= ξWj
is satisfied for all j by letting g#

i be the trivial automorphism of H, gi
lifts. Therefore, a group of automorphisms X of Γ stabilizing each element in ∆1 that
acts isomorphically to AGLf (p) on ∆2 lifts. Since the group G = 〈X, h〉 lifts, and Γ is
locally (G, 3)-arc-transitive, Γ̃ is locally (G̃, 3)-arc-transitive, as desired.

the electronic journal of combinatorics 23(2) (2016), #P2.18 13



Corollary 20. Let H ∼= Zdp. The graph K2,pf has a locally 3-arc-transitive regular cover
with CT(P) . H if and only if 1 6 f 6 d.

Proof. If f > d, then there are not enough distinct elements of H to assign as voltages
to arcs of K2,pf , a contradiction. If f 6 d, then we choose a subgroup K 6 H such that
K ∼= Zfp . The result follows from Proposition 19.

Combined with Theorem 3, Proposition 19 shows that finding the possible m for
which K2,m has a locally 3-arc-transitive regular cover with elementary abelian covering
transformations isomorphic to Zdp comes down to representation theory over GF(p). We
will now use these results to classify the complete bipartite graphs with locally 3-arc-
transitive regular covers whose covering transformation group is a subgroup of Zp × Zp,
where p is a prime.

Lemma 21. Let p, r be distinct primes. If Zfr . GLd(p), then f 6 d.

Proof. This is a basic exercise in representation theory and is left to the reader.

Proposition 22. Let H ∼= Zp×Zp, where p is a prime. The only values of m for which the
complete bipartite graph K2,m has a locally 3-arc-transitive regular cover whose covering
transformations are a subgroup of H are m = 2, 3, p, and p2.

Proof. Let the biparts of Γ = K2,m be ∆1 = {α, β} and ∆2. Let G 6 Aut(Γ) be the
subgroup of automorphisms that lifts to Γ̃ such that Γ̃ is locally (G̃, 3)-arc-transitive. By
Theorem 3, if S := soc(G∆2

αβ ), then either S ∼= Zfp for some f ∈ N or G∆2
αβ . GL2(p). By

Corollary 20, if S ∼= Zfp then f = 1, 2, and both K2,p have K2,p2 have such covers, which
are unique up to isomorphism of covering projections by Proposition 19. We also know
that K2,2 has such a cover by Theorem 2. By [21, Proposition 6.4], K2,3 has a unique such
cover (up to isomorphism of covering projections), and all of Aut(K2,3) lifts.

Assume now that G∆2
αβ . GL2(p) and |∆2| > 3. By [18, Proposition 5.5.10], no non-

abelian finite simple group has a nontrivial representation of degree 2 in odd characteristic,
and since |GL2(2)| = 6, no nonabelian finite simple group is isomorphic to a subgroup of
GL2(2). Hence S ∼= Zf

r for some prime r 6= p, and, by Lemma 21, f 6 2.
Suppose first that f = 2. Let Gαβ

∼= X 6 GL2(p), and let X = NK, where N ∼=
soc(G∆2

αβ ) and K ∼= Gαβv, where v ∈ ∆2. Since N is a minimal normal subgroup of X
and GF (p)∗ is cyclic, N is in the kernel of the determinant map. Moreover, the center of
SL2(p) has order 2, so either N ∼= Z2

2 or N . PSL2(p). The only subgroups of PSL2(p)
isomorphic to Z2

r, r 6= p, are isomorphic to Z2
2 [3]. Hence N ∼= Z2

2 and so Gαβ
∼= A4.

However, A4 has no faithful representation of degree 2, a contradiction. Hence f = 1, and
Gαβ
∼= Zr : Zr−1

∼= AGL1(r), where r > 3. However, when r − 1 > 2, the group Zr : Zr−1

has no faithful representation of degree 2 (see, for instance, [17, Theorem 25.10]), a final
contradiction.

Once the locally 3-arc-transitive regular covers of K2,m and K2,n have been found, it
remains to be seen whether Km,n has a locally 3-arc-transitive regular cover. In certain
cases, we can give a definitive answer.
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Proposition 23. If Γ = Kpf ,pd, where f divides d, then there exists a regular cover Γ̃ and

a covering projection P : Γ̃→ Γ such that Γ̃ is locally 3-arc-transitive and CT(P) ∼= Zdp.

Proof. Let V = Zdp and let τ be a generator of GL1(pd) 6 GLd(p). Since f divides d,

pf − 1 divides pd− 1, and hence σ = τ
pd−1

pf−1 has order pf − 1, stabilizes a decomposition of
V into (pd − 1)/(pf − 1) subspaces of size pf − 1, and acts semiregularly on the non-zero
elements of V .

