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Abstract

Let r, c, s ∈ {1, 2, . . . , n} and let P be a partial latin square of order n in which
each nonempty cell lies in row r, column c, or contains symbol s. We show that
if n /∈ {3, 4, 5} and row r, column c, and symbol s can be completed in P , then
a completion of P exists. As a consequence, this proves a conjecture made by
Casselgren and Häggkvist. Furthermore, we show exactly when row r, column c,
and symbol s can be completed.

1 Introduction

Let n be a positive integer and S a symbol set of cardinality n. A partial latin square of
order n is an n × n matrix partially filled with symbols from S such that each symbol
occurs at most once in each row and column. Rows and columns are indexed with the
set [n] = {1, 2, . . . , n} and S = [n], unless otherwise stated. The set of all partial latin
squares of order n is denoted PLS(n).

Let P ∈ PLS(n). The symbol located in cell (i, j) of P , if such a symbol exists, is denoted
P (i, j). We will often write P as a subset of [n] × [n] × S in which (i, j, k) ∈ P if and
only if P (i, j) = k. If cell (i, j) of P is nonempty for all i, j ∈ [n], then P is called a latin
square and we write P ∈ LS(n). We say that P is completable if there is a latin square
L ∈ LS(n) in which P (i, j) = L(i, j) for each nonempty cell (i, j) of P , or alternatively,
P ⊆ L.
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The problem of completing partial latin squares is notoriously difficult. For an arbitrary
P ∈ PLS(n), determining whether or not it is completable is NP-complete [3]. However,
there are known families of completable partial latin squares. Marshall Hall [6] proved
the following.

Theorem 1.1. Let r and n be integers such that r 6 n. Let P ∈ PLS(n) in which the cells
of r rows (columns) are filled and the remaining cells empty. Then P can be completed to
an element of LS(n).

Theorem 1.1 essentially says that if P contains exactly r filled rows or r filled columns,
then P can be completed. The same can be said of symbols. If P contains exactly r
symbols, each occurring n times, then P can be completed. Furthermore, by rearranging
the completed n− r rows (columns) from Theorem 1.1, we have the following corollary.

Corollary 1.2. Let P ∈ PLS(n) with exactly r filled rows (columns) and one filled column
(row). Then P is completable.

Other families of completable partial latin squares come from solutions to the famous
Evans Conjecture [4].

Theorem 1.3. All partial latin squares of order n with at most n− 1 nonempty cells are
completable.

Proofs of Theorem 1.3 were given independently by Häggkvist for n > 1111 [5], and by
Andersen and Hilton [1] and Smetaniuk [7] for all n. The upper bound on the number
of nonempty cells is sharp. In [1], the authors determine all incompletable partial latin
squares of order n with exactly n nonempty cells. One such square has symbol 1 in the
first k diagonal cells and symbols 2, 3, . . . , n−k+ 1 in the last n−k cells of column k+ 1.
We name this partial latin square Bk,n.

Let P ∈ PLS(n) and Sn be the symmetric group acting on [n]. For θ = (α, β, γ) ∈
Sn × Sn × Sn, we use θ(P ) ∈ PLS(n) to denote the array in which the rows, columns,
and symbols of P are permuted according to α, β, and γ respectively. The mapping θ
is called an isotopism, and P and θ(P ) are said to be isotopic. A conjugate of P is an
array in which the coordinates of each triple of P are uniformly permuted. There are six,
not necessarily distinct, conjugates of P . The main class, or species of P is the set of all
partial latin squares that are isotopic to some conjugate of P .

The following theorem is Andersen and Hilton’s solution to the Evans conjecture [1].

Theorem 1.4. If P ∈ PLS(n) with exactly n nonempty cells, then P is completable if
and only if P is not a species of Bk,n for each k ∈ [n− 1].

More recently, the following family was studied in [2]. For n > 0, we say that P ∈ PLS(n)
satisfies the RCS property if there exists r, c, s ∈ [n] such that for all (x, y, z) ∈ P , either
x = r, y = c, or z = s. Casselgren and Häggkvist conjectured the following in [2].
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Conjecture 1.5. Let n > 0, P ∈ PLS(n), and r, c, and s defined as above. If P satisfies
the RCS property, (r, c, s) ∈ P , and n /∈ {3, 4, 5}, then P is completable.

