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Abstract

Abelian Cayley digraphs can be constructed by using a generalization to Zn of
the concept of congruence in Z. Here we use this approach to present a family of
such digraphs, which, for every fixed value of the degree, have asymptotically large
number of vertices as the diameter increases. Up to now, the best known large dense
results were all non-constructive.

Keywords: Cayley digraph; degree/diameter problem; density; Smith normal form;

congruences in Zn.

1 Introduction

The degree-diameter problem for graphs (directed or undirected) has been widely studied
in the last decades because of its relevance to the design of interconnection or commu-
nication networks for parallel processors. In this context one would like to have a large
number of processors without requiring a large number of links, and without incurring
long delays in communication from one processor to another.

The degree-diameter problem for directed graphs consists of maximizing the number
of vertices of a digraph with degree at most d and diameter at most k. We refer to the
survey of Miller and Sirán [15] for the current state of the art, and to the the survey of
Bermond, Comellas, and Hsu [4] for details about the history of the problem.

∗Research supported by the “Ministerio de Educación y Ciencia” (Spain) with the European Regional
Development Fund under projects MTM2011-28800-C02-01 and by the Catalan Research Council under
project 2014SGR1147.
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A desirable additional property of such dense digraphs is vertex-transitivity (in par-
ticular regularity, with in-degree and out-degree of every vertex equal to d). In this case,
the network is seen identically from any processor making it easy to implement all pro-
tocols, being basically the same for each node. In fact, most of the literature so far has
focused on a very important class of vertex-transitive digraphs, the Cayley digraphs (see
e.g. [11, 19]). Recall that a Cayley digraph of a group Γ with respect to a generating set
A, denoted by G = Cay(Γ;A), is the digraph whose vertices are labeled with the elements
of Γ, and for which there is an arc (u, v) if and only if v − u ∈ A.

In this paper we deal exclusively with the degree-diameter problem for Cayley digraphs
for which the group Γ is Abelian.

Let NAd,k (respectively, NCd,k) be the maximum number of vertices that a Cayley
digraph of an Abelian group (respectively, of a cyclic group), with degree d and diameter
k, can have. In this framework, Wong and Coppersmith [19] proved that, for fixed degree
d and large diameter k,(

k

d

)d

+O(kd−1) 6 NCd,k 6
kd

d!
+O(kd−1). (1)

The exact value of NCd,k is only known for the case of degree d = 2, where the authors of
[11, 16] proved that, for any k > 2,

NC2,k =

⌈
(k + 2)2

3

⌉
− 1. (2)

The density, δ(G), of a Cayley digraph G on a d-generated finite Abelian group of
order N and diameter k(G) is defined by

δ(G) =
N

(k(G) + d)d
. (3)

For d = 2, from (2) and (3), we have δ 6 1
3
. For d = 3, Fiduccia, Forcade and Zito [12,

Corollary 3.6] gave the upper bound NA3,k 6 3
25

(k+ 3)3 and so, for this degree, it follows
that δ 6 3

25
= 0.12. Several authors have given various families of Cayley digraphs of

cyclic groups with small diameter for fixed degree d and order N . Cayley digraphs of
cyclic groups can also be found in the literature under the name of loop networks. Table 1
summarizes some of the results for the well-studied case d = 3. The entry of δ∗ indicates
that the result represents the asymptotical value for the density of these constructions for
large values of k.

Notice that the fact N = αkd + O(kd−1) does not necessarily imply δ = α. For
instance, a result of Dougherty and Faber [6, Corollary 8.2] gives the existence of cyclic
Cayley digraphs of degree d = 3 and order N = 0.084k3 + O(k2) for all k. Table 2 gives
numerical evidence that this result is not difficult to achieve; however, equality δ = 0.084
is apparently not so easy to attain. As far as we know, for the cyclic case, there is
only one known value of 4 6 N 6 8000 that achieves this density, that is N = 84 with
G = Cay(Z84, {2, 9, 25}) and k(G) = 7. Moreover, no known order achieves the upper
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Authors δ∗ Conditions on k

Gómez, Gutiérrez & Ibeas [13] 0.0370 k ≡ 0, 1, 2 (mod 3)
Aguiló, Fiol & Garćıa [2] 0.0740 k ≡ 2, 4, 5 (mod 6)
Chen & Gu [5] 0.0780 No condition on k
Aguiló [1] 0.0807 k = 22t+ 12, t 6≡ 2, 7 (mod 10)
Aguiló, Simó & Zaragozá [3] 0.0840 k ≡ 2 (mod 30)