Let the biparts of Γ be ∆1 = {γ0, . . . , γpf−1} and ∆2 = {δ0, . . . , δpd−1}. We choose a
nonzero element ξ ∈ V , and to each arc (δi, γj), where 1 6 i 6 pd− 1 and 1 6 j 6 pf − 1,

we assign the voltage ξij = ξδiγj = ξτ
iσj = ξσ

jτ i . Note that for any fixed i, the voltages
ξij, ξij′ are distinct for j 6= j′, and, similarly, for any fixed j, the voltages ξij and ξi′j are
distinct for i 6= i′. We define further the closed walk Wij = (γ0, δi, γj, δ0, γ0) based at γ0,
and define the closed walk Uij = (δ0, γ0, δi, γj, δ0) based at δ0.

We will show first that the element g ∈ Aut(Γ) lifts, where g acts like the cycle
(δ1 δ2 . . . δpd−1) on ∆2 and trivially on ∆1. In this case, we need to find g# ∈ Aut(V )
that satisfies:(

ξτ
iσj
)g#

= ξg
#

ij = ξW g
ij
↔ (γ0, δi, γj, δ0, γ0)g

= (γ0, δ(i+1) mod (pd−1), γj, δ0, γ0)↔ ξτ
i+1σj =

(
ξτ

iσj
)τ
,

and g# = τ demonstrates that g lifts.
We will show next that the element h ∈ Aut(Γ) lifts, where h acts like the cycle

(γ1 γ2 . . . γpf−1) on ∆1 and trivially on ∆2. In this case, we need to find h# ∈ Aut(V )
that satisfies:(

ξτ
iσj
)h#

= ξh
#

ij = ξWh
ij
↔ (γ0, δi, γj, δ0, γ0)h

= (γ0, δi, γ(j+1) mod (pf−1), δ0, γ0)↔ ξτ
iσj+1

=
(
ξτ

iσj
)σ
,

and h# = σ demonstrates that h lifts.
We will next show that a group X acting regularly on ∆2 and trivially on ∆1 lifts.

We will define the element xk ∈ X that sends δxk0 to δk. We then define δxki = δ`, where
ξ`j = ξij + ξkj. In this case, we need x#

k ∈ Aut(V ) that satisfies:

ξ
x#k
ij = ξWxk

ij
↔ (γ0, δi, γj, δ0, γ0)xk = (γ0, δ`, γj, δk, γ0)↔ −ξkj + ξ`j = ξij,

and x#
k = 1 ∈ Aut(V ) satisfies these equations, and so xk lifts. A group Y acting regularly

on ∆1 and trivially on ∆2 is shown to lift analagously (the walks Uij are a generating set
for the closed walks based at δ0). The group that lifts acts locally 3-arc-transitively on Γ,
and hence Γ̃ is locally 3-arc-transitive as well.

Lemma 24. Let p be a prime. If Γ = K3,p2, then there exists a regular cover Γ̃ of Γ with

covering projection P : Γ̃→ Γ such that Γ̃ is locally 3-arc-transitive and CT(P) ∼= Zp×Zp.
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Proof. First, if p = 3, then the result follows from Proposition 23. Let τ be a generator

of GL1(p2). If p 6= 3, then p2 ≡ 1 (mod 3), and so we can find σ = τ
p2−1

3 of order 3. Note
also that since σ ∈ 〈τ〉, [σ, τ ] = 1. We define the biparts of Γ to be ∆1 = {α, β, γ} and
∆2 = {0, 1, . . . , p2 − 1}. If V = Zp × Zp and ξ is a nonidentity element of V such that

ξσ 6∈ 〈ξ〉, we define the voltage on the arc (i, β) to be ξiβ = ξτ
i

and the voltage on the arc

(i, γ) to be ξiγ = ξiβ + ξσiβ = ξτ
i
+ ξτ

iσ. We define Wiε to be the closed walk (α, i, ε, 0, α)
and Uiε to be the closed walk (0, α, i, ε, 0).