Observe that Conjecture 1.5 is trivial for n = 1 and n = 2. Casselgren and Häggkvist
confirmed Conjecture 1.5 when n ∈ {6, 7} and n = 4k for all integers k > 2 [2]. Arrays
(a), (b), and (c) in Figure 1 illustrate why the conjecture excludes orders 3, 4, and 5.

1 2 3
2 1
3 1

1 3 4 2
2 1
3 1
4 1

1 3 2 4 5
2 1
3 1
4 1
5 1

2 3 4 5
1

3 1
4 1
5 1

(a) (b) (c) (d)

Figure 1: Incompletable partial latin squares.

For n > 0, define Pn ⊆ PLS(n) as the partial latin squares that satisfy the RCS property
and do not contain a species of Bk,n for each k ∈ [n−1]; these species are called forbidden
configurations. Clearly all completable partial latin squares satisfying the RCS property
belong to Pn. Array (d) in Figure 1 contains a forbidden configuration and thus does not
belong to P5.

In this paper, we prove the following:

Theorem 1.6. Let n > 6. If P ∈ Pn, then P is completable.

In Section 2, we show that for each P ∈ Pn, row r, column c, and symbol s can be
completed. Then, in Section 3, we prove Conjecture 1.5 for n > 8. In Section 4, we show
that if n > 6, P ∈ Pn, and a completion of row r, column c, and symbol s does not
include (r, c, s), then P is completable.

Observe that if P ∈ PLS(n) with the RCS property, then each of its species also has the
RCS property. Thus, we assume that r = c = s = 1 throughout this paper.

2 Necessary Conditions

Let P ∈ Pn such that an empty cell occurs in row 1 or column 1, or symbol 1 appears
fewer than n times. We say that P has an RCS completion if row 1, column 1, and symbol
1 can be completed. We show that an RCS completion of P exists.

Observation 2.1. If P (1, 1) = 1, then P has an RCS completion by arbitrarily filling
row 1 and column 1, and adding symbol 1 as necessary.
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Lemma 2.2. Let P ∈ Pn and suppose that cell (1, 1) of P is empty. Then P has an RCS
completion.

Proof. Let S be the union of symbols appearing in either row 1 or column 1. Since P
contains no forbidden configurations, S 6= [n]. If 1 /∈ S, set P (1, 1) = 1 and the result
follows from Observation 2.1. Otherwise, let x ∈ [n]\S and place x in cell (1, 1). Without
loss of generality, assume that 1 appears in row 1.

Suppose that 1 does not appear in column 1 and cannot be added to column 1. Suppose
that P contains k occurrences of 1. Without loss of generality, assume they occur in the
first k rows. It follows that the latter n− k cells in column 1 must be filled which, when
combined with the k 1’s, yield a forbidden configuration. Thus, symbol 1 can be added to
column 1. Since 1 appears in column 1 and row 1, symbol 1 can be completed. It follows
that row 1 and column 1 can be completed.

Lemma 2.3. Let P ∈ Pn and suppose that cell (1, 1) of P is nonempty. Then P has an
RCS completion.

Proof. If P (1, 1) = 1, then the result follows from Observation 2.1, so assume that
P (1, 1) 6= 1. If 1 does not appear in row 1, then the conjugate of P obtained by swapping
symbol and column coordinates has an empty (1, 1) cell, and so the result follows from
Lemma 2.2. A similar result holds if 1 does not appear in column 1. If 1 appears in both
row 1 and column 1, then P has an RCS completion as outlined at the end of the proof
of Lemma 2.2.

3 A proof for Conjecture 1.5

For this section, we consider only elements P ∈ Pn for which an RCS completion of P
includes (1, 1, 1). Let Fn ⊆ Sn be the set of permutations which fix 1, and for each π ∈ Fn,
define Pπ ∈ PLS(n) as {(a, 1, a), (1, a, π(a)), (a, a, 1) | a ∈ [n]}. Observe that if P ∈ Pn,
then each RCS completion of P is isotopic to Pπ for some π ∈ Fn.