Table 1: Several explicit cyclic constructions for d = 3

k δ d0.084k3e d 3
25
k3e b 3

25
(k + 3)3c NC3,k

1 0.06250 1 1 7 4
2 0.07200 1 1 13 9
3 0.07407 3 4 24 16
4 0.07872 6 8 38 27
5 0.07812 11 15 56 40
6 0.07819 19 26 81 57
7 0.08400 29 42 111 84
8 0.08340 44 62 147 111
9 0.07986 62 88 192 138
10 0.08011 84 120 244 176

Table 2: Several density values for d = 3 and 1 6 k 6 10 in the cyclic case

bound of Fiduccia, Forcade and Zito for the cyclic case. As far as we know, no explicit
construction is known achieving δ∗ = 0.084, in the sense of Table 1, for all k.

It is worth to mention the work of Rödseth [18] on weighted loop networks, where
he gave sharp lower bounds for the diameter and mean distance for d = 2 and general
bounds for d > 3 as well.

As mentioned above, the concern of our paper is Cayley digraphs of Abelian groups.
In fact, the bounds in (1) also apply for NAd,k. In [14, Theorem 1.1] Mask, Schneider, and
Jia claimed to show that, for any d and k, NAd,k = NCd,k, but Fiol in [10] corrected this
claim by giving some counterexamples for the case d = 2. In fact, Fiol et al., in [11, 16],
show (see also the comments of Dougherty and Faber in [6]):

Proposition 1. For any diameter k > 2,

NA2,k =

{
NC2,k + 1, if k ≡ 1 (mod 3),
NC2,k, otherwise.

(4)

In general, if Γ is an Abelian group and |A| = d, the Cayley digraph Cay(Γ, A) has
order (count the number of vertices at distances 0 to k and add them up [11]):

NAd,k <

(
k + d

d

)
=

(
k + d

k

)
.
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Then, it is not difficult to see that:

k > d
√
d!NAd,k −

1

2
(d+ 1).

Nevertheless, as far as we know, the best upper bound known for the order of Cayley
digraphs of Abelian groups is the one of Dougherty and Faber in [6, Theorem 21], where
they proved the following non-constructive result:
There is a positive constant c (not depending on d or k), such that, for any fixed d > 2
and any k, there exist Cayley digraphs of Abelian groups on d generators having diameter
at most k and number of vertices NAd,k satisfying

NAd,k >
c

d(ln d)1+log2 e

kd

d!
+O(kd−1).

In our study, we use the following approach developed by Aguiló, Esqué and Fiol [7, 8]:
Every Cayley digraph G from an Abelian group Γ is fully characterized by an integral
n×n matrix M such that Γ = Zn/MZn (the so-called ‘group of integral n-vectors modulo
M ’ that is detailed in Section 2). This representation makes it clear that the digraph G
is isomorphic to Cay(Zn/MZn, A), where A is the set of unitary coordinate vectors ei,
i = 1, . . . , n.

The plan of the paper is as follows. In the following section, and for the sake of
completeness, we will recall the algebraic background on which the above isomorphism is
based. Afterwards, in contrast with the theoretical bound of Dougherty and Faber, we
will present an explicit infinite family of Cayley digraphs of Abelian groups whose order
is asymptotically large. This family will be constructed by using a generalization to Zn

of the concept of congruence in Z.

2 Some theoretical background

In this section we recall some basic concepts and results on which our study is based (see
[7, 8, 9] for further details).

2.1 Congruences in Zn

Given a nonsingular integral n× n matrix M , we say that the integral vectors a, b ∈ Zn

are congruent modulo M (see [9]) when their difference belongs to the lattice generated
by M , that is,

a ≡ b (mod M ) ⇐⇒ a− b ∈MZn. (5)

So, as the quotient group Zm = Z/mZ is the cyclic group of integers modulo m, the
quotient group Zn

M = Zn/MZn can intuitively be called the group of integral vectors
modulo M (where each equivalence class is identified by any of its representatives).

In particular, notice that, when M = diag(m1,m2, . . . ,mn), (5) implies that the
vectors a = (a1, a2, . . . , an)> and b = (b1, b2, . . . , bn)> are congruent modulo M if and
only if

ai ≡ bi (mod mi) (1 6 i 6 n).
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Moreover, in this case Zn
M is the direct product of the cyclic groups Zmi

, i = 1, 2, . . . , n.

