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Abstract

We provide a short proof of a classical result of Kasteleyn, and prove several
variants thereof. One of these results has become key in the parametrization of
positroid varieties, and thus deserves the short direct proof which we provide.
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Let G be a finite graph. A perfect matching of G is a collection M of edges of G
such that every vertex of G is contained in precisely one edge of M . Perfect matchings
are also called dimer configurations. Kasteleyn [3] established the following:

Theorem 1. Let G be a planar bipartite graph with N black vertices b1, b2, . . . , bN and
N white vertices w1, w2, . . . , wN . There is a N × N matrix K with Kij = ±1 if there
is an edge from i to j, and Kij = 0 otherwise, such that detK is the number of perfect
matchings of G.

We will define a graph with boundary to be a finite graphG together with a specified
subset ∂G of the vertices of G, equipped with a circular ordering. We call the vertices
of ∂G the boundary vertices and the other vertices of G the internal vertices . We
define a perfect matching of a graph with boundary to be a collection M of edges
of G which contains each internal vertex precisely once, and each boundary vertex at
most once. For a perfect matching M , we define ∂M to be the set of boundary vertices
contained in M . For a subset I of ∂G, we define D(G, I) to be the number of perfect
matchings M of I with ∂M = I. We define a graph with boundary to be embedded
in a disc if G is embedded in a closed planar disc D such that the the vertices of ∂G lie
on ∂D, in their specified order.

Our first variant on Kasteleyn’s result is:
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Theorem 2. Let G be a bipartite graph with boundary embedded in a disk, such that all
of the boundary vertices are white. Let there be N + k black vertices b1, b2, . . . , bN+k, let
there be N internal white vertices w1, w2, . . . , wN and let there be n boundary vertices
wN+1, . . . , wN+n, with that circular order. Then there is an (N + k)× (N + n) matix K
with Kij = ±1 if there is an edge from i to j, and Kij = 0 otherwise, having the following
property: For any k element subset I of ∂G, let KI be the submatrix of K using all rows,
the first N columns, and the additional k columns indexed by I. Then D(G, I) = detKI .

This will then imply

Theorem 3. Let G be as in Theorem 2. Then there is a k × n real matrix L with the
property we now describe: For any k element subset I of ∂G, let LI be the submatrix of
L using all rows and the columns indexed by I. Then D(G, I) = detLI .

In particular, all maximal minors of LI are nonnegative. As we will point out explicitly
in Corollary 3.4, that means that the

(
n
k

)
numbers D(G, I) are the Plücker coordinates of

a point in Postnikov’s totally nonnegative Grassmannian .
Kasteleyn also proved a version of his theorem for graphs which are not bipartite:

Theorem 4. Let G be a planar graph with N vertices v1, v2, . . . , vN . Then there is an
N ×N skew symmetric matrix X with Xij = −Xji = ±1 if there is an edge from i to j,
and Xij = 0 otherwise, such that the Pfaffian Pf(X) is the number of perfect matchings
of G.

We will prove this and the corresponding results:

Theorem 5. Let G be a planar graph with boundary embedded in a disc, having N internal
vertices v1, v2, . . . , vN and n boundary vertices vN+1, vN+2, . . . , vN+n in that circular
order. Then there is an (N+n)×(N+n) skew symmetric matrix X with Xij = −Xji = ±1
if there is an edge from i to j, and Xij = 0 otherwise having the following property: For
any subset I of ∂G, let XI be the submatrix of X using the first N rows and first N
columns, and additionally those rows and columns indexed by I. Then D(G, I) = Pf(XI).

Theorem 6. Let G be as in Theorem 5 and assume D(G, ∅) > 0 (which implies that N is
even). Then there is an n× n skew symmetric real matrix Y with the following property:
For any subset I of ∂G, let YI be the submatrix using the rows and columns indexed by I.
Then D(G, I) = Pf(YI) D(G, ∅) for all subsets I of ∂G.

Remark. We take the Pfaffian of an odd by odd skew symmetric matrix to be zero, so the
theorems are true but trivial in the cases that involve such Pfaffians.

Remark. Theorem 6 shows that there are many skew-symmetric matrices all of whose
Pfaffian’s are nonnegative; it would be interesting to develop analogues of classical results
on nonnegative matrices for Pfaffians.

Remark. Theorems 3.1 and 4.1 of [6] are Theorems 6 and 3 with the added hypotheses
(respectively) that D(G, ∅) = 1 and that D(G, I0) = 1 for some I0.
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All of these theorems have easy variants where there are weights on the edges of G.
Specifically, let w : Edges(G) → R>0 be any weighting function. For a perfect matching
M , we define w(M) =

∏
e∈M w(e); we define D(G, I, w) =

∑
∂M=I w(M). Then the

corresponding results are

1. In the setting of Theorem 1, there is a matrix K with Kij = ±w((bi, wj)) if (bi, wj)
is an edge, and 0 otherwise, such that detK =

∑
M w(M).