In what follows we show that for each π ∈ Fn, Pπ is completable when n > 8. This, in
conjunction with Lemmas 2.2 and 2.3, completes our proof of Conjecture 1.5. We achieve
this using semi-invariant permutations.

3.1 Semi-Invariant Permutations

Let π ∈ Fn. Define π as semi-invariant over a set I ⊆ [n] if |I| = bn/2c, 1 ∈ I, and π is
invariant on I (in other words, fixes I setwise). We say that π is semi-invariant if such a
set I exists. The reduction π(I) is the restriction of π to I.
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Example 3.1. Let π1, π2 ∈ F8 and π3, π4 ∈ F9 be the permutations π1 = (1)(2345)(678),
π2 = (1)(2345678), π3 = (1)(234)(56)(78)(9), and π4 = (1)(2934)(56)(78), given in
disjoint cycle notation. Observe that π1 is semi-invariant over {1, 6, 7, 8}, π3 is semi-
invariant over {1, 2, 3, 4}, {1, 5, 6, 9}, and {1, 7, 8, 9}, and both π2 and π4 are not semi-
invariant. Reductions of π1 and π3 are π1({1, 6, 7, 8}) = (1)(678), π3({1, 2, 3, 4}) =
(1)(234), π3({1, 5, 6, 9}) = (1)(56)(9), and π3({1, 7, 8, 9}) = (1)(78)(9).

We use the following observation when a permutation is not semi-invariant.

Observation 3.2. Let π ∈ Fn and suppose π is not semi-invariant. There exists a
transposition (ab) so that (ab)π is semi-invariant over a set I, with a ∈ I and b /∈ I.

Example 3.3. Let π2 = (1)(2345678) and π4 = (1)(2934)(56)(78), as given in Example
3.1. Both π2 and π4 are not semi-invariant, but (25)π2 is semi-invariant over {1, 2, 3, 4}
and (39)π4 = π3 is semi-invariant over {1, 7, 8, 9}.

3.2 Standard Forms

Let π ∈ Fn be semi-invariant over a set I. After appropriate row and column permuta-
tions, we may assume that Pπ has the form given in Figure 2 (a). If π is not semi-invariant,
there exists I ⊂ [n] and a, b ∈ [n] so that (ab)π is semi-invariant as in Observation 3.2.
Let c, d ∈ [n] such that a = π(c) and b = π(d). After appropriate row and column per-
mutations, we may assume that Pπ has the form given in Figure 2 (b). We say that these
forms are standard forms with respect to I. The rows and columns moved to be the first
bn/2c rows and columns in Figure 2 (a) and (b) are those indexed by I. When we assume
standard forms, we keep I and [n]\I as the indices.

Example 3.4. Let π3 and π4 be as given in Example 3.1. Recall that π3 = (39)π4 is
semi-invariant over {1, 7, 8, 9}. Standard forms for π3 and π4 over {1, 7, 8, 9} are given in
Figure 3 (a) and (b).

The next observation shows the relationship between Pπ and P(ab)π when π is not semi-
invariant and (ab)π is semi-invariant. Assume that Pπ is in standard form (see Figure 2
(b)).

Observation 3.5. Let π ∈ Fn and a, b, c, d ∈ [n]\{1} with π(c) = a and π(d) = b, then

Pπ ∪ {(c, c, 1), (d, d, 1)}\{(d, c, 1), (c, d, 1)} = P(ab)π.

In what follows, if a standard form is needed for Pπ, we will state it.
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Figure 2: Standard forms of Pπ with respect to I if π is (a) semi-invariant or (b) not
semi-invariant.

3.3 Adding a Partial Transversal

The following lemma will be used to prove Conjecture 1.5. A partial transversal of length
n − 1 is an element of PLS(n) consisting of exactly n − 1 triples, no two of which agree
in a row, column, or symbol coordinate.

Lemma 3.6. Let n > 6 and π ∈ Fn. There is a partial latin square of order n containing
Pπ and, disjoint from Pπ, a partial transversal of length n− 1.

Proof. We begin by identifying the cells of the partial transversal to be added to Pπ.
These cells are {(2, 3), (3, 4), . . . , (n− 1, n)(n, 2)}.