We will show first that the element g ∈ Aut(Γ) lifts, where g acts like the cycle
(1 2 . . . pn − 1) on ∆2 and trivially on ∆1. In this case, we need to find g# ∈ Aut(V )
that satisfies: (

ξτ
i
)g#

= ξg
#

iβ = ξW g
iβ
↔ (α, i, β, 0, α)g

= (α, (i+ 1) mod (pn − 1), β, 0, α)↔ ξτ
i+1

=
(
ξτ

i
)τ
,(

ξτ
i

+ ξτ
iσ
)g#

= ξg
#

iγ = ξW g
iγ
↔ (α, i, γ, 0, α)g = (α, (i+ 1) mod (pn − 1), γ, 0, α)

↔ ξτ
(i+1)

+ ξτ
i+1σ =

(
ξτ

i

+ ξτ
iσ
)τ
,

and hence g# = τ demonstrates that g lifts.
We will show now that the element x ∈ Aut(Γ) lifts, where x acts like the cycle (α β γ)

on ∆1 and trivially on ∆2. In this case, we need to find x# ∈ Aut(V ) that satisfies:(
ξτ

i
)x#

= ξx
#

iβ = ξUxiβ ↔ (0, α, i, β, 0)x = (0, β, i, γ, 0)↔ ξiγ − ξiβ =
(
ξτ

i
)σ
,

(
ξτ

i

+ ξτ
iσ
)x#

= ξx
#

iγ = ξUxiγ ↔ (0, α, i, γ, 0)x = (0, β, i, α, 0)↔ −ξiβ.

Since for any η ∈ V , (η+ ησ + ησ
2
)σ = (η+ ησ + ησ

2
), and σ fixes only the identity 0 ∈ V ,

for any η ∈ V we have −η = ησ + ησ
2
. Thus,(

ξτ
i

+ ξτ
iσ
)x#

= −ξiβ =
(
ξτ

i

+ ξτ
iσ
)σ
,

and hence x# = σ demonstrates that x lifts.
We will show now that a group Y acting regularly on ∆2 and trivially on ∆1 lifts.

We will define the element yk ∈ Y that sends 0yk to k. We then define iyk = `, where
ξ`β = ξiβ + ξkβ. In this case, we need y#

k ∈ Aut(V ) that satisfies:

ξ
y#k
iβ ↔ (α, i, β, 0, α)yk = (α, `, β, k, α)↔ −ξkβ + ξ`β = ξiβ,

ξ
y#k
iγ ↔ (α, i, γ, 0, α)yk = (α, `, γ, k, α)↔ −ξkγ + ξ`γ = (ξ`β − ξkβ) + (ξ`β − ξkβ)σ = ξiγ,

and hence y#
k = 1 ∈ Aut(V ) demonstrates that yk lifts.
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Finally, we will show that an element h lifts, where h stabilizes 0, p2−1, α and satisfies
βh = γ, γh = β. We will define the action of h on ∆2\{0, p2−1} as follows. The elements
ξ, ξσ form a basis for the vector space V , and there is a linear transformation ρ ∈ Aut(V )
such that ξρ = ξ + ξσ and (ξσ)ρ = −ξσ. For any i ∈ ∆2\{0, p2 − 1}, we define ih = `,

where ξρiγ =
(
ξτ

i
+ ξτ

iσ
)ρ

= ξτ
`
. This is a well-defined automorphism of Γ, and to see

that it lifts, we need to find h# ∈ Aut(V ) such that:(
ξτ

i
)h#

= ξh
#

iβ = ξWh
iβ
↔ (α, i, β, 0, α)h = (α, `, γ, 0, α)↔ ξ`γ = ξτ

`

+ ξτ
`σ

(
ξτ

i

+ ξτ
iσ
)h#

= ξh
#

iγ = ξWh
iγ
↔ (α, i, γ, 0, α)h = (α, `, β, 0, α)↔ ξ`β =

(
ξτ

i

+ ξτ
iσ
)ρ
.

Now, since the elements ξ, ξσ form a basis, there exist ai, bi ∈ Zp such that ξτ
i

= aiξ+biξ
σ.

Hence,

ξτ
i

+ ξτ
iσ = aiξ + biξ

σ + aiξ
σ + biξ

σ2

= aiξ + biξ
σ + aiξ

σ + bi(−ξ − ξσ)

= (ai − bi)ξ + aiξ
σ.

This means that

ξτ
`

=
(
ξτ

i

+ ξτ
iσ
)ρ

= ((ai − bi)ξ + aiξ
σ)ρ = (ai − bi)ξ − biξσ,

and a similar calculation shows that(
ξτ

i
)ρ

= aiξ + (ai − bi)ξσ = ξτ
`

+ ξτ
`σ.

Therefore, h# = ρ demonstrates that h lifts. The group generated by these automorphisms
both lifts and acts locally 3-arc-transitively on Γ, and therefore Γ̃ is a locally 3-arc-
transitive regular cover of Γ.