2.2 The Smith normal form

As before, let M = (mij) be a nonsingular matrix of Zn×n, with N = detM . Let k ∈ Z,
1 6 k 6 n. The kth determinantal divisor of M , denoted by dk(M ) = dk, is defined
as the greatest common divisor of the (nk)2 k × k determinantal minors of M . Notice
that dk | dk+1 for all k = 1, 2, . . . , n − 1 and dn = N . For convenience, put d0 = 1. The
invariant factors of M are the quantities

sk(M ) = sk =
dk
dk−1

, k = 1, 2, . . . , n.

It can be shown that si | si+1, i = 1, 2, . . . , n− 1.
By the Smith normal form theorem, M is equivalent to the diagonal matrix S(M) =

S = diag(s1, s2, . . . , sn), i.e. there are two unimodular matrices U ,V ∈ Zn×n such that
S = UMV . This canonical form S is unique and the unimodular matrices U and V are
not. The following proposition is a consequence of this theorem (see e.g. Newman [17])

Proposition 2. (Fiol [8]) Set M ∈ Zn×n with N = | detM |.

(a) The number of equivalence classes modulo M is |Zn/MZn| = N .

(b) If pr11 p
r2
2 · · · prtt is the prime factorization of N , then Zn/MZn ∼= Zr/S′Zr for some

r × r matrix S′ with r 6 max{ri : 1 6 i 6 t}.

(c) The (Abelian) group of integral vectors modulo M is cyclic if and only if dn−1 =1.

(d) Let r be the smallest integer such that sn−r = 1. Then r is the rank of Zn/MZn

and the last r columns of U−1 form a basis of Zn/MZn.

In other words, when s1 = · · · = sn−k−1 = 1 and sn−k > 1, we have

S′ = diag(sn−k, . . . , sn)

and Zn/MZn ∼= Zr/S′Zr ∼= Zsn−r ⊕ · · · ⊕ Zsn . The isomorphism is given by φ(x) = Ux
and it will be used in the next section.

3 A new family of Abelian Cayley digraphs

Given a nonsingular integral matrix M ∈ Zn×n, the Cayley digraph

GM = Cay(Zn/MZn, A),

with A = {e1, . . . , en} the set of unitary coordinate vectors, is known as the digraph of
commutative steps of M .
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Now let us consider the circulant matrix M = circ(n,−1,−1, . . . ,−1), which defines
the digraph of commutative steps GM = Cay(Zn/MZn, {e1, e2, . . . , en}). Clearly, GM is
regular with degree d = n. Moreover, its order is

N = detM = det


n −1 −1 · · · −1
−1 n −1 · · · −1
−1 −1 n · · · −1
...

...
...

...
−1 −1 −1 · · · n

 = det


1 −1 −1 · · · −1
1 n −1 · · · −1
1 −1 n · · · −1
...

...
...

...
1 −1 −1 · · · n



= det


1 0 0 · · · 0
1 n+ 1 0 · · · 0
1 0 n+ 1 · · · 0
...

...
...

...
1 0 0 · · · n+ 1

 = (n+ 1)n−1.

Given x = (x1, . . . , xn), let ‖x‖1 =
∑n

i=1 |xi|. The following result gives the diameter
of GM .

Proposition 3. Given the circulant matrix M = circ(n,−1,−1, . . . ,−1), the digraph of
commutative steps GM defined as above has diameter k =

(
n
2

)
= n(n− 1)/2.

Proof. Let H ⊂ Zn be a set of N nonnegative integral vectors, which are different modulo
M . Let k(H) = max{‖x‖1 =

∑
i xi : x ∈ H}. Then, the diameter of GM is k(GM ) =

min{k(H) : H ⊂ Zn}. Let us assume that L is a set that attains such a minimum, that
is, k = k(L). Thus, L corresponds to an optimal set of lattice points, in the sense that the
distance from the origin to a lattice point (vector) equals the distance from vertex zero to
the corresponding vertex of GM . Then, we see that x ∈ L if and only if 0 6 xi 6 n − 1
for i = 1, . . . , n, and

(1) There is at most 1 entry such that xi > n− 1,

(2) There are at most 2 entries such that xi > n− 2,

...

(n− 1) There are at most n− 1 entries such that xi > 1.