Let G be the bipartite graph with vertex parts {r2, . . . , rn} and {2, . . . , n}. We may think
of the vertex parts as the rows and symbols of Pπ respectively. Edge rij is included in G
if and only if j 6= i and j 6= π(i + 1). It follows that the degree of each vertex is at least
(n− 1)− 2 > n

2
since n > 6. Thus, a perfect matching M = {(r2, j2), (r3, j3), . . . , (rn, jn)}

exists in G by Hall’s Marriage Theorem.

The partial latin square Pπ ∪{(k, k+ 1, jk) | 2 6 k 6 n− 1}∪{(n, 2, jn)} contains Pπ and
a partial tranversal of length n− 1 disjoint from Pπ.

Example 3.7. Let π = (1)(234)(56) ∈ F6. Following the procedure in Lemma 3.6, a
partial transversal of length 5 can be added to Pπ. See Figure 3 (c).
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1 8 7 9 3 4 2 6 5
7 1
8 1
9 1
2 1
3 1
4 1
5 1
6 1

1 8 7 9 3 4 2 6 5
7 1
8 1
9 1
2 1
3 1
4 1
5 1
6 1

1 3 4 2 6 5
2 1 6
3 1 4
4 1 5
5 1 3
6 2 1

(a) (b) (c)

Figure 3: Standard forms for (a) Pπ3 and (b) Pπ4 from Example 3.4.
(c) The addition of a partial transversal in P134265 from Example 3.7.

3.4 Main Result

Lemma 3.8. Let n > 8 and suppose that π ∈ Fn is semi-invariant with a reduction π. If
Pπ is completable, then Pπ is completable.

Proof. Let π ∈ Fn over [n] be semi-invariant with respect to S1. Without loss of generality,
we assume that Pπ is in standard form, and define S2 = [n]\S1. We begin by partitioning
Pπ into four subarrays Pk` (k, ` ∈ {1, 2}) defined as Pk` = {(i, j, s) | i ∈ Sk, j ∈ S`}. See
Figure 4. Observe that P11 = Pπ, and let Q11 be a completion of Pπ over S1.
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Figure 4: The subarrays of Pπ in Lemma 3.8.

First, suppose that n is even. Observe that |S1| = |S2| = n/2, and so each Pk` (k, ` ∈
{1, 2}) is a partial latin square. Since P12, P21, and P22 have only a completed row,
column, and symbol, respectively, by Theorem 1.1 there exists completions of each over
S2, S2, and S1, respectively. Let Q12, Q21, and Q22 denote completions of P12, P21, and
P22, respectively. Therefore Q11 ∪Q12 ∪Q21 ∪Q22 is a completion of Pπ.
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Now suppose that n is odd. Then |S1| = (n − 1)/2 and |S2| = (n + 1)/2. Let φ be the
permutation of order (n+ 3)/2 induced from π over S2 ∪ {1}. Let Pφ be the partial latin
square of order (n+ 3)/2 over {1} ∪ S2 with triples:

{(i, i, 1) | i ∈ {1}∪S2}∪ {(i, 1, s) | i ∈ S2, (i, 1, s) ∈ Pπ}∪ {(1, i, s) | i ∈ S2, (1, i, s) ∈ Pπ}.
From Lemma 3.6, since (n+ 3)/2 > 6, there exists a partial transversal T on symbol set
S2 of length (n+ 1)/2 which can be added to Pφ.

Let m be a new symbol and define the following partial latin squares of order (n+ 1)/2:

P ′
12 = P12 ∪ {(m, j, s) | (i, j, s) ∈ T} ⊆ (S1 ∪ {m})× S2 × S2,
P ′
21 = P21 ∪ {(i,m, s) | (i, j, s) ∈ T} ⊆ S2 × (S1 ∪ {m})× S2, and
P ′
22 = P22 ∪ {(i, j,m) | (i, j, s) ∈ T} ⊆ S2 × S2 × (S1 ∪ {m}).

In other words, P ′
12, P

′
21, and P ′

22 are each obtained by adding a new filled row to P12,
a new filled column to P21, and by adding (n + 1)/2 copies of m to the cells of P22.
By Theorem 1.1, P ′

12, P
′
21, and P ′

22 each have completions over S2, S2, and S1 ∪ {m}
respectively, which we name Q12, Q21, and Q22.