Lemma 25. Let p be a prime. If Γ = K3,p, then there exists a regular cover Γ̃ of Γ with
covering projection P : Γ̃→ Γ such that Γ̃ is locally 3-arc-transitive and CT(P) ∼= Zp×Zp.

Proof. First, if p = 2 or p = 3, then the result follows from [21, Proposition 6.4] or
Theorem 2, respectively. Let V = Zp × Zp, and let ξ, η be two elements of V such that
〈ξ〉∩ 〈η〉 = 0, the identity element of V , and let Γ = K3,p have biparts ∆1 = {α, β, γ} and
∆2 = {0, 1, . . . , p− 1}. For each i ∈ ∆2\{0} (which is naturally identified with Zp\{0}),
we assign to the arc (i, β) the voltage ξiβ = iξ, and we assign to the arc (i, γ) the voltage
ξiγ = iη. A group stabilizing ∆1 and acting like AGL1(p) on ∆2 lifts by a proof analogous
to that of Theorem 2. The automorphism σ ∈ Aut(V ) defined by ξσ = η− ξ and ησ = −ξ
demonstrates that the automorphism x ∈ Aut(Γ) that acts trivially on ∆2 and as the
3-cycle (α β γ) on ∆1 lifts, and the automorphism ρ ∈ Aut(V ) defined by ξρ = η and
ηρ = ξ demonstrates that the automorphism h ∈ Aut(Γ) that acts trivially on ∆2 and
as the transposition (β γ) on ∆1 lifts. Therefore, the cover Γ̃ derived from this voltage
assignment is locally 3-arc-transitive, as desired.
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In general, it is not guaranteed that Km,n has a locally 3-arc-transitive regular cover
even if K2,m and K2,n both have locally 3-arc-transitive regular covers with covering
transformation groups isomorphic to a subgroup of Zdp, as the following lemma shows:

Lemma 26 ([20, Proposition 3.3]). Let p 6= 3 be a prime. Then K3,3 does not have a
locally 3-arc-transitive regular cover with covering transformation group Zp × Zp.

We can now prove Theorem 4.

Proof of Theorem 4. First, the result follows for K2,2, K2,3, K2,p, K2,p2 , K3,p, K3,p2 , Kp,p,
Kp,p2 , and Kp2,p2 by Theorem 2, Propositions 22 and 23, and Lemmas 24 and 25. The
only other possibility is K3,3, which is ruled out by Lemma 26.

Proof of Corollary 5. By Theorem 4, we only must consider K2,2, K2,3, K2,p, K2,p2 , K3,p,
K3,p2 , Kp,p, Kp,p2 , and Kp2,p2 . However, K2,2 is just C4, which has only one co-tree edge in
a spanning tree, and can be eliminated immediately. For K2,3, the uniqueness follows from
[21, Proposition 6.4], and for the other graphs the uniqueness follows from Proposition 12
and reasoning as in the proof of Theorem 2.

It should be noted that all of the covers obtained in Theorems 2 and 4 have induced
local 2-transitive actions that are affine groups. On the other hand, if E is the edge set
of a graph Γ and T is the edge set of a spanning tree of Γ, [21, Proposition 6.4] shows

that assigning the elements of a basis of Z|E\T |p to the co-tree edges of Γ induces a regular
cover such that the full automorphism group Aut(Γ) lifts. On the other hand, a group
G that has a 2-transitive action on m elements and a degree d representation over GF(p)
does not actually guarantee that a voltage assignment from Zdp to the arcs of K2,m exists
such that G lifts.

Example 27. Even though A5 . GL(3, 11), there is no voltage assignment from Z3
11 to

K2,5 such that A5 lifts.

To see this, we can use the algorithm described in [21]. Indeed, the dual representation
of A5 on H1(K2,5;Z11) ∼= Z4

11 leaves no 3-dimensional space invariant, and hence no such
cover can exist.

The cases when d > 2 can be approached similarly. Theorem 3 reduces the prob-
lem of finding the possible values of m for which K2,m can have a locally 3-arc-transitive
cover whose covering transformation group is isomorphic to a subgroup of Zdp to which
2-transitive groups can have a d-dimensional representation over GF (p). From there,
if K2,m and K2,n both have locally 3-arc-transitive covers with covering transformation
group isomorphic to a subgroup of Zdp, then the algorithm presented in [21] can be used
to determine whether or not Km,n has a locally 3-arc-transitive cover with covering trans-
formation group isomorphic to a subgroup of Zdp.
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