Indeed, x ∈ L cannot have any entry, say x1 > n, since, otherwise, the vector

y = x− (n,−1,−1, . . . ,−1) ≡ x (mod M)

would satisfy
∑
yi =

∑
xi − 1. Moreover,

(1) There cannot be 2 entries, say x1, x2 > n− 1, since, otherwise, the vector

y = x− (n,−1,−1, . . . ,−1)− (−1, n,−1, . . . ,−1) ≡ x (mod M )

would satisfy
∑
yi =

∑
xi − 2,
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(2) There cannot be 3 entries, say x1, x2, x3 > n− 2, since, otherwise, the vector

y = x−(n,−1, . . . ,−1)−(−1, n,−1, . . . ,−1)−(−1,−1, n, . . . ,−1) ≡ x (mod M )

would satisfy
∑
yi =

∑
xi − 3,

and so on. Now we will show that, under the above conditions, the cardinality of L is
N = detM = (n+1)n−1. With this aim, for every pair of integers 0 6 m 6 n, let f(m,n)
be the number of integral vectors with m entries, (x1, . . . , xm) ∈ Zm, 0 6 xi 6 n − 1,
having at most i entries xj > n− i for every 1 6 i 6 m. (Notice that if m = n, the case
i = n does not imply any restriction.) Such a number satisfies the following recurrences
(by definition, we take f(0, n) = 1).

If m < n,

f(m,n) =
m∑
i=0

(
m

m− i

)
f(i, n− 1). (6)

If m = n,

f(m,n) =
m−1∑
i=0

(
m

m− i

)
f(i, n− 1). (7)

Now, by induction, we can prove that

f(m,n) = (n−m+ 1)(n+ 1)m−1. (8)

• f(0, n) = 1 (by definition).

• f(1, n) = n (obvious).

• Let assume that (8) holds for m− 1. Then:

If m < n,

f(m,n) =
m∑
i=0

(
m

i

)
f(i, n− 1) =

m∑
i=0

(
m

i

)
(n− i)ni−1 =

m∑
i=0

(
m

i

)
ni −

m∑
i=0

(
m

i

)
ini−1

= (n+ 1)m −m(n+ 1)m−1 = (n+ 1−m)(n+ 1)m−1.

If m = n,

f(m,n) =
n−1∑
i=0

(
n

n− i

)
f(i, n− 1) =

n−1∑
i=0

(
n

n− i

)
(n− i)ni−1

=
n−1∑
i=0

(
n− 1

i

)
ni = (n+ 1)n−1.
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Hence, we have established (8). From (8) it follows that |L| = f(n, n) = (n + 1)n−1 =
detM .

Finally, notice that, according to the characterization above, k(L) equals the distance
from the origin to the vectors of the form x = (n− 1, n− 2, . . . , 0) (up to permutation of
the entries). Then,

k(GM ) = k(L) =
n∑

i=1

xi = 1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2
=

(
n

2

)
,

as claimed.

0 1

2

Figure 1: Minimum distance diagrams related to D2 and D3

Notice that, from the above proof, the number of vertices in GM at maximum distance
k =

(
n
2

)
from every vertex is n!.

From now on, let sZt = Zt⊕
(s)
· · · ⊕Zt.

Theorem 4. Set Bn = {(1, 1, . . . , 1), (2, 1, . . . , 1), . . . , (1, . . . , 1, 2)} ⊂ Zn−1. Then, the
Cayley digraph Dn = Cay((n− 1)Zn+1, Bn) has diameter kn =

(
n
2

)
.

Proof. Taking the matrix Mn = circ(n,−1, . . . ,−1) ∈ Zn×n, it is not difficult to see it
has the Smith Normal Form Sn = UnMnV n = diag(1, n+ 1, . . . , n+ 1) with unimodular
matrices

Un =


1 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
...

...
...

...
1 1 1 · · · 2

 and V n =


1 −1 −1 · · · −1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

 . (9)

Thus, we have the isomorphism of digraphs GMn
∼= D′n = Cay(Z1 ⊕ (n − 1)Zn+1, B

′
n),

with B′n = {(1, 1, 1, . . . , 1), (1, 2, 1, . . . , 1), . . . , (1, 1, 1, . . . , 1, 2)} ⊂ Zn, given by φ(ei) =
Unei = bi (bi are the elements of B′n). Therefore, by Proposition 2, the diameter of D′n is
kn =

(
n
2

)
. Now the statement follows from the direct digraph isomorphism D′n

∼= Dn.
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Figure 1 shows minimum distance diagrams related to D2 = Cay(Z3, {1, 2}) and Dn =
Cay(Z4 ⊕ Z4, {(1, 1), (2, 1), (1, 2)}) with diameters k(D2) = 1 and k(D3) = 3.