By removing the row and column indexed by m in Q12 and Q21, replacing the occurrences
of symbol m in Q22 with T , and combining these with Q11, we construct a completion of
Pπ. Formally,

Q11 ∪ {(i, j, k) ∈ Q12 | i 6= m} ∪ {(i, j, k) ∈ Q21 | j 6= m} ∪ {(i, j, k) ∈ Q22 | k 6= m} ∪ T
is a completion of Pπ.

Example 3.9. Let π = (1)(78)(9)(234)(56). In Figure 5, we illustrate the arrays needed
to complete Pπ. Observe that π is semi-invariant over {1, 7, 8, 9} with reduction π =
(1)(78)(9) and Pπ has a completion Q11. Completions of P ′

12, P
′
21, and P ′

22, as outlined in
Lemma 3.8, are given in Figure 5 (a). A completion of Pπ is given in Figure 5 (b). The
φ and partial transversal used to complete Pπ are the ones in Figure 3 (c).

In what follows, we consider permutations π ∈ Fn which are not semi-invariant. We first
find a transposition (ab) so that (ab)π is semi-invariant, then find a particular completion
of P(ab)π, and finally perform a slight modification that involves intercalates to produce a
completion of Pπ.

Definition 3.10. Suppose that L ∈ LS(n) and L contains an intercalate M – a subset
of L of the form M = {(i, j, k), (i′, j, k′), (i, j′, k′), (i′, j′, k)}, for some i, j, k, i′, j′, k′ ∈ [n]
where i 6= i′, j 6= j′, and k 6= k′. The switch of M is {(i, j, k′), (i′, j, k), (i, j′, k), (i′, j′, k′)},
and the switch of L with respect to M is obtained by removing M from L and adding the
switch of M . Observe that the switch of L with respect to M is an element of LS(n).

Lemma 3.11. Let n > 8 and suppose that π ∈ Fn is not semi-invariant, but (ab)π is
semi-invariant with a reduction π for some a, b ∈ [n]. If Pπ is completable, then Pπ is
completable.
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1 8 7 9
7 1 9 8
8 9 1 7
9 7 8 1

2 6 4 5 3
3 4 2 6 5
4 3 5 2 6
6 5 3 4 2
5 2 6 3 4

m

6 2 4 3 5
4 3 5 2 6
5 4 2 6 3
3 5 6 4 2
2 6 3 5 4
m

1 m 7 8 9
9 1 m 7 8
8 9 1 m 7
7 8 9 1 m
m 7 8 9 1
m

m

1 8 7 9 3 4 2 6 5
7 1 9 8 4 3 5 2 6
8 9 1 7 6 5 3 4 2
9 7 8 1 5 2 6 3 4
2 4 3 5 1 6 7 8 9
3 5 2 6 9 1 4 7 8
4 2 6 3 8 9 1 5 7
5 6 4 2 7 8 9 1 3
6 3 5 4 2 7 8 9 1

1 8 7 9 3 4 2 6 5
7 1 9 8 4 3 5 2 6
8 9 1 7 6 5 3 4 2
9 7 8 5 1 2 6 3 4
2 4 3 1 5 6 7 8 9
3 5 2 6 9 1 4 7 8
4 2 6 3 8 9 1 5 7
5 6 4 2 7 8 9 1 3
6 3 5 4 2 7 8 9 1

(a) (b) (c)

Figure 5: (a) The latin squares Qk` (P ′
k` is shaded).

(b) A completion of Pπ3 from Example 3.9.
(c) A completion of Pπ4 from Example 3.12.

Proof. Assume that Pπ is in standard form with respect to S1 and let S2 = [n]\S1, where
a, d ∈ S1, b, c ∈ S2, and π(d) = b and π(c) = a (see Figure 2 (b)). From Observation
3.5, Pπ = P(ab)π ∪ {(d, c, 1), (c, d, 1)}\{(d, d, 1), (c, c, 1)}. We first complete P(ab)π using a
completion of Pπ (similar to what we did in Lemma 3.8). Define P11 = Pπ, P12, P21, P22

as in Lemma 3.8.