2. In the setting of Theorem 2, there is a matrix K with Kij = ±w((bi, wj)) or 0 as
above such that detKI = D(G, I, w).

3. In the setting of Theorem 3, there is a real matrix L such that detLI = D(G, I, w).

4. In the setting of Theorem 4, there is a skew-symmetric matrix X with Xij = −Xji =
±w((vi, vj)) if (vi, vj) is an edge, and 0 otherwise, such that PfX =

∑
M w(M).

5. In the setting of Theorem 5, there is a skew-symmetric matrix X with Xij = −Xji =
±w((vi, vj)) or 0 as above such that Pf(XI) = D(G, I, w).

6. In the setting of Theorem 6 (including the hypothesis that D(G, ∅, w) > 0), there is
a real skew-symmetric matrix Y such that D(G, I, w) = Pf(YI)D(G, ∅, w).

In particular, part (3) shows that the
(
n
k

)
numbers D(G, I, w), as I varies, are the

Plücker coordinates of a point in the totally nonnegative Grassmannian. If we fix G and
let w vary over all possible weightings of the edges of G, we thus obtain a parametrization
of a portion of the totally nonnegative Grassmannian. This parametrization of the totally
nonnegative Grassmannian is the one found by Postnikov [9], who described it in terms
of certain random walks. Talaska [12] recast Postnikov’s formulas in terms of flows.
Postnikov, Williams and the author [10] implicitly pointed out that this was equivalent
to summing over matchings. Lam’s lecture notes [7] make the point explicit. As the
positive Grassmannian and its parametrizations grow more popular, the author feels that
there should be a brief paper which records a direct proof that w 7→ (D(G, I, w))

I∈([n]
k )

parametrizes a portion of the totally nonnegative Grassmannian.
The author would like to express his gratitude to Jim Propp for introducing him

to Kasteleyn’s method, Kuo’s condensation theorem, and the pleasures of combinatorial
research.

1 A topological proof of Theorems 1, 2, 4 and 5

The key to our proof is to prove a more general result for non-planar graphs. Let G be
a general graph. We will define a planar immersion of G to be a continuous map
φ : G→ R2 such that each edge of G is taken to a line segment and, for any edge e, and
any vertex v not an end point of e, the point φ(v) is not contained in φ(e). We point out
explicitly that a line segment has positive length; a single point is not a line segment.
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For G a graph, φ : G → R2 a planar immersion and M a perfect matching of G, we
define cross(M) to be the number of unordered pairs {e1, e2} of distinct edges of M for
which φ(e1) and φ(e2) intersect. We set ε(M) = (−1)cross(M).

Proposition 1.1. Let G be a bipartite graph with N black vertices bi and N white vertices
wj, equipped with a planar immersion φ. Then there is an N × N matrix Kij, with
Kij = ±1 if there is an edge from bi to wj, and 0 otherwise, such that detK =

∑
M ε(M).

Proof. We first note that the theorem is easy if all the black vertices φ(bi) lie in order on
a line and all the white vertices φ(wj) lie in order on a parallel line; just take Kij = 1
whenever there is an edge (bi, wj). We must check that ε(M) is the sign coming from the
determinant. Let (b1, wσ(1)), (b2, wσ(2)), . . . , (bN , wσ(N)) be a perfect matching M , so σ
is a permutation. The number of crossing edges of M is the number of (i1, i2) such that
i1 < i2 and σ(i1) > σ(i2). So cross(M) is the number of inversions of σ, and ε(M) is the
sign of σ, as desired.

Given any point z ∈ (R2)Vertices(G), there is a map φz : G → R2 which sends a vertex
v to z(v) and sends each edge to a line segment or point. Let Ω be the set of z for which
φz is a planar immersion.

We note that Ω is an open subset of (R2)Vertices(G) ∼= R4N , obtained by deleting the
codimension 1 subvarieties on which certain triples of vertices become colinear. Let Ω′ ⊃ Ω
be the open set where we impose that all the vertices have distinct images z(v), and also
that the interiors of φz(e1) and φz(e2) do not overlap in a line segment for any distinct
edges e1 and e2. So Ω′ is obtained from R4N by deleting the codimension two subvarieties
on which pairs of vertices become equal, or on which certain quadruples of vertices become
colinear.

In particular, since Ω′ is R4N with codimension two subvarieties removed, Ω′ is con-
nected. Let z0 be a point of Ω corresponding to the immersion in the first paragraph, so
Proposition 1.1 is true at φz0 . Let z1 be any point of Ω, and choose a path z(t) from z0
to z1 through Ω′. We will show that the Proposition is true for every φz(t) with z(t) ∈ Ω.

As we travel along z(t), the only changes of the topology of the embedding occur when
a vertex v passes through an edge e. Let ε1 and ε2 denote the sign functions for the two
topologies. We claim that ε1(M) = −ε2(M) if e ∈ M , and ε1(M) = ε2(M) otherwise.
This is because M has exactly one edge incident to v. This edge crosses e in one topology
and not the other, and no other crossings change. So, if K is a matrix which works for
the first topology, then we can obtain a matrix for the second topology by switching the
sign of the entry corresponding to edge e. Since we have a matrix which works at z0, we
obtain a matrix which works at any z.