Proposition 5. Let us denote Mn = circ(n,−1, . . . ,−1), n > 2, the matrix of Proposi-
tion 2. Consider the matrix Mn,m = mMn = circ(mn,−m, . . . ,−m) ∈ Zn×n, for m > 1.
Then, the commutative step digraph GMn,m has order Nn,m = mn(n+ 1)n−1 and diameter
kn,m =

(
n+1
2

)
m− n.

Proof. Let us denote the columns Mn,m = (c1| · · · |cn), that is the i-th column of Mn,m

is denoted by ci = (−m, . . . ,−m,
i︷︸︸︷
mn ,−m, . . . ,−m)>. Let us assume that L is a hyper-

L for the digraph GMn,m , in the same sense as in the proof of Proposition 2. Set x =
(x1, . . . , xn) ∈ L. Then, all the entries of x must be xi 6 mn − 1. If say x1 > mn, then
y = x − c1 = (x1 − mn, x2 + m, . . . , xn + m) ∈ Zn

>0. Then, y ≡ x (mod Mn,m) and
‖y‖1 = ‖x‖1 −m, thus x /∈ L; a contradiction.

There cannot be more than k entries of x with xi > m(n−k+1)−1, for k ∈ {1, . . . , n−
1}. Otherwise, if it were the case that for instance x1, . . . , xk+1 > m(n− k + 1)− 1, then
the vector

yk = x−c>1 − . . .−c>k+1 = (x1−mn+km, . . . , xk+1−mn+km, xk+2 +km, . . . , xn +km)

would be yk ≡ x (mod Mn,m), yk ∈ Zn
>0 and ‖yk‖1 = ‖x‖1 − m[k(n − k) + 1]. Thus

x /∈ L, a contradiction.
Therefore, the maximum max{‖x‖1 : x ∈ L} is attained at vectors of type x∗ =

(mn − 1,m(n − 1) − 1, . . . ,m2 − 1,m − 1) (up to permutations of the entries). So, the
diameter is

kn,m = k(L) = ‖x∗‖1 =

(
n+ 1

2

)
m− n = n

(
n+ 1

2
m− 1

)
.

Using similar arguments as in the proof of Proposition 2, it can be seen that there are
Nn,m = detMn,m = mn(n + 1)n−1 different vectors in L, the order of the commutative
step digraph GMn,m .

Theorem 6. Consider the generator set B′n ⊂ Zn given in the proof of Theorem 4. Then,
the Cayley digraph Dn,m = Cay(Zm⊕(n−1)Zm(n+1), B

′
n) has diameter kn,m =

(
n+1
2

)
m−n.

Proof. Using the same argument in the proof of Theorem 4, the statement follows from
the Smith normal form of the matrix Mn,m, i.e. Sn,m = diag(m,m(n + 1), . . . ,m(n +
1)) = UnMn,mV n. The unimodular matrices Un and V n are as in (9). The digraph
isomorphism is now Dn,m

∼= GMn,m , where GMn,m is the commutative step digraph of
Proposition 5.

In terms of the degree d = n and diameter k, we get the number of vertices and density
of Dn,m:

Nd,k =
2d

d+ 1

(
k

d
+ 1

)d

and δd =
1

d+ 1

(
2

d

)d

for all k. (10)
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Note that, given a fixed degree d, the value of the density remains constant as the diameter
k increases.

As mentioned before in the Introduction, Dougherty and Faber gave the following
nonconstructive result in [6]: There is a positive constant c (not depending on d or k),
such that, for any fixed d > 2 and any k, there exist Cayley digraphs of Abelian groups
having diameter at most k and number of vertices satisfying:

Nd,k >
c

d(ln d)1+log2 e

kd

d!
+O(kd−1).

which, using Stirling’s formula, gives

Nd,k >
c√
2π
ed−

3
2
ln d−(ln ln d)(1+log2 e)

(
k

d

)d

+O(kd−1), (11)

with multiplicative factor of
(
k
d

)d
being

c√
2π
ed−

3
2
ln d−(ln ln d)(1+log2 e) ∼ ed−

3
2
ln d.

For large k, the order in (10) is

Nd,k = 2d−log2(d+1)

(
k

d

)d

+O(kd−1), (12)

where the multiplicative factor of
(
k
d

)d
is

2d−log2(d+1) ∼ 2d− 1
ln 2

ln d.

Although this last coefficient turns out to be smaller than the one appearing in the
theoretical bound of Dougherty and Faber, the explicit constructions given here achieve
it, and they are asymptotically the only ones known up to date.
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