Suppose that n is even, and observe that |S1| = |S2| = n/2. Let Q11 be a completion of
P11 and Q22 be a completion of P22, both over S1. Choose symbol x ∈ S2 such that x 6= b
and x 6= c. Such a symbol can be chosen since |S2| > 4.

Define P ′
12 = P12∪{(d, c, x)} and P ′

21 = P21∪{(c, d, x)}. Both P ′
12 and P ′

21 have completions
over S2 by Corollary 1.2; Q12 and Q21 respectively. Thus Q = Q11 ∪Q12 ∪Q21 ∪Q22 is a
completion of P(ab)π.

Observe that Q contains the intercalate

M = {(c, c, 1), (d, d, 1), (c, d, x), (d, c, x)}. (1)

The switch of Q with respect to M is a completion of Pπ.

Now suppose that n is odd with |S1| = (n − 1)/2 and |S2| = (n + 1)/2. Let Q11 be a
completion of P11. Let φ be the permutation of order (n+ 3)/2 induced from (ab)π over
S2 ∪ {1}. Let Pφ be the partial latin square of order (n+ 3)/2 over {1} ∪ S2 with triples:

{
(i, i, 1) | i ∈ {1} ∪ S2

}
∪
{

(i, 1, s) | i ∈ S2, (i, 1, s) ∈ P(ab)π

}

∪
{

(1, i, s) | i ∈ S2, (1, i, s) ∈ P(ab)π

}
.

From Lemma 3.6, since (n+ 3)/2 > 6, there exists a partial transversal T on symbol set
S2 of length (n+ 1)/2 which can be added to Pφ.
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Choose x ∈ S2 such that x 6= b, x 6= c, x 6= T (i, c) and x 6= T (c, j) for appropriate
i, j ∈ S2. Such an x can be chosen since |S2| > 5.

Let m be a new symbol and define the following partial latin squares of order m =
(n+ 1)/2.

P ′
12 = P12 ∪ {(m, j, s) | (i, j, s) ∈ T} ∪ {(d, c, x)} ⊆ (S1 ∪ {m})× S2 × S2,
P ′
21 = P21 ∪ {(i,m, s) | (i, j, s) ∈ T} ∪ {(c, d, x)} ⊆ S2 × (S1 ∪ {m})× S2, and
P ′
22 = P22 ∪ {(i, j,m) | (i, j, s) ∈ T} ⊆ S2 × S2 × (S1 ∪ {m}).

Each of the partial latin squares P ′
12, P

′
21, and P ′

22 have completions over S2, S2, and
S1 ∪ {m} respectively; Q12, Q21, and Q22. The latin square

Q11 ∪ {(i, j, k) ∈ Q12 | i 6= m} ∪ {(i, j, k) ∈ Q21 | j 6= m} ∪ {(i, j, k) ∈ Q22 | k 6= m} ∪ T
is a completion of P(ab)π containing the intercalate M in (1). Thus, the switch of Q with
respect to M is a completion of Pπ.

Example 3.12. Let π4 = (1)(2934)(56)(78) as given in Example 3.1. A completion of
P(39)π4 can be constructed from Lemma 3.11 with x = 5 (see Figure 5 (b)). Switching the
intercalate in rows and columns 4 and 5 gives a completion of Pπ4 (see Figure 5 (c)).

In [2], Casselgren and Häggkvist state that Pπ is completable for each π ∈ Fi, where
i ∈ {6, 7, 8, 9, 10}. They list all completions when i ∈ {6, 7}, use their main construction
to deduce the conclusion when i = 8, and state that they use an exhaustive computer
search when i ∈ {9, 10}. To complete our work, it is only necessary to show that Pπ
is completable for each π ∈ F11. However, our argument can be simply manipulated to
prove Pπ is completable for each π ∈ Fi, where i ∈ {8, 9, 10} as well. This alleviates the
need for a computer search and requires only the methods outlined in this paper, so we
give them below as well. For the following arguments, we use the completions given in
Figure 6.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 4 3
2 1 3 4
3 4 1 2
4 3 2 1

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

1 3 2 5 4
2 1 5 4 3
3 4 1 2 5
4 5 3 1 2
5 2 4 3 1

1 3 4 2 5
2 1 3 5 4
3 5 1 4 2
4 2 5 1 3
5 4 2 3 1

1 3 4 5 2
2 1 5 4 3
3 5 1 2 4
4 2 3 1 5
5 4 2 3 1

P1234 P1243 P12345 P13254 P13425 P13452

Figure 6: Completions of selected elements of P4 and P5.