Proof of Theorem 1. Fary [1] showed that any planar graph can be drawn so that the
edges are straight lines. Drawing G in this manner, the function ε is simply 1 and we
obtain Theorem 1.

Remark 1.2. We could avoid appealing to Fary’s theorem by using piecewise linear edges
and adding additional coordinates for the positions of the bends in these edges. This
creates a few new cases, but no significant difficulties.
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Remark 1.3. Norine [8] used planar immersions to provide a characterization of Pfaffian
graphs, and thus implicitly to provide a proof of Kasteleyn’s theorem, but did not discuss
deforming the immersion. The author previously posted a sketch of this argument on
Mathoverflow [11]. The author is not aware of any other prior sources for this argument.

We have proved Theorem 1. Slight variants of this argument prove Theorems 2, 4
and 5. For Theorem 2, we fix a closed rectangle D and consider immersions G → D
taking ∂D → ∂G in the specified circular order. Our starting point is that the black
vertices occurs in order on the top edge of the rectangle and the black vertices occur
in order on the bottom edge. The fact that D is convex ensures that φ(G) ⊂ D if
φ(Vertices(G)) ⊂ D.

For Theorems 4 and 5, we proceed similarly. Our starting point is now to take all the
vertices φ(v) to lie on the boundary of a circle, and recall that one way to describe the
signs occurring in the Pfaffian is as the number of crossings when a matching is drawn in
this manner.

2 Proofs of Theorems 3 and 6

We begin with Theorem 3. Let K be the matrix from Theorem 2. If G has no perfect
matchings, the Theorem is immediate; take L = 0. So we may assume that G has perfect
matchings, and thus that detKI 6= 0 for some I. In particular, the first N columns of K
are linearly independent.

Therefore, applying row operations, we may transform K into a matrix of block form(
IdN ∗
0 L

)
without changing any maximal minors. Then, in the notations of Theorems 2 and 3, we
have detKI = detLI . This proves Theorem 3.

The proof of Theorem 6 is similar. If G has no perfect matchings, take Y = 0. So
assume that G has a matching. Then the upper left N × N submatrix, X∅, must be of
rank N . So we can write SX∅S

−1 = JN where JN is the N ×N matrix

JN =



0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0


.

Left and right multiplying X by
(
S 0
0 Idn

)
and its transpose, we obtain a matrix of the

form
(

JN E
−ET Z

)
. Further symmetric row operations can bring us to the form

(
JN 0
0 Y

)
. For

any subset I of ∂G, we have Pf(XI) = det(S)Pf(YI). Since Pf(Y∅) = 1, we deduce that
Pf(XI) = Pf(YI)Pf(X∅) = Pf(YI)D(G, ∅) as desired.
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3 Relation to results of Kuo and to the totally nonnegative
Grassmannian

In the case where #(∂G) = 4, Theorems 3 and 6 imply two results of Eric Kuo [5, 6].

Corollary 3.1 (Kuo’s condensation relation for bipartite graphs). Let G be a bipartite
planar graph with circularly ordered white boundary {a, b, c, d}, and with two more white
vertices than black vertices. Then

D({a, c})D({b, d}) = D({a, b})D({c, d}) + D({a, d})D({b, c}).

Proof. For any 2× 4 matrix ( x1 x2 x3 x4y1 y2 y3 y4 ), we have the Plücker relation

det

(
x1 x3
y1 y3

)
det

(
x2 x4
y2 y4

)
= det

(
x1 x2
y1 y2

)
det

(
x3 x4
y3 y4

)
+ det

(
x1 x4
y1 y4

)
det

(
x2 x3
y2 y3

)
.

Corollary 3.2 (Kuo’s condensation relation for general graphs). Let G be a planar graph
with circularly ordered boundary {a, b, c, d}, and an even number of vertices. Then

D({a, c})D({b, d}) + D(∅)D({a, b, c, d}) = D({a, b})D({c, d}) + D({a, d})D({b, c}).

Proof. We are being asked to prove, for a 4× 4 skew symmetric matrix Y , that Y13Y24 +
Pf(Y ) = Y12Y34 + Y14Y23, which is immediate.

Remark 3.3. Many authors have pointed out that Corollaries 3.1 and 3.2 and similar
identities follow from properties of Pfaffians. (See [13], [2], [4].) It seems uncommon,
though, to observe that the relations that occur when deleting subsets of n boundary
vertices are precisely the relations between the Pfaffians of an n× n matrix.

There is no need to limit ourselves to 2 × 4 matrices. More generally, we deduce the
following result:

Corollary 3.4. Let G be as in Theorems 2 and 3. Then the
(
n
k

)
numbers D(I), as I

ranges through k-element subsets of ∂G, are either all zero or the Plücker coordinates of
a point on the Grassmannian G(k, n).

Proof. By definition, the Plücker coordinates of RowSpan(L) are the maximal minors of
L, assuming L has rank k.

As explained in the introduction, this last result is key to parametrizations of the
totally nonnegative Grassmannian.
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