Note that the proof of Lemma 3.11 only requires that (ab)π be semi-invariant. In the
following small cases, it may be that π and (ab)π are both semi-invariant, however, any
reduction of π may not be completable, whereas a reduction of (ab)π is completable. In
what follows, we say a prefix of a permutation π is a sequence of the form π(1)π(2) · · · π(k),
or in other words, the first k terms of the single-word representation of π for some k ∈ [n].
Before proving our base cases, we make the following observation.
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Observation 3.13. Let π, π′ ∈ Fn for some positive n. If Pπ is completable and π and
π′ are conjugates, then Pπ′ is also completable. Hence we only need to show that Pπ is
completable for a permutation π from each conjugacy class in Fn.

Lemma 3.14. If π ∈ F8 ∪ F9, then Pπ is completable.

Proof. By Lemmas 3.8 and 3.11, the completions in Figure 6, and Observation 3.13, it is
sufficient to show that for each π ∈ F8 ∪ F9, there is a permutation π′ which is conjugate
to π such that either

(i) the prefix of π′ is 1234 or 1243,
(ii) there exist symbols a, b for which (ab)π′ has a prefix of 1234 or 1243, or

(iii) a completion of π′ can be found by brute force.

Let π ∈ Fi where i ∈ {8, 9}, and let π1 be the restriction of π to {2, 3, . . . , i}. We consider
the following five cases.

(a) Suppose π1 consists of at least three 1-cycles. Then π has a conjugate whose prefix
is 1234, and hence Pπ is completable.

(b) Suppose that π1 consists of at least one 1-cycle and at least one 2-cycle. Then π has
a conjugate whose prefix is 1243, and hence Pπ is completable.

(c) Suppose that π1 has no 1-cycle and consists of at least one 2-cycle. Then π has a
conjugate π′ whose prefix is 1543. Then (25)π′ has a prefix of 1243, and hence Pπ′

and Pπ are completable.
(d) Suppose that π1 consists of no 2-cycles and either one or two 1-cycles. Then π1

contains a cycle of length at least 3. Then π has a conjugate π′ whose prefix is 1245.
Then (35)π′ has a prefix of 1243, and hence Pπ′ and Pπ are completable.

(e) Suppose that π1 does not meet any of the above conditions. Then π is a conjugate
of (1)(2345678), (1)(234)(6789), (1)(23456789), (1)(2345)(6789), or (1)(234)(56789).
These have their completions given in Figure 7.

1 3 4 5 6 7 8 2
2 1 3 4 5 6 7 8
3 4 1 2 7 8 5 6
4 7 8 1 2 3 6 5
5 8 7 6 1 4 2 3
6 5 2 8 4 1 3 7
7 2 6 3 8 5 1 4
8 6 5 7 3 2 4 1

1 3 4 2 6 7 8 5
2 1 3 4 5 6 7 8
3 4 1 7 8 5 6 2
4 2 7 1 3 8 5 6
5 8 6 3 1 2 4 7
6 5 2 8 7 1 3 4
7 6 8 5 2 4 1 3
8 7 5 6 4 3 2 1

1 3 4 5 6 2 8 9 7
2 1 9 3 8 5 4 7 6
3 5 1 2 9 7 6 4 8
4 8 6 1 7 9 2 3 5
5 2 8 7 1 3 9 6 4
6 9 7 8 4 1 5 2 3
7 6 3 9 5 4 1 8 2
8 7 5 4 2 6 3 1 9
9 4 2 6 3 8 7 5 1

1 3 4 5 2 7 8 9 6
2 1 5 9 4 8 6 3 7
3 2 1 4 7 5 9 6 8
4 5 8 1 3 6 2 7 9
5 6 3 2 1 9 7 8 4
6 4 9 7 8 1 3 5 2
7 9 6 8 5 4 1 2 3
8 7 2 6 9 3 4 1 5
9 8 7 3 6 2 5 4 1

1 3 4 5 6 7 8 9 2
2 1 8 3 9 4 6 7 5
3 5 1 2 8 9 4 6 7
4 9 5 1 7 6 2 3 8
5 2 6 7 1 8 9 4 3
6 4 3 8 5 1 7 2 9
7 6 2 9 3 5 1 8 4
8 7 9 4 2 3 5 1 6
9 8 7 6 4 2 3 5 1

Figure 7: Completions of P13456782, P13426785, P13452897, P134527896, and P134567892.

Hence Pπ is completable for every π ∈ F8 ∪ F9.

Lemma 3.15. If π ∈ F10 ∪ F11, then Pπ is completable.

Proof. With an argument similar to the proof in Lemma 3.14, we can apply Lemmas 3.8
and 3.11, along with Observation 3.13 the completions in Figure 6. We need only show

the electronic journal of combinatorics 23(2) (2016), #P2.23 11



that in each π ∈ F10 ∪ F11, there is a permutation π′ which is conjugate to π for which
either

(i) the prefix of π′ is 12345, 13254, 13425, or 13452, or
(ii) there exist symbols a, b for which (ab)π′ has a prefix of 12345, 13254, 13425, or

13452.

Let π ∈ Fi where i ∈ {10, 11}, and let π1 be the restriction of π to {2, 3, . . . , i}. We
consider the following cases.

(a) Suppose that π1 has a cycle of length at least 5. Then π has a conjugate π′ whose prefix
is 13456. Then (26)π has the prefix 13452, and hence Pπ′ and Pπ are completable.

(b) Suppose that π1 has a cycle of length 4 and none larger. Then π has a conjugate
whose prefix is 13452, and hence Pπ is completable.

(c) Suppose that π1 has a cycle of length 3 and none larger. If π1 also has a 1-cycle, then
π has a conjugate whose prefix is 13425, and hence Pπ is completable. Otherwise,
π has a conjugate π′ whose prefix is 13426. Then (56)π′ has a prefix of 13425, and
hence Pπ′ and Pπ are completable.

(d) Suppose that π1 has at least two 2-cycles and none larger. Then π has a conjugate
whose prefix is 13254, and hence Pπ is completable.

(e) If π1 does not satisfy any of the previous conditions, then π1 has at least four 1-cycles.
So π has a conjugate with a prefix of 12345, and hence Pπ is completable.

Therefore Pπ is completable for every π ∈ F10 ∪ F11.

Thus, we have proved the following theorem, confirming Conjecture 1.5.

Theorem 3.16. Let P ∈ Pn where (r, c, s) ∈ P . If n /∈ {3, 4, 5}, then P is completable.

4 The cases for which (r, c, s) /∈ P

Let A ∈ LS(n). The back diagonal of an n×n array is the set of cells {(i, n−i+1) | i ∈ [n]}.
We build a partial latin square T (A) of order n+ 1 by setting

• T (A)(i, j) = n+ 1 for each (i, j) on the back diagonal,
• T (A)(i, j) = A(i, j) for each (i, j) above the back diagonal, and
• cell (i, j) of T (A) is empty for each (i, j) below the back diagonal.

Smetaniuk’s proof of Theorem 1.3 [7] uses the following completion result.

Theorem 4.1. Let A ∈ LS(n). Then T (A) ∈ PLS(n+ 1) is completable.

We can now prove Theorem 1.6.
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Proof of Theorem 1.6. By Lemmas 2.2 and 2.3, we may assume that the first row and
column of P are filled and that symbol 1 appears n times. If P (1, 1) = 1, then the result
follows from Theorem 3.16. So assume P (1, 1) 6= 1.

Without loss of generality, assume that (1, n, 1), (n, 1, 1) ∈ P and each symbol 1 occurs on
the back diagonal of P . Let P ′ ∈ PLS(n) be the array formed from P by removing each
occurrence of symbol 1. Define Q ∈ PLS(n− 1) over [n]\{1} such that Q(i, j) = P ′(i, j)
for all i, j ∈ [n−1]. By Corollary 1.2, Q can be completed to a latin square L ∈ LS(n−1)
over [n]\{1}. By Theorem 4.1, T (L) has a completion, and thus P is completable